Answer:75
Step-by-step explanation:54+21
Answer:
15 bicycles, 6 skateboards
Step-by-step explanation:
We are looking for the number of skateboards and the number of bicycles. Those two numbers are our unknowns.
We define variables for those two numbers.
Let s = number of skateboards.
Let b = number of bicycles.
A skateboard has 4 wheels. s number of skateboards have 4s wheels.
A bicycle has 2 wheels. b bicycles have 2b wheels.
The total number of wheels is 4s + 2b.
The total number of wheels is 54, so our first equation is
4s + 2b = 54
The total number of skateboards and bicycles combined is s + b.
We are told the total number of skateboards and bicycles combined is 21.
The second equation is
s + b = 21
We have a system of two equations in two unknowns.
4s + 2b = 54
s + b = 21
We can solve it by the elimination method.
Rewrite the first equation below.
Multiply both sides of the second equation by 2 and write it below that. Then add the equations.
4s + 2b = 54
(+) -2s - 2b = -42
-----------------------------
2s = 12
s = 6
There are 6 skateboards.
Now we substitute 6 for s in the second original equation and solve for b.
s + b = 21
6 + b = 21
b = 15
There are 15 bicycles.
Answer: 15 bicycles, 6 skateboards
a bottle is completely filled with olive oil the mass of the bottle is 500 grams if the density of the oil os 0.92 grams per milliliter what is the volume of the bottle to the nearest milliliter?
Answer:
543.48 millimetre
Step-by-step explanation:
mass/density = volume
500 grams / 0.92 grams per millimetre = 543.48
Answer:
volume = 543.478 cm³
Step-by-step explanation:
Density = mass / volume
0.92g/ml = 500g / volume
volume (0.92g/ml) = 500g
volume = 500g / (0.92g/ml)
volume = 543.478 ml (aprox. to the nearest mililiter)
1 ml = 1cm³
543.478ml = 543.478 cm³
PLS HELP ME I WILL GUVE YOU BRAINLIST AND A THANK YOU!!!!!
Answer: 35
Step-by-step explanation:
If you take the three angles shown, it's total is 180
So take the two angles you know, and subtract them from 180
Now we have 100 left, and we can subtract 30 to be left with 2x.
Now divide what is left by two, which is 70
70/2=35
Answer:
x = 35
Step-by-step explanation:
So we know that a straight line is equal to 180 degrees. So from there we can add the two 40 degrees to get 80 degrees. Now we can solve for x. So 180 - 80 = 100
2x + 30 = 100
Subtract 30 from both sides
2x = 70
Divide both sides by 2
x = 35
In 5 hours a small plane can travel downwind for 4000 kilometers or upward 3000 kilometers. Find the speed of this plane with no wind and the speed of the wind current.
Write as an equation
Answer:
discuss this question is about packhouse a small plant can travel 400 kilometre aur 2000 kilometre find the speed with a plan with no wind and a speed on the answer you will be given to you divide 5 400 the four hundred and 51 you divide the answer to get dawat 310 you will find the extra answer
Traveling at a rate of 70 miles per hour, a car travels 26 miles per gallon of gasoline. Traveling at a rate of 45 miles per hour, the same car travels 36 miles per gallon of gasoline. Approximately how many gallons of gasoline are saved on a 300-mile trip if the car is driven at a rate of 45 miles per hour instead of at 70 miles per hour?
A) 2
B) 3
C) 12
D) 20
Answer:
B) 3
Step-by-step explanation:
Traveling at a rate of 70 miles per hour, a car travels 26 miles per gallon of gasoline.
In 300 miles journey the gallon of gasoline consumed will be
300/26= 11.54 gallons
Traveling at a rate of 45 miles per hour, the same car travels 36 miles per gallon of gasoline.
In 300 miles journey the gallon of gasoline consumed will be
300/36= 8.33 gallons
The amount of gasoline saved= 11.54-8.33
The amount of gasoline saved= 3.21
approximately 3 gallons of gasoline
need help please. Will give you 5-stars and a big thank you comrades
Answer:
first answer
Step-by-step explanation:
(8x³ - 22x² - 4) / (4x - 3)
when you do long division you get the first answer
A line of 8cm was measured as 8.04cm what is the percentage error
Answer:
0.5% error
Step-by-step explanation:
We can use the percentage error formula, which is
[tex]\frac{|approx-exact|}{exact}\cdot100[/tex].
