How many grams of Ag2CO3 will precipitate when excess K2CO3 solution is added to 56.0 mL of 0.671 M AgNO3 solution?

Answers

Answer 1

Answer:

The mass of silver carbonate precipitated is 5.18 grams.

Explanation:

Molarity of the silver nitrate solution = 0.671 M

Volume of the silver nitrate solution = 56.0 mL

[tex]1 mL = 0.001 L\\56.0 mL = 56.0\times 0.001 L=0.0560 L[/tex]

Moles of silver nitrate = n

[tex]Molarity=\frac{\text{Moles of compound}}{\text{Volume of solution in Liters}}\\\\0.671 M=\frac{n}{0.0560 L}\\n=0.671 M\times 0.0560 L=0.0376 mol[/tex]

Moles of silver nitrate used = 0.0376 mol

[tex]K_2CO_3+2AgNO_3\rightarrow Ag_2CO_3+2KNO_3[/tex]

According to the reaction, 2 moles of silver nitrate gives 1 mole of silver carbonate, then 0.0376 moles of silver nitrate:

[tex]=\frac{1}{2}\times 0.0376 mol=0.0188 \text{mol of }Ag_2CO_3[/tex]

Moles of the silver carbonate formed = 0.0188 mol

Molar mass of silver carbonate = 275.7453 g/mol

Mass of silver carbonate :

[tex]=275.7453 g/mol\times 0.0188 mol=5.1840 g\approx 5.18 g[/tex]

The mass of silver carbonate precipitated is 5.18 grams.


Related Questions

According to the kinetic theory, all matter is made of moving particles, which measurement of matter is directly proportional to the
average kinetic energy of the particles?

Answers

Answer: Kelvin temperature of a substance

A hypothetical A-B alloy of composition 53 wt% B-47 wt% A at some temperature is found to consist of mass fractions of 0.5 for both and phases. If the composition of the phase is 92 wt% B-8 wt% A, what is the composition of the phase

Answers

Answer:

the composition of the ∝ phase C∝ = 14  or [ 14 wt% B-86 wt% A ]

Explanation:

Given the data in the question;

Co = 53 or [ 53 wt% B-47 wt% A ]

W∝ = 0.5 = Wβ

Cβ = 92 or [ 92 wt% B-8 wt% A ]

Now, lets set up the Lever rule for W∝ as follows;

W∝ = [ Cβ - Co ] / [ Cβ - C∝ ]

so we substitute our given values into the expression;

0.5 = [ 92 - 53 ] / [ 92 - C∝ ]

0.5 = 39 /  [ 92 - C∝ ]

0.5[ 92 - C∝ ] = 39

46 - 0.5C∝  = 39

0.5C∝ = 46 - 39

0.5C∝ = 7

C∝ = 7 / 0.5

C∝ = 14  or [ 14 wt% B-86 wt% A ]

Therefore, the composition of the ∝ phase C∝ = 14  or [ 14 wt% B-86 wt% A ]

When 250. mg of eugenol, the molecular compound responsible for the odor of oil of cloves, was added to 100. g of camphor, it lowered the freezing point of camphor by 0.62 8C. Calculate the molar mass of eugenol.

Answers

Answer:

Molar mass for eugenol is 161.3 g/mol

Explanation:

This question talks about freezing point depression:

Our solute is eugenol.

Our solvent is camphor.

Formula to state the freezing point depression difference is:

ΔT = Kf . m . i where

ΔT = Freezing T° of pure solvent - Freezing T° of solution

In this case ΔT = 0.62°C

Kf for camphor is: 37°C /m

As eugenol is an organic compund, i = 1. No ions are formed.

To state the molar mass, we need m (molal)

Molal are the moles of solute in 1kg of solvent. Let's replace data:

0.62°C = 40 °C/m . m . 1

0.62°C / 40 m/°C = 0.0155 m

We convert mass of camphor from g to kg = 100 g . 1kg / 1000g = 0.1 kg

0.0155 molal = moles of solute / 0.1 kg

0.0155 m/kg . 0.1 kg = 0.00155 moles

We know that these moles are contained in 250 mg, so the molar mass will be:

0.25 g / 0.00155 mol = 161.3 g/mol

Notice, we convert mg to g, for the units!

What is the energy change when 78.0 g of Hg melt at −38.8°C

Answers

Answer:

The correct answer is - 2.557 KJ

Explanation:

In this case, Hg is melting, the process is endothermic, so the energy change will have a positive sign.

we can calculate this energy by the following formula:

Q = met

where, m = mass,

e = specific heat

t = temperature

then,

Q = 78*0.14* (273-38.8)

here 0.14 = C(Hg)

= 2.557 Kj

once formed, how are coordinate covalent bonds different from other covalent bonds?

Answers

Answer:

[tex]\boxed {\boxed {\sf {One \ atom \ donates \ both \ electrons \ in \ a \ pair}}}[/tex]

Explanation:

A covalent bond involves the sharing of electrons to make the atoms more stable, and so they satisfy the Octet Rule (8 valence electrons).

Typically each atom contributes an electron to form an electron pair. This is a single bond. There are also double bonds (two pairs of electrons), triple bonds (three pairs of electrons), and coordinate covalent bonds.

Sometimes, to satisfy the Octet Rule and achieve stability, one atom contributes both of the electrons in an electron pair. This is different from other covalent bonds because usually each of the 2 atoms contributes an electron to make a pair.

Determine the empirical formula of a compound containing 47.37 grams of carbon, 10.59 grams of hydrogen, and 42.04 grams of oxygen.

In an experiment, the molar mass of the compound was determined to be 228.276 g/mol. What is the molecular formula of the compound?

For both questions, show your work or explain how you determined the formulas by giving specific values used in calculations. (10 points)

Answers

Answer:

Mass of C = 47.37g

Mass of H = 10.59g

Mass of O = 42.04g

The total mass of these elements is 100g, taking a proportion of their molar masses.

C = 47.37/12= 3.95

H = 10.59/1 = 10.59

O = 42.04/16= 2.63.

Dividing through with the smallest proportion which is 2.63

C=3.95/2.63 = 1.5

H =10.59/2.63 =4

O = 2.63/2.63= 1

Multiplying through by 2 to get a whole number.

C = 1.5x2 = 3

H= 4x2 = 8

O = 1x2= 2

The empirical formula is C3H6O2

(Empirical formula)n= molecular mass

(C3H8O2)n =228.276

(12x3 +8+16x2)n= 228.276

76n = 228.276

n = 228.276/76

n = 3

Molecular formula = Empirical formula

=(C3H8O2)3 = C9H24O6

The molecular formula is C9H24O6

Using a balanced chemical equation, and 2.50 g of sodium hydrogen carbonate as the reactant,
what is the expected (theoretical) yield of sodium carbonate (grams)? The Formula Weight (FW) of
sodium hydrogen carbonate is 84.01 g and sodium carbonate is 105.99 g.

Answers

Answer:

1.58 g

Explanation:

Step 1: Write the balanced equation

2 NaHCO₃ ⇒ Na₂CO₃ + H₂O + CO₂

Step 2: Calculate the moles corresponding to 2.50 g of NaHCO₃

The molar mass of NaHCO₃ is 84.01 g/mol.

2.50 g × 1 mol/84.01 g = 0.0298 mol

Step 3: Calculate the moles of Na₂CO₃ produced

The molar ratio of NaHCO₃ to Na₂CO₃ is 2:1. The moles of Na₂CO₃ produced are 1/2 × 0.0298 mol = 0.0149 mol

Step 4: Calculate the mass corresponding to 0.0149 moles of Na₂CO₃

The molar mass of Na₂CO₃ is 105.99 g/mol.

0.0149 mol × 105.99 g/mol = 1.58 g

Which particle has a mass of 9.11 x 10^-28g and charge of -1?
A. electron
B. proton
C. neutron​

Answers

QUESTION:- Which particle has a mass of 9.11 x 10^-28g and charge of -1?

OPTIONS:-

A. electron

B. proton

C. neutron

ANSWER:-

CHARGE ON PROTRON IS +1 AND IT HAS MASS OF [tex]1.6 \times 10 {}^{ - 27} [/tex] SO IT CANNOT BE URE ANSWER

THERE IS NO CHARGE ON NEUTRON AND HAS MASS ALMOST EQUAL TO THE PROTON SO IT ALSO CANNOT BE URE ANSWER

MASS OF THE ELECTRON:- [tex]9.11 \times 10^{ - 28} [/tex]

CHARGE ON ELECTRON:- [tex] -1[/tex]

SO URE ANSWER IS ELECTRON

What force is behind us when we ride a bike?

Answers

Answer:

gravity, ground, friction, rolling resistance, and air resistance.

gravity and force which helps us to not a
fall and keep going

In the given range,at what temperature does oxy gen have the highest solubility?​

Answers

Water solubility of oxygen at 25oC and pressure = 1 bar is at 40 mg/L water. In air with a normal composition the oxygen partial pressure is 0.2 atm. This results in dissolution of 40 . 0.2 = 8 mg O2/L in water that comes in contact with air.
25oC
Solubility of oxygen and oxygen compounds

Water solubility of oxygen at 25oC and pressure = 1 bar is at 40 mg/L water. In air with a normal composition the oxygen partial pressure is 0.2 atm. This results in dissolution of 40 . 0.2 = 8 mg O2/L in water that comes in contact with air.

A student prepares a aqueous solution of acetic acid . Calculate the fraction of acetic acid that is in the dissociated form in his solution. Express your answer as a percentage. You will probably find some useful data in the ALEKS Data resource.

Answers

Answer:

10.71%

Explanation:

The dissociation of acetic acid can be well expressed as follow:

CH₃COOH ⇄   CH₃COO⁻  + H⁺

Let assume that the prepared amount of the aqueous solution is 14mM since it is not given:

Then:

The I.C.E Table is expressed as follows:

                     CH₃COOH       ⇄   CH₃COO⁻        +           H⁺  

Initial              0.0014                       0                                0

Change            - x                           +x                               +x

Equilibrium   (0.0014 - x)                 x                                 x

Recall that:

Ka for acetic acid CH₃COOH  = 1.8×10⁻⁵

[tex]K_a = \dfrac{[x][x]]}{[0.0014-x]}[/tex]

[tex]1.8*10^{-5} = \dfrac{[x][x]]}{[0.0014-x]}[/tex]

[tex]1.8*10^{-5} = \dfrac{[x]^2}{[0.0014-x]}[/tex]

[tex]1.8*10^{-5}(0.0014-x) = x^2[/tex]

[tex]2.52*10^{-8} -1.8*10^{-5}x = x^2[/tex]

[tex]2.52*10^{-8} -1.8*10^{-5}x - x^2 =0[/tex]

By rearrangement:

[tex]- x^2 -1.8*10^{-5}x +2.52*10^{-8}= 0[/tex]

Multiplying through  by (-) and solving the quadratic equation:

[tex]x^2 +1.8*10^{-5}x-2.52*10^{-8}= 0[/tex]

[tex](-0.00015 + x) (0.000168 + x) =0[/tex]

x = 0.00015 or x = -0.000168

We will only consider the positive value;

so x=[CH₃COO⁻] = [H⁺] = 0.00015

CH₃COOH = (0.0014 - 0.00015) = 0.00125

However, the percentage fraction of the dissociated acetic acid is:

[tex]= \dfrac{ 0.00015}{0.0014}\times 100[/tex]

= 10.71%

Identify the phase of the copper product after each reaction in the copper cycle.

The addition of HNO3 HNOX3 to Cu ______________
The addition of H2SO4 HX2SOX4 to CuO ____________ The addition of Z n Zn to C u S O 4 CuSOX4 Choose... The addition of N a O H NaOH to C u ( N O 3 ) 2 Cu(NOX3)X2 Choose... The heating of C u ( O H )

Answers

Answer:

addition of HNO3 HNOX3 to Cu - Aueous

addition of H2SO4 HX2SOX4 to CuO - Aqueous

addition of Z n Zn to C u S O 4 CuSOX4 - Solid

addition of N a O H NaOH to C u ( N O 3 ) 2 Cu(NOX3)X2 - Solid

heating of C u ( O H ) - Solid

Explanation:

Copper when introduced with acids form an aqueous solution and fumes are released in air during the chemical reaction. When NaOH is added to copper then solid copper product is released. Copper dissolves on HNO but does not dissolves in HCL.

What direction would equilibrium moves towards based on the following if we increased the volume of the container.

[tex]2A_{(g)} + 5B_{(g)} + 12C_{(g)}[/tex] ↔ [tex]14AC_{(g)} + 5B_{(s)}[/tex]

Answer choices:
a) reactants
b) no change
c) products
d) decrease in volume

Please help!

Answers

To answer this question, we will first find out the number of gaseous moles on each side of the equilibrium

on the left:

we have 2 moles of A, 5 moles of B and 12 moles of C

which gives us a grand total of 19 gaseous moles

on the right:

here, we have 14 moles of AC gas, we will not count the number of moles of B because it's a solid

giving us 14 gaseous moles on the right

Where does the reaction shift?

more gaseous moles means more space taken, because gas likes to fill all the space it can

if we have more volume, more gas can move around without colliding (reacting) with each other

Hence more volume favors the side with more gaseous moles

here, the left has more gaseous moles. So we can say that the reaction will shift towards the left, or the reactants side

Answer:

Explanation:

given reversible chemical reaction:

2A(g) + 5B(g) + 12C(g)  ↔  14AC(g) + 5B(s)

chemicals in solid form do not take up a lot of volume so change in container volume has no effect

look at chemicals in gas form only:

the total no. of moles of reactants in gas form = 2 + 5 + 12 = 19

the total no. of moles of products in gas form = 14

so an increase in volume of the container will favor the reaction direction with higher volume n high volume means higher no. of moles

the ans is the equilibrium will move towards a) reactants

Calculate the molarity of a 17.5% (by mass) aqueous solution of nitric acid. Select one: a. 2.74 m b. 4.33 m c. 0.274 m d. 3.04 m e. The density of the solution is needed to solve the problem.

Answers

Answer:

Option e.

Explanation:

Molarity is the concentration that indicates moles of solute in 1 L of solution.

We have another concentration, percent by mass.

Percent by mass indicates mass of solute in 100 g of solution.

Our solute is HNO₃, our solvent is water.

17.5 g of nitric acid is the mass of solute. We can convert them to moles:

17.5 g . 1mol / 63g = 0.278 moles

We do not have volume of solution. We assume the mass is 100 g because the percent by mass but we need density to state the volume.

Density = Mass / Volume

Mass / Density = Volume

Once we have the volume, we need to be sure the units is in L, to determine molarity

M = mol /L

Gaseous BF3 and BCl3 are mixed in equal molar amounts. All B-F bonds have about the same bond enthalpy, as do all B-Cl bonds. Compare the numbers of microstates to explain why the mixture tends to react to form BF2Cl(g) and BCl2F(g

Answers

Solution :

[tex]$BF_3 (g) + BCl_3 (g) \rightarrow BF_2 Cl + BCl_F(g)$[/tex]

Explanation 1 :

Spontaneity of the reaction is based on two factors :

-- the tendency to acquire a state of minimum energy

-- the energy of a system to acquire a maximum randomness.

Now, since there isn't much difference in the bond enthalpies of B-F and B-Cl. So, we can say the major driving factor is tendency to acquire a state of maximum randomness.

Explanation 2 :

A system containing the [tex]\text{"chemically mixed"}[/tex] B halides has a [tex]\text{greater entropy}[/tex] than a system of [tex]$BCl_3$[/tex] and [tex]BF_3[/tex].

It has the same number of [tex]\text{gas phase molecules}[/tex], but more distinguishable kinds of [tex]\text{molecules}[/tex], hence, more microstates and higher entropy.

Consider the reaction C4H10O + NaBr + H2SO4 → C4H9Br + NaHSO4 + H2O. If 45.0 g of C4H10O reacts with 67.1 g of NaBr and 97.0 g of H2SO4to yield 60.0 g of C4H9Br, calculate the percent yield of the reaction.

Answers

Answer:

Percent yield  = 72.07 %

Explanation:

Our reaction is:

C₄H₁₀O + NaBr + H₂SO₄ → C₄H₉Br + NaHSO₄ + H₂O

It is correctly balanced.

Let's determine which is the limiting reagent:

45 g . 1 mol / 74 g = 0.608 moles of C₄H₁₀O

67.1 g . 1 mol / 102.9 g = 0.652 moles of NaBr

97 g . 1 mol / 98 g = 0.990 moles of sulfuric acid

Ratio is always 1:1, so for 1 mol of NaBr and 1 mol of sulfuric acid we need 1 mol of C₄H₁₀O. We have 0.652 moles of NaBr, we need the same amount of C₄H₁₀O and we have 0.990 moles of acid, we need the same amount of C₄H₁₀O; we only have 0.608 moles, that's why C₄H₁₀O is the limiting reactant, there's no enough C₄H₁₀O.

Ratio is also 1:1, between reactant and product.

1 mol of C₄H₁₀O produces 1 mol of C₄H₉Br

Then, 0.608 moles will produce 0.608 moles of C₄H₉Br

We convert moles to mass: 0.608 mol . 136.9 g/mol = 83.25 g

That's the 100 % yield reaction

Percent yield  = (Yield produced / Theoretical yield) . 100

Percent yield = (60 g / 83.25 g) . 100 = 72.07 %

Question In nickel-cadmium batteries: Select the correct answer below: the anodes are nickel-plated and the cathodes are cadmium-plated the anodes are cadmium-plated and the cathodes are nickel-plated both the anodes and cathodes are plated with a nickel-cadmium alloy none of the above

Answers

Answer:

the anodes are cadmium-plated and the cathodes are nickel-plated

Explanation:

Nickel cadmium battery works on the principle as by the other cell. There is anode and a cathode which is separated by a separator (spiral shaped inside the case). The anode is negative and is cadmium plated while the cathode is positive and is nickel plated. An electrolyte is also used.

So the correct answer is : "The anodes are cadmium-plated and the cathodes are nickel-plated."

What is an emission spectrum?

A. The total amount of energy emitted by an element
B. The products created when an element is burned
C. The energy absorbed when an electron gains energy
D. The colors of light given off when an element loses energy​

Answers

Answer:

D

Explanation:

The electromagnetic radiation is emitted due to a particle moves from a higher to a lower energy state

An emission spectrum is the colors of light given off when an element loses energy​. Therefore, option D is correct.

What is emission spectrum ?

The electromagnetic radiation spectrum produced when an electron changes from a high energy state to a lower energy state is known as the emission spectrum of a chemical element or chemical compound.

An emission spectrum is the range of radiations that are released in different places when electrons jump back and forth between higher and lower energy levels to achieve stability.

Since what you are seeing is the direct radiation produced by the source, this form of spectrum is also known as an emission spectrum. You can see all the colors in the Sun's spectrum because light from the Sun is produced at practically all energies in the visible spectrum.

Thus, option D is correct.

To learn more about emission spectrum, follow the link;

https://brainly.com/question/27268130

#SPJ2

How can a Bose-Einstein condensate be formed? A. B super-heating a gas. B. By super-cooling certain types of solid. C. By super-cooling certain types of plasma. D. By super-heating a plasma

Answers

Answer:

C. By super-cooling certain types of plasma.

Explanation:

Bose-Einstein condensate is a state of matter whereby atoms or particles become cooled to a very low energy state leading to their condensation to give a single quantum state.

Note that plasma refers to atoms that have had some or even all of its electrons stripped away leaving only positively charged ions. Simply put, plasma is ionized matter.

When certain types of plasma are super cooled, Bose-Einstein condensate are formed.

Consider the reaction “2 SO2 (g) + O2 (g) = 2 SO3 was 0.175 M. After 50 s the concentration of SO2 Date: (g)”. Initial concentration of SO2 (g) (g) became 0.0500 M. Calculate rate of the reaction

Answers

Answer:

The answer is "[tex]1.25 \times 10^{-3} \ \frac{m}{s}[/tex]"

Explanation:

Calculating the rate of the equation:

[tex]=-\frac{1}{2} \frac{\Delta [SO_2]}{\Delta t} =-\frac{\Delta [O_2]}{\Delta t}= +\frac{1}{2} \frac{\Delta [SO_3]}{\Delta t}\\\\=\frac{\Delta [SO_2]}{\Delta t}=\frac{0.0500-0.175\ M}{505}= -2.5 \times 10^{-3} \ \frac{m}{s}\\\\[/tex]

Rate:

[tex]=\frac{-2.5 \times 10^{-3}}{2}=1.25 \times 10^{-3} \ \frac{m}{s}[/tex]

Generally the vapor pressure of a liquid is related to: I. the amount of liquid II. atmospheric pressure III. temperature IV. intermolecular forces

Answers

Answer:

Atmospheric pressure, because a liquid is said to be boiling when the vapour pressure equals the atmospheric pressure.

What is the specific rotation of 13g of a molecule dissolved in 10 mL of solvent that gives an observed rotation of 23 degrees in a sample tube of 10 cm.

Answers

Answer:

[tex]\alpha=17.7[/tex]

Explanation:

From the question we are told that:

Mass [tex]m=13g[/tex]

Volume [tex]V=10mL[/tex]

Angle [tex]\theta=23[/tex]

Sample Tube=10cm

Generally the equation for concentration is mathematically given by

 [tex]C=m/v[/tex]

 [tex]C=\frac{13}{10}\\C=1.3g/mL[/tex]

Therefore the Specific Rotation

 [tex]\alpha=frac{\theta }{m*l}[/tex]

 [tex]\alpha=frac{23 }{1.3*1.0}[/tex]

 [tex]\alpha=17.7[/tex]

How can this product be achieved using the starting material shown?

Answers

Answer:

this product can be achieved using the starting material shown is by use of NaOH as catalyst.

Answer:

By using NaOH as catalyst.

Explanation:

This product can be achieved using the starting material shown is by the use of the NaOH as catalyst.

Which intermolecular force plays a pivotal role in biological molecules such as proteins and DNA ?
•hydrogen bonding
•dispersion force
•dipole-dipole force
•Ion-dipole force

Answers

Hydrogen bonding
In the secondary structure of a protein, hydrogen bonds between amino acids determine the configuration of the molecules.
In DNA, hydrogen bonds connect the nitrogenous bases (2 hydrogen bonds between adenine and thymine, 3 hydrogen bonds between guanine and cytosine)

Answer:

hydrogen bonding

Explanation:

just took the test :D

Use dimensional analysis to solve the following problems. Pay attention to correct use of units and correct use of significant figures in calculations. Please show work!

Convert 3.00 x 10^21 atoms of copper to moles.

Convert 2.25 x 10^18 molecules of carbon dioxide to moles.

Answers

Answer:

1) 0.00498 mol Cu.

2) 0.00000374 mol CO₂

Explanation:

Question 1)

We want to convert 3.00 * 10²¹ copper atoms into moles. Note that 3.00 is three significant figures.

Recall that by definition, one mole of a substance has exactly 6.022 * 10²³ amount of that substance. In other words, we have the ratio:

[tex]\displaystyle \frac{1\text{ mol}}{6.022\times 10^{23} \text{ Cu}}[/tex]

We are given 3.00 * 10²¹ Cu. To cancel out the Cu, we can multiply it by our above ratio with Cu in the denominator. Hence:

[tex]\displaystyle 3.00 \times 10^{21} \text{ Cu} \cdot \frac{1\text{ mol Cu}}{6.022\times 10^{23} \text{ Cu}}[/tex]

Cancel like terms:

[tex]=\displaystyle 3\times 10^{21} \cdot \frac{1\text{ mol Cu}}{6.022\times 10^{23} }[/tex]

Simplify:

[tex]\displaystyle = \frac{3\text{ mol Cu}}{6.022 \times 10^{2}}[/tex]

Use a calculator:

[tex]= 0.004981... \text{ mol Cu}[/tex]

Since the resulting answer must have three significant figures:

[tex]= 0.00498\text{ mol Cu}[/tex]

So, 3.00 * 10²¹ copper atoms is equivalent to approximately 0.00498 moles of copper.

Question 2)

We want to convert 2.25 * 10¹⁸ molecules of carbon dioxide into moles. Note that 2.25 is three significant digits.

By definition, there will be 6.022 * 10²³ carbon dioxide molecules in one mole of carbon dioxide. Hence:

[tex]\displaystyle \frac{6.022 \times 10^{23} \text{ CO$_2$}}{1\text{ mol CO$_2$}}[/tex]

To cancel the carbon dioxide from 2.25 * 10¹⁸, we can multiply it by the above ratio with the carbon dioxide in the denominator. Hence:

[tex]\displaystyle 2.25\times 10^{18} \text{ CO$_2$} \cdot \frac{1\text{ mol CO$_2$}}{6.022\times 10^{23} \text{ CO$_2$}}[/tex]

Cancel like terms:

[tex]\displaystyