Answer:
Find an integer k for which the roots of the equation will be rational and unequal. To find a value of k that makes the roots rational and unequal the discriminant must be greater than 0 and a perfect square.
Step-by-step explanation:
So if k=0 or k=5 the roots will be rational and unequal. hope this helps you :)
In a family with children, the probability that all the children are girls is appoximately . In a random sample of 1000 families with children, what is the approximate probability that or fewer will have girls? Approximate a binomial distribution with a normal distribution.
Answer:
The probability that 100 or fewer will have 3 girls is 0.00734.
Step-by-step explanation:
The complete question is:
In a family with 3 children, the probability that all the children are girls is approximately 0.125. In a random sample of 1000 families with 3 children, what is the approximate probability that 100 or fewer will have 3 girls? Approximate a binomial distribution with a normal distribution.
Solution:
Let X represent the number of families who has 3 girls.
The random variable X follows a Binomial distribution with parameters n = 1000 and p = 0.125.
But the sample selected is too large.
So a Normal approximation to binomial can be applied to approximate the distribution of X if the following conditions are satisfied:
1. np ≥ 10
2. n(1 - p) ≥ 10
Check the conditions as follows:
[tex]np=1000\times 0.125=125>10\\\\n(1-p)=1000\times (1-0.125)=875>10[/tex]
Thus, a Normal approximation to binomial can be applied.
So, [tex]X\sim N(\mu=np,\sigma^{2}=np(1-p))[/tex]
The mean and standard deviation are:
[tex]\mu=np=1000\times 0.125=125\\\\\sigma=\sqrt{np(1-p)}=\sqrt{1000\times 0.125\times (1-0.125)}=10.46[/tex]
Compute the probability that 100 or fewer will have 3 girls as follows:
Apply Continuity correction:
[tex]P(X\leq 100)=P(X<100-0.50)[/tex]
[tex]=P(X<99.50)\\\\=P(\frac{X-\mu}{\sigma}<\frac{99.5-125}{10.46})\\\\=P(Z<-2.44)\\\\=0.00734[/tex]
*Use a z-table.
Thus, the probability that 100 or fewer will have 3 girls is 0.00734.
Complete the statements. f(4) is . f(x) = 4 when x is
Answer:
x=4
Step-by-step explanation:
it's a identity function because it is in the form of f(x)= x ,so the value of x is 4.
The difference of two trinomials is x2 − 10x + 2. If one of the trinomials is 3x2 − 11x − 4, then which expression could be the other trinomial? 2x2 − x − 2 2x2 + x + 6 4x2 + 21x + 6 4x2 − 21x – 2
Answer:
[tex]4x^2-21x-2[/tex]
Step-by-step explanation:
Given that:
Difference of two trinomials is [tex]x^2 - 10x + 2[/tex]
One of the two trinomials is [tex]3x^2 - 11x - 4[/tex]
To find:
The other trinomial = ?
Four options are:
[tex]2x2 - x - 2 \\2x2 + x + 6 \\4x2 + 21x + 6\\ 4x2 - 21x - 2[/tex]
Solution:
Let the two trinomials be A and B.
Given A - B = [tex]x^2 - 10x + 2[/tex]
B = [tex]3x^2 - 11x - 4[/tex]
We have to find the other trinomial A.
A - B = [tex]x^2 - 10x + 2[/tex]
A - ([tex]3x^2 - 11x - 4[/tex]) = [tex]x^2 - 10x + 2[/tex]
[tex]\Rightarrow[/tex] A = [tex]x^2 - 10x + 2[/tex] + ([tex]3x^2 - 11x - 4[/tex])
[tex]\Rightarrow[/tex] A = [tex]4x^2-21x-2[/tex]
So, the correct answer is [tex]4x^2-21x-2[/tex].
Shawn wanted to model the number 13,450 using 13,450 using base-ten blocks how many large cubes, flats, and longs does he need to model the number
Answer:
13 cubes, 4 flats, 5 longs
Step-by-step explanation:
Base-ten is basically just analyzing the place values of each number in the given value.
A cube represents 1,000, a flat represents 100, and a long represents 10.
Looking at the number 13,450, we can see that there are 13 thousands in this (13,000). This means that we will need 13 cubes.
We can also see that there are 4 hundreds in this (400), meaning we need 4 flats.
Also, there are 5 tens in this (50), so we need 5 longs.
Hope this helped!
1/3(12-6x)=4-2x I need help pls
Answer:
no solution
Step-by-step explanation:
1/3(12-6x)=4-2x
4-1.3x=4-2x
4=4-0.7x
0=0.7x
ns
Just need to calculate the area of the shaded region, thanks
Answer:
Area of the shaded region= 82.2 cm²
Step-by-step explanation:
Please see attached picture for full solution.
Please solve.
Essie likes plants. She never misses a chance to go to the nursery section in Home Depot. Essie has a total of $65.50 to spend on her trips to the store over the next three days. On her second trip to the nursery she spent $15.50 dollars more than what she spent on the first trip to the store. On her third trip to the nursery she spent two times much as what she spent on her first trip to the nursery. How much did she spend on her first trip to the nursery? Create a linear equation to model a real-world situation and solve the equation to find the solution
Answer:
Step-by-step explanation:
Let $ x = the amount spent on the first day
The amount spent on the second day = x + 15.50
The amount spent on the third say = 2*x = 2x
Total amount Essie spent on 3 days = $65.50
x + (x +15.50) + 2x = 65.50
x + x + 15.50 + 2x = 65.50
Add like terms
4x + 15.50 = 65.50
Subtract 15.50 from both sides
4x = 65.50 - 15.50
4x = 50
Divide both sides by 4
x = 50/4
x = $ 12.50
The amount spent on the first day = $ 12.50
The amount spent on the second day = 12.50 + 15.50 = $ 28
The amount spent on the third day= 12.50 * 2 = $ 25
Sue likes to run. One day she was running for 3 hours with an average speed of 7 miles per hour. How many miles did she run that day?
Answer:
21 miles
Step-by-step explanation:
Since every single hour she runs 7miles.
In 3 hours she will run 7*3 miles.
21 miles
Hey there! I'm happy to help!
If Sue ran with an average speed of 7 miles an hour for 1 hour, she would have run 7 miles. So, if she ran at this speed for 3 hours, she would have run 3 times the distance she would if she ran for one hour!
7×3=21
Therefore, Sue ran 21 miles that day.
Have a wonderful day! :D
A blueprint for a house has a scale factor n = 35. A wall in the blueprint is 10 in. What is the length of the actual wall?
29.17 in.
29.17 feet
350 feet
4,200 feet
Answer:
29.17 feet
Step-by-step explanation:
10 x 35 = 350 in. / 12 in/ft = 29.17 feet
The length of the actual wall is 29.17 feet. The correct answer is option B.
What is the scale factor?The scale factor is defined as the proportion of the new image's size to that of the previous image. decision-making.
It is given that the blueprint for a house has a scale factor of n = 35. A wall in the blueprint is 10 in.
The length of the actual wall is calculated as:-
L = 10 x 35
L = 350 in. / 12 in/ft
L= 29.17 feet
Therefore, the length of the actual wall is 29.17 feet. The correct answer is option B.
To know more about scale factors follow
https://brainly.com/question/25722260
#SPJ2
please this urgent!!
Answer:
Step-by-step explanation:
1)First convert mixed fraction to improper fraction and them prime factorize
[tex]6\frac{1}{4} = \frac{25}{4}\\[/tex]
[tex]\sqrt{\frac{25}{4}}= \sqrt{\frac{5*5}{2*2}}= \frac{5}{2} = 2 \frac{1}{2} \\\\[/tex]
2)
[tex](2 \frac{1}{2}- 1 \frac{1}{2})*1 \frac{1}{7}=( \frac{5}{2}- \frac{3}{2})* \frac{8}{7}\\\\\\= \frac{2}{2}* \frac{8}{7}\\\\=1* \frac{8}{7}= \frac{8}{7}\\\\\\=1 \frac{1}{7}[/tex]
3) 0.00706 = 7.06 * [tex]10^{-3}[/tex]
4) 144 = 12 * 12
12 = 6*2
6 = 2*3
Prime factorization of 144 = 2 * 3 * 2 * 2 * 3 *2
= 2⁴ * 3²
5) To find LCM, prime factorize 96 & 144
96 = 2 * 2 * 2 * 2 * 2 * 3 = 2⁵ * 3
144 = 2⁴ * 3²
LCM = 2⁵ * 3² = 32 * 9 = 288
6) HCF
105 = 7 * 5 * 3
135 = 5 * 3* 3 * 3
180 = 5 * 3 * 3 * 2 * 2
HCF = 5 * 3 = 15
7) 24 = 3 * 2 * 2 * 2 = 3 * 2³
36 = 3 * 3 * 2 * 2 = 3² * 2²
40 = 5 * 2 * 2 * 2 = 5 * 2³
LCM = 5 * 2³ * 3² = 5 * 8 * 9 = 360
HCF = 2² = 4
Difference = 360 - 4 = 356
8) Multiply each digit of the binary number by the corresponding power of 2, solve the powers and add them all
1111 = 1 *2³ + 1*2² + 1*2¹ + 1*2° = 8 + 4 + 2 + 1 = 15
Ans: 15
9) 36₇ = 102₅
10) 6.9163 = 6.916
I knew only this much
hope it's helpful
:)
85,58,72,85,46,93 mean,mode,range,median
Answer:
mean: 73.2
mode : 85
range:47
median: 78.5
Step-by-step explanation:
85,58,72,85,46,93
first put the numbers in order from least to highest
46,58,72,85,85,93
mean: is the sum of the terms divided by the number of terms
(85+85+72+58+46+93)/6=73.2 ( rounded to the nearest tenth)
mode : is the element that occurs the most: in this case it is 85 occurs twice
range : subtract the minimum data from max. data: 93-46=47
median : is the middle number, in this case it is even so take the middle two numbers and divide by 2: 85+72/2= 157/2=78.5
median = 78.5
The mean value is 73.
The mode value is 85.
The range value is 47.
The median value is 78.5.
What is a mean?It is the average value of the set given.
It is calculated as:
Mean = Sum of all the values of the set given / Number of values in the set
We have,
85,58,72,85,46,93
Mean = (85 + 58 + 72 + 85 + 46 + 93) / 6
Mean = 73
Mode is the number that occurs the most times in the set.
Mode = 85.
Range = Highest value - Lowest value.
Range = 93 - 46 = 47.
The Median is the middle value after arranging the set in order.
46, 58,72,85, 85, 93
Median = (72 + 85) / 2
Median = 78.5
Thus,
The means is 73.
The mode is 85.
The range is 47.
The median is 78.5.
Learn more about mean here:
https://brainly.com/question/23263573
#SPJ2
Edward has four pearls – two white and two black – which he can distribute as he chooses between two identical bags. He must then choose a bag at random and pick one pearl at random from the bag he chose. If Edward distributes the pearls so as to maximize his chances of picking a black pearl, what is the probability that Edward will pick a black pearl?
Answer:
2/3
Step-by-step explanation:
Bag A: WWB
Bag B: B
In the expression 3x2 + y -5, which of the following terms does not have a variable?
A.3x2
B. y
A
C. -5
D. None of these choices are correct.
Answer:
A, C
Step-by-step explanation:
Only B is containing a variable .
The -5 is not variable.
We have given that,
A.3x2
B. y
A
C. -5
In the expression 3x^2 + y -5
We have to determine which of the following terms does not have a variable.
What is the variable?
variable, In algebra, a symbol stands in for an unknown numerical value in an equation. Commonly used variables include x and y (real-number unknowns), z (complex-number unknowns), t (time), r (radius), and s (arc length).
Only C contains a variable.
The -5 is not variable.
To learn more about the variable visit:
https://brainly.com/question/2804470
#SPJ2
Barbara Cusumano worked 60 hours last week. Of those hours, 40 hours were paid at the regular-time rate of $12.50 an hour, 18 hours at the time-and-a-half rate, and 2 hours at the double-time rate. What was Barbara's gross pay for the week?
Answer:
$887.50
Step-by-step explanation:
Her gross pay is the sum of the pay amounts for each of the hour amounts:
pay = 40(12.50) +18(12.50)(1.5) +2(12.50)(2)
= (12.50)(40 +18(1.5) +2(2)) = 12.50(40 +27 +4) = 12.50(71)
pay = 887.50
Barbara's gross pay for the week was $887.50.
what do anthropologist study and why
Answer:
Anthropologists study human societies and cultures and the development of them from the past and present. They study this to analyze the differences and evolutions that us as humans have.
The sum of two consecutive odd integers is at least 36, find the integers
Answer:
The two integers are greater than or equal to 17 and 19
Step-by-step explanation:
Consecutive odd integers means 1, 3, 5, 7, 9 and so on
That means there is a always a gap of 2 in between each of them. Knowing this, we can set up an equation. Let x represent the first of the consecutive integers.
x+(x+2)=36
x+2 represents the second consecutive interger
x+x=34
2x=34
x=17
The two integers are 17 and 19
Simplify:
[tex] \sqrt[4]{6 ^{4} } [/tex]
Answer:
6
Step-by-step explanation:
Doing the fourth root of something is the equivalent of doing said number to the power of 1/4. So in this case I will convert the fourth root into an exponent and simplify:
6^(4*1/4) = 6^1 = 6
Hope this helps!
in triangle ABC A-B= 15 degree, B-C= 30 degree find A,B,C
Answer:
A=80 , B=65, C=35
Step-by-step explanation:
A-B=15 ⇒A=B+15
B-C=30⇒-C=30-B ⇒C=B-30
the sum of angle of a triangle = 180
A+B+C=180 ( substitute A and C)
B+15+B+B-30=180
3B-15=180
3B=180+15
B=195/3=65
C=B-30 ⇒ C=65-30=35
A=B+15=65+15=80
check : A+B+C=180
80+65+35=180 ( correct)
This composite figure is made of two identical pyramids attached at their bases. Each pyramid has a height of 2 units. 2 identical pyramids with rectangular bases are connected at their base. The height of the pyramid is 2. The lengths of the sides of the rectangle are 5 and 0.25 units. Which expression represents the volume, in cubic units, of the composite figure? One-half (One-third (5) (0.25) (2) ) One-half (One-third (5) (0.25) (4) ) 2(One-third (5) (0.25) (2) ) 2(One-third (5) (0.25) (4) )
Answer:
The total volume of the solid is 1.67 cubic units.
Step-by-step explanation:
Each pyramid with a height of 2 units and a rectangular base with dimensions of 5 units × 0.25 units.
1/3 x (area of base) x height
= 1/3 x (5 x 0.25) x 2= 0.833
Therefore, the volume of each pyramid will be
= cubic units.
So, the total volume of the solid is (2 × 0.833) = 1.67 cubic units. (Answer)
Hope it helped ya!
Mark me BRAINLIEST
Tysmm
The total volume of the solid is 1.67 unit³.
What is Volume?Each thing in three dimensions takes up some space. The volume of this area is what is being measured. The space occupied within an object's borders in three dimensions is referred to as its volume. It is sometimes referred to as the object's capacity.
Given:
Each pyramid has a height of 2 units.
and the rectangular base with dimensions of 5 units × 0.25 units.
So, the Volume of each Pyramid is
= 1/3 x (area of base) x height
= 1/3 x (5 x 0.25) x 2
= 0.833
and, the total volume of the solid
= (2 × 0.833)
= 1.67 cubic units.
Learn more about Volume here:
https://brainly.com/question/1578538
#SPJ6
Chemical A, 12.062 g of chemical B, and 7.506 g of chemical C to make 5 doses of medicine. a. About how much medicine did he make in grams? Estimate the amount of each chemical by rounding to the nearest tenth of a gram before finding the sum. Show all your thinking.
Answer:
30.0g
Step-by-step explanation:
In order to determine the amount of each chemical to the nearest tenth of gram prior to computing the sum is shown below:
Like
10.357, 57 > 50, rounded to 10.4
12.062, 62 > 50, rounded to 12.1
7.506, 06 < 50, rounded to 7.5
Now
The Sum is
= 10.4g + 12.1g + 7.5g
= 30.0g
Hence, 30.0g medicine required to make in grams
How many significant figures does each value contain? 5.6803 kg has significant figures. 0.00047 seconds has significant figures. 0.240 miles has significant figures.
Answer:
5.6803 has five significant figures.
0.00047 has two significant figures.
0.240 has three significant figures.
What are Significant Figures?Significant figures are numbers that are necessary to express a true value.
Place the values in scientific notation.
[tex]5.6803 * 10^{0} = 5.6803\\\\4.7 * 10^{-4} = 0.00047\\\\2.4 * 10^{-1}=0.240[/tex]
Explanation5.6803
The zero that is within 5.6803 is "trapped," meaning it is in between two nonzero digits. Therefore, all five digits are significant figures.
This answer is also already in scientific notation because 5.6803 satisfies the inequality [tex]1 < x < 10[/tex], which decides if a number is correctly written in scientific notation or not.
0.00047
The zeroes that precede the 4 and the 7 are not significant because they are dropped in scientific notation and are not trapped by other nonzero digits. Therefore, only two digits of this value are significant.
0.240
Since the zero at the end of 0.240 is a trailing zero, it is significant along with the 2 and the 4. The zero that precedes these digits and the decimal point is not significant. Therefore, only three digits of this value are significant.
Therefore:
5.6803 has five significant figures.
0.00047 has two significant figures.
0.240 has three significant figures.
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Match each value to the correct expression.
The answer is shown below:
What is expression?An expression in math is a sentence with a minimum of two numbers/variables and at least one math operation in it. Let us understand how to write expressions. A number is 6 more than half the other number, and the other number is x. This statement is written as x/2 + 6 in a mathematical expression.
1+5.2 + (1+3)²
=1+10 + 16
=27
0.25*4³-1
=0.25*64-1
=16-1
=15
4+8(1/4+2)
=4+8(9/4)
=4+2*9
=4+18
=22
Learn more about expression here:
https://brainly.com/question/13947055
#SPJ6
f(x)=x^2 what is g(x)?
pls help me
A round wading pool has a diameter of 115cm deep. A hose is filling the pool at a rate of 34000cm^3, cubed per minute. How long will it take to fill the pool to a depth of 20cm?
Answer:
It will take 6.118 minutes to fill up the pool to a depth of 20 cm
Step-by-step explanation:
The first step is to calculate the volume of the wading pool.
we will assume it is a cylinder, hence the volume will be = [tex]\pi r^{2}h[/tex]
Where r= radius of the pool = 115/2 = 57.5cm
h = depth of the pool =20 cm
The volume of the pool will be [tex]\pi \times57.5^{2} \times 20 =2.08 \times 10^{5} cm ^{3}[/tex]
We are filling a pool of 208,000cm ^{3} at the rate of 34000cm^3, cubed per minute.
To get the time it will take to fill up the pool, we will have to divide as follows:
208,000cm ^{3} / 34000cm^3 =6.118 minutes
Therefore it will take 6.118 minutes to fill up the pool to a depth of 20 cm
Can someone please explain this to me? I don’t understand it at all.
Segment AB was added to segment BC to get segment AC
representing it as an equation,
AC = AB + BC.
Substitute the values in the equation which means you are going to find the value of x.
77 = x + 16 + 4x +11
77 = 5x + 27
(group like terms)
77 - 27 = 5x
50 = 5x
( divide both sides by 5 to make x stand alone)
50/5=5x/5
10 = x
therefore ,x = 10.
To prove that segment AB =26, place x in the statement
AB = x+16
AB=10+16
AB=26/
how do you find the surface area of this triangular prism?
To find the area of a triangular prism you have to do A 1/2 bh or A bh/2 which means you have to multiply those two fractions and reduce them
Answer:
Find the area of the 2 triangle faces first and then find the area of the 3 rectangle faces and add them together to get [tex]159cm^{2}\\[/tex]
Step-by-step explanation:Step 1: Find the surface area of the 2 triangles
[tex]\frac{(6)(5.5)}{2}[/tex] x2 = [tex]33cm^2\\[/tex]
Step 2: Find the surface area of the 3 rectangles
(6x7) x 3 = [tex]126cm^2[/tex]
Step 3: Add the 2 surface areas together
[tex]33cm^2\\[/tex] + [tex]126cm^2[/tex] = [tex]159cm^2[/tex]
Therefore the surface area of the prism is [tex]159cm^{2}[/tex]
A study found that the expected annual income in a certain area is $17,255. Which of the following statistical measurements most likely led to this conclusion? Mean, range, median or mode?
Answer:
Mean
Step-by-step explanation:
mean is the average of numbers put together and divided by the total amount of numbers, when finding the average annual income using the mean would be most effective
Please answer thanks!
Answer:
see explanation
Step-by-step explanation:
tan x = -1
[tex]x = tan^{-1}(-1)[/tex]
x = -45
tan x = 5
[tex]x = tan^{-1}(5)[/tex]
x = 78.69
Answer:
See below.
Step-by-step explanation:
So we want to find the solutions to the two equations:
[tex]\tan(x)=-1 \text{ and } \tan(x)=5[/tex]
I)
[tex]\tan(x)=-1\\x=\tan^{-1}(-1)[/tex]
Recall the unit circle. First, note that the number inside tangent is negative. Because of this, we can be certain that the x (in radians) must be in Quadrant II and/or IV (This is because of All Students Take Calculus, where All is positive in QI, only Sine is positive in Q2, only Tangent is positive in Q3, and only Cosine is positive in QIV. Tangent is negative so the only possible choice are QII and QIV).
From the unit circle, we can see that x=3π/4 is a possible candidate since tan(3π/4)=-1.
Since tangent repeats every π, 7π/4 must also be an answer (because 3π/4 + π = 7π/4). And, as expected, 7π/4 is indeed in QIV.
Therefore, for the first equation, the solutions are:
[tex]x=3\pi/4 \text{ and } 7\pi/4[/tex]
II)
For the second equation, there is no exact value for which tangent of an angle would be equal to 5. Thus, we need to approximate.
So:
[tex]\tan(x)=5\\x=\tan^{-1}(5)\\x=\tan^{-1}(5) \text{ and } \tan^{-1}(5)+\pi[/tex]
We got the second answer because, like previously, tangent repeats every π, so we only need to add π to get the second answer.
In approximations, this is:
[tex]x\approx1.3734 \text{ and } x\approx4.5150[/tex]
Note: All the answers are in radians.
The length and width of a book cover are 22.2 centimeters and 12 centimeters respectively. The actual length (and width) can be 0.3 unit less than the measured length (and width) or 0.3 unit greater than the measured length (and width). a. Find the minimum and maximum possible lengths and widths of the book cover. b. Calculate the minimum and maximum possible areas of the book cover.
Part (a)
The length is supposed to be 22.2 cm, but it could be 0.3 cm less
So 22.2 - 0.3 = 21.9 cm is the smallest value for the length. This is the lower bound of the length.
The upper bound is 22.2 + 0.3 = 22.5 cm as it is the largest the length can get.
-------------
Use this for the width as well
The width is supposed to be 12 cm, but it could be as small as 12-0.3 = 11.7 cm and as large as 12+0.3 = 12.3 cm
-------------
Answers:smallest length = 21.9 cmlargest length = 22.5 cmsmallest width = 11.7 cmlargest width = 12.3 cm============================================
Part (b)
Use the smallest length and width to get the smallest possible area
smallest area = (smallest width)*(smallest length) = 11.7*21.9 = 256.23
-------------
Repeat the same idea but for the largest length and width to get the largest possible area
largest area = (largest width)*(largest length) = 12.3*22.5 = 276.75
-------------
Answers:smallest area = 256.23 square cmlargest area = 276.75 square cmAm I doing this right if not please help me
Answer:
Step-by-step explanation:
For the m it would just be -3 because the equation for slope intercept form is y=mx+b