We know that the approximated value was 8.04, however it is actually 8cm, so we can substitute inside the equation.
[tex]\frac{|8.04 - 8|}{8}\cdot100 \\\\\frac{0.04}{8}\cdot100 \\\\0.005\cdot100 \\\\0.5[/tex]
Hope this helped!
Plz help ASAP!! WILL MARK BRAINLIST for the correct answer
The table represents a function because each input (x-value) corresponds to exactly one output (y-value)
If we had repeated x values, then that is a sign we don't have a function. So for instance, if we had the two points (1,5) and (1,6) then we don't have a function because the input x = 1 corresponds to outputs y = 5 and y = 6 simultaneously.
Note: the y values are allowed to repeat and we still have a function, but this function is not one-to-one because of the repeated value y = 2.
Answer:
No idea dude
Step-by-step explanation:
I just need points
Answer ASAP, will give brainliest
Answer:
Step-by-step explanation:
1) Diagonal bisect the angles of Rhombus
∠CAB = ∠CAD
∠CAB = 71
2) ∠DAB = ∠CAB + ∠CAD
∠DAB = 71 + 71 = 142
In Rhombus, adjacent angles are supplementary
∠DAB + ∠ABC = 180
142 + ∠ABC = 180
∠ABC = 180 - 142
∠ABC = 38
3) In rhombus, opposite angles are congruent
∠ADC = ∠ABC
∠ABC = 38
In rhombus, diagonal bisect angles
∠BDC = (1/2)*∠ADC
∠BDC= 38/2
∠BDC = 19
4) Diagonals bisect each other at 90
∠DEC = 90
5) Diagonals bisect each other
BE = DE
BE + DE = DB
7x -2 +7x -2 =24 {add like terms}
14x - 4 =24
14x = 24+4
14x = 28
x = 28/14
x = 2 m
6) AB = 13m
BE = 7x - 2 = 7*2 -2 = 14 -2 = 12 m
In right angle ΔAEB, {use Pythagorean theorem}
AE² + BE² = AB²
AE² + 12² = 13²
AE² + 144 = 169
AE² = 169 - 144
AE² = 25
AE = √25
AE = 5 m
Diagonals bisect each other
AE = EC
AC = 2*5
AC = 10 m
7)Side = 13 m
Perimeter = 4*side
= 4*13
Perimeter = 52 m
8) d1 = AC = 10 m
d2 = DB = 24 m
Area = [tex]\frac{d_{1}*d_{2}}{2}[/tex]
[tex]=\frac{10*24}{2}\\[/tex]
= 10 *12
= 120 m²
what is this expression in simplest form.(-11/2x+3)-2(-11/4x-5/2)
Answer:
The simplest form of the given expression is 8.
Step-by-step explanation:
(-11/2x + 3) - 2(-11/4x - 5/2)
Distribute 2 to (-11/4x - 5/2)
(-11/2x + 3) - (-11/2x - 5)
Now, combine like terms. The terms with the x value will cancel each other out because a negative plus a positive of the same number will equal zero. For example, -2 + 2 = 0.
So, the expression in the simplest form is going to be 8. The x values have cancelled each other out so all there is left is the constant number which is 8.
What are the irrational numbers between minus 12 and plus 49
Answer:
First, an irrational number is a number that has infinite digits after the decimal point, in such way that those digits do not form any pattern.
The irrational set is called a dense set, wich means that in between two elements of the set, we can find infinite other elements of the set.
For example, between 1 and 2, we have
1.12312412513513532....
1.123224124312432432....
and between those two numbers, we can find infinite irrational numbers, and so on.
Then between -12 and +49, we have infinite irrational numbers.
Suppose you are facing west. First you turn 180 degrees to the left. Then turn 45 degrees to the right. Then turn 90 degrees to the left. Then swap left with right. Then turn 180 degrees to the right. What direction are you facing now, if we are marking the directions with letters (North - N, South - S, East - E, West - W).
Answer:
we would be facing the North West
What are the vertical and horizontal asymptotes for the function f(x)=
3x2/x2-4
Answer: f(x) will have vertical asymptotes at x=-2 and x=2 and horizontal asymptote at y=3.
Step-by-step explanation:
Given function: [tex]f(x)=\dfrac{3x^2}{x^2-4}[/tex]
The vertical asymptote occurs for those values of x which make function indeterminate or denominator 0.
i.e. [tex]x^2-4=0\Rightarrow\ x^2=4\Rightarrow\ x=\pm2[/tex]
Hence, f(x) will have vertical asymptotes at x=-2 and x=2.
To find the horizontal asymptote , we can see that the degree of numerator and denominator is same i.e. 2.
So, the graph will horizontal asymptote at [tex]y=\dfrac{\text{Coefficient of }x^2\text{ in numerator}}{\text{Coefficient of }x^2\text{ in denominator}}[/tex]
i.e. [tex]y=\dfrac{3}{1}=3[/tex]
Hence, f(x) will have horizontal asymptote at y=3.
find the value of tan(arcsin(1/2))
Answer:
0.577
Step-by-step explanation:
inv. sin (0.5) = 30
tan (30) = 0.577
The value of Tan[tex](Sin^{-1}(1/2))[/tex] is 0.58.
What are trigonometric identities?There are three commonly used trigonometric identities.
Sin x = 1/ cosec x
Cos x = 1/ sec x
Tan x = 1/ cot x or sin x / cos x
Cot x = cos x / sin x
We have,
Tan[tex](Sin^{-1}(1/2))[/tex]
[ Sin 30° = 1/2 ]
= Tan([tex]sin^{-1}sin30)[/tex])
= Tan 30°
= 0.58
Thus,
0.58 is the value of Tan[tex](Sin^{-1}(1/2))[/tex] is 0.58.
Learn more about trigonometric identities here:
https://brainly.com/question/14746686
#SPJ2
I need help please will give you 5 stars and good rating
Answer:
Step-by-step explanation:
Answer:
x=12
Step-by-step explanation:
To solve for the variable, we must isolate the variable, which is x.
[tex]\sqrt{x+4} -3=1[/tex]
3 is being subtracted from the square root of x+4. The inverse of subtraction is addition. Add 3 to both sides of the equation.
[tex]\sqrt{x+4} -3+3=1+3[/tex]
[tex]\sqrt{x+4} =1+3[/tex]
[tex]\sqrt{x+4} =4[/tex]
The square root of x+4 is being taken. The inverse of a square root is a square. Square both sides of the equation.
[tex](\sqrt{x+4})^2 =4^2[/tex]
[tex]x+4=4^2[/tex]
Evaluate the exponent.
4^2= 4*4=16
[tex]x+4=16[/tex]
4 is being added to x. The inverse of addition is subtraction. Subtract 4 from both sides of the equation.
[tex]x+4-4=16-4[/tex]
[tex]x=16-4[/tex]
[tex]x=12[/tex]
The solution to this equation is x=12.
Nazia has two quarts of a 30% acid solution and four pints of a 20% acid solution. If she mixes them, what will be the concentration of the resulting solution? [1 quart = 2 pints]
Answer: Acid concentration will be 25%.
Step-by-step explanation:
Solution 1: 2 quarts(=4 pints) of a 30% acid
concentration = 0.3*4 = 1.2
Solution 2: 4 pint of a 20% acid
concentration = 4*0.2 = 0.8
Final solution: total volume = 4 pints + 4 pints = 8 pints
Final Concentration:
[tex]\frac{1.2+0.8}{8}[/tex] = 0.25
In the resulting mixture, the concentration is 25% of acid solution.
Gene is playing a game with a bag of marbles. 3 of the marbles are blue, 4 are green, and 7 are yellow. See below for awarded prizes. $2 green $0.5 yellow $4 blue What is the expected cost (or payout for Gene's game?
Answer:
$23.5Step-by-step explanation:
Gene is playing a game with a bag of marbles. If 3 of the marbles are blue, 4 are green, and 7 are yellow and awarded prices for the marbles are $2 green $0.5 yellow $4 blue, the expected payout for Gens game is expressed as shown;
If a blue marble costs $4, 3 blue marbles will cost 3*$4 = $12
If a green marble costs $2, 4 green marbles will cost 4*$2 = $8.0
If a yellow marble costs $0.5, 7 yellow marbles will cost 7*$0.5 = $3.5
Total payout for Gene's game will be the equivalent to $12+ $8 + $3.5 = $23.5.
Hence Gene expected cost will be $21.5
6a+2b-6c+4 if a=5,b=3,and c=-1
Answer:
46
Step-by-step explanation:
First, start off by substituting the values of a, b, and c, into the equation.
We know a = 5, b = 3, and c = -1, so now substitute.
6a + 2b - 6c + 4
6(5) + 2(3) - 6(-1) + 4
Now that we've substituted the values, we can solve the equation.
6(5) + 2(3) - 6(-1) + 4
30 + 6 + 6 + 4
= 46
So, the answer is 46.
I hope this helps! ôヮô
Answer:
46
Step-by-step explanation:
All you need to do is subsitute the variable with what it says the number is.
Let's first start out with 6a from the equation. We know that a= 5, so that means it wants you to multiply 6 by 5, which is 30.
Now let's do 2b. It says b= 3, so do 2 times 3. It equals 6.
So far we have 30+6-6c+4
Let's do -6c. We know that c= -1, so let's multiply -1 and -6. Negative and negative equals positive. And 6 times 1 is 6. So the outcome is positive 6.
We got 30+6+6+4
Solve.
30+6= 36
36+6= 42
And 42+4= 46. :)
Tatenda takes ttt seconds to mow a square meter of lawn and Ciara takes ccc seconds to mow a square meter of lawn. Tatenda mows 700700700 square meters of lawn per week and Ciara mows 750750750 square meters of lawn per week. Which expressions can we use to describe how many more seconds Tatenda spends than Ciara spends mowing lawns during 444 weeks? Choose 2 answers: Choose 2 answers: (Choice A) A 4(750c-700t)4(750c−700t)4, left parenthesis, 750, c, minus, 700, t, right parenthesis (Choice B) B 3000c+2800t3000c+2800t3000, c, plus, 2800, t (Choice C) C 2800t-3000c2800t−3000c2800, t, minus, 3000, c (Choice D) D 4(700t-750c)4(700t−750c)4, left parenthesis, 700, t, minus, 750, c, right parenthesis (Choice E) E 4(700t+750c)4(700t+750c)
Answer:
C.) 4(750c-700t) ; D.) 2800t - 3000c
Step-by-step explanation:
Time taken :
Tatenda = t sec/m^2
Ciara = c sec/m^2
Tatenda = 700m^2 per week
Ciara = 750m^2 per week
Which expressions can we use to describe how many more seconds Tatenda spends than Ciara spends mowing lawns during 4
Total Time taken over four weeks :
Tatenda = 4(t * 700) = 4(700c)
Ciara = 4(c * 750) = 4(750c )
Number of seconds Tatenda spends more than Ciara : meaning Tatenda spends more seconds than
Tatenda - Ciara
4(700t) - 4(750c) = 4(700t - 750c)
4(700t - 750c)
Or
4(700t - 750c) = 2800t - 3000c
2800t - 3000c
The graph shows the distance in miles of a runner over x hours. What is the average rate of speed over the interval [9, 11]? There are four points connected by a curve on the graphs. The points are (0, 0), (5, 1), (9, 6), (11, 11). Two-fifths 1 2 Five-halves
Answer:
Below
Step-by-step explanation:
Let f be our function:
● f(9) = 6
● f(11) = 11
Let m be the average speed over the interval [9,11]
● m = [f(11)-f(9)] / 11-9
● m = 11-6 / 2
● m = 5 / 2
● m = 2.5
So the answer is five halves.
Answer:
5/2
Step-by-step explanation:
D on edge
A train travels 250 km with a average speed of 75 km/hr and 350 km with 70km/hr and 200 km with average speed of 30km/hr. What will the average speed of whole journey of the train?
Answer:
53 1/3 km/h
Step-by-step explanation:
average speed = (total distance)/(total time)
average speed = distance/time
time * average speed = distance
time = distance/(average speed)
250 km at 75 km/h
distance = 250 km
time = (250 km)/(75 km/h) = 3.33333... hours
350 km at 70 km/h
distance = 350 km
time = (350 km)/(70 km/h) = 5 hours
200 km at 30 km/h
distance = 200 km
time = (200 km)/(30 km/h) = 6.6666... hour
total distance = 250 km + 350 km + 200 km = 800 km
total time = 3.33333... hours + 5 hours + 6.66666... hours = 15 hours
average speed = (total distance)/(total time)
average speed = (800 km)/(15 hours)
average speed = 53 1/3 km/h
The average speed of whole journey of the train is 45 km/hr
Average speed is the ratio of total distance travelled to total time taken. It is given by:
Average speed = total distance / total time
Given that a train travels 250 km with a average speed of 75 km/hr, hence:
75 = 250/time
time = 3.33 hours
It the travel 200 km with average speed of 30km/hr, hence:
30 = 200/time
time = 6.67 hours
The total distance = 200 km + 250 km = 450 km
The total time = 3.33 hr + 6.67 hr = 10 hours
Average speed = total distance/total time = 450 km/10 hours = 45 km/hr
The average speed of whole journey of the train is 45 km/hr
Find out more at: https://brainly.com/question/12322912
Find combinations using a school cafeterias meal! (20 POINTS! PLEASE HELP) Fruits: Apples, Bananas, and Grapes. Vegetables: Cauliflower, Carrot, and Corn. Protein: Green beans, Salmon, and Almonds. List all possible combinations and count the total number of possibilities.
Answer:
1. Apples, Cauliflower, Green beans
2. Apples, Cauliflower, Salmon
...
27. Grapes, Corn, Almonds
Step-by-step explanation:
There are 3x3x3 = 27 combinations possible. You can enumerate them systematically.
Answer:
There are 27 combinations possible.
Hope this helps!
Please help! Change 3/8 to a decimal fraction.
Answer:
0.375
Step-by-step explanation:
0.125 x 3 = 0.375
Answer:
0.375
Step-by-step explanation:
3 x 125
8 x 125
=
375
1000
=
0.375
Other sample problem:
5 = 5×125 = 625 = 0.625
8 8×125 1000
Hope this helps, have a good day :)
The following equation is often referred to as Euler's Formula; e^pii+1=0 Use what you know about complex numbers to show that this equation is true. In other words, show that e^pii+1=0 __ If someone could please help me understand the proof and the answer to this ill give you brainliest!! thank you
Answer:
[tex]\large \boxed{e^{i\pi}+1=0}[/tex]
Step-by-step explanation:
Hello, please consider the following.
For any x real number,
[tex]e^{ix}=cos(x)+i\cdot sin(x)\text{, right? So}\\\\e^{i\pi}=cos(\pi)+i\cdot sin(\pi)\\\\e^{i\pi}=-1+i\cdot 0=-1\\\\\text{ We add 1 to both sides of the equation.}\\\\\large \boxed{e^{i\pi}+1=0}\\[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
I NEED HELP PLEASE !!!!
Answer:
No, all of her work is correct.
Step-by-step explanation:
Answer:
No, all of her work is correct.
Step-by-step explanation:
All of her work is correct.
The first step is showing factorization of √50
The second step is simplifying the factorization
The third step is simplifying the entire radical.
When you take a square root of a square, they cancel out, so:
√5² = 5
We multiply it with our leftover √2 and we get:
5√2
Can someone pls help and explain it
Answer:
(7,-4) ; 12
Step-by-step explanation:
Basically, three corners of a rectangle are already on the graph. If you put a dot at (7,-4), that is the last corner(vertex) that finishes the rectangle
Then to find base of the rectangle, you find the length of the longer side, (the distance between the x coordinates). So you would subtract -5 from 7 and get 12, and 12 is the length of your base.
An isosceles triangle has two sides of equal length. The third side is five less than twice the length of one of the other sides. If the perimeter of the triangle is 23 cm what is the length of the third side?
Answer:
9
Step-by-step explanation:
We can set up a systems of equations to find the value of the third side.
Let's assume that [tex]x[/tex] is the length of both sides 1 and 2. Let's also assume that [tex]y[/tex] is the length of the third side.
We know that [tex]x + x + y = 23[/tex], and looking at the first clue we can make the equation [tex]y = 2x-5[/tex].
We can substitute y into the equation [tex]x + x + y = 23[/tex].
[tex]x + x + (2x-5) = 23\\\\2x + 2x-5 = 23\\4x-5 = 23\\4x = 28\\x = 7[/tex]
So the length of the side that is the same as the second is 7.
Now we can plug this into the equation [tex]y = 2x-5[/tex] to find [tex]y[/tex].
[tex]y = 2(7) - 5\\\\y = 14-5\\\\y = 9[/tex]
Hope this helped!
Answer:
9 cm
Step-by-step explanation:
Let's say that the length of the 2 equal sides is x.
That means:
Side 1 = x
Side 2 = x
We know that the third side is 5 less than twice the length of the 2 equal sides, or 2x-5
Side 3 = 2x-5
The perimeter is all sides together.
Side 1 + Side 2 + Side 3
We know the length of each side, so let's put that in instead.
x + x + 2x-5
Let's simplify this expression:
x + x + 2x - 5
2x + 2x - 5
4x - 5
We know the perimeter, 4x-5, is 23 cm.
4x - 5 = 23
4x = 28
x = 7
The third side is 2x-5. If x is 7...
2*7 - 5 = 14-5 = 9
Answer: 9 cm
Each child in a certain class is required to have school supplies of 1 notebook and 2 pencils. One notebook costs $1.09 and one pencil costs $0.59. With $15, what is the maximum number of children that can be provided with the required supplies? (Assume no tax.) Will mark Brainlist
Answer:
6 children
Step-by-step explanation:
Given
[tex]1\ Pencil = \$0.59[/tex]
[tex]1\ Notebook = \$1.09[/tex]
Required
Determine the number of students that can get pencils and notes worth $15
First, we need to calculate the amount that can be allotted to a child
[tex]1\ child= 1\ Notebook + 2\ Pencils[/tex]
[tex]1\ child= 1 * \$1.09 + 2 * \$0.59[/tex]
[tex]1\ child= \$1.09 + \$1.18[/tex]
[tex]1\ child= \$2.27[/tex]
From the given parameters, we have that
[tex]n\ children= \$15[/tex]
Where n is the number of child
Represent both as ratios;
[tex]1 : 2.27 = n : 15[/tex]
Convert to division
[tex]\frac{1}{2.27} = \frac{n}{15}[/tex]
Multiply both sides by 15
[tex]15 * \frac{1}{2.27} = \frac{n}{15} * 15[/tex]
[tex]\frac{15}{2.27} = n[/tex]
[tex]6.608 = n[/tex]
[tex]n = 6.608[/tex]
Because "a child" is discrete, we have to round down the above figure to
[tex]n = 6[/tex]
Hence, the maximum number of children that can be provided with supplies worth $15 is 6
how many words can be formed by using the W,X,Y,Z if repetitions is not allowed?
- 30
- 24
- 18
- 12
Answer:
24
Step-by-step explanation:
What you have here is a permutation, seeing as each element can only be used once.
We have 4 letters initially, so we can choose any 1 as our first letter. We have 4 choices for our first letter
However, once we choose our first letter, we can't use it anymore, so, for our second letter, we can only choose from the remaining 3 letters.
Furthermore, once we choose our second letter, we can only choose our 3rd letter from the remaining two letters we didn't choose yet.
Finally, our last letter will always be the one we didn't choose the last 3 times. So there is only one choice here.
Going off of this, we have four choices for the 1st letter, three choices for the 2nd letter, two choices for the 3rd letter, and one choice for the 4th letter
The way to calculate how many permutations we have without repetition is using factorials
N!
Where N is the number of elements you have.
In this case, it would be 4!
4! is 4 * 3 * 2 * 1
Which equals 24
If you notice, each number in 4! is the number of options we have for each choice. 4, then 3, and so on
how many are 8 raised to 3 ???
Consider a triangle ABC like the one below. Suppose that a =53, b=18, and A=130º. (The figure is not drawn to scale.) Solve the triangle.
Carry your intermediate computations to at least four decimal places, and round
your answers to the nearest tenth.
If no such triangle exists, enter "No solution." If there is more than one solution, use the button labeled "or".
Answer:
B = 15.1°, C = 34.9°, c = 39.6
Step-by-step explanation:
law of sines
53/sin 130 = 18/sin B
sin B = .26; B = 15.1°
C = 180 - 15.1 - 130 = 34.9°
c/sin 34.9 = 53/sin 130
c = 39.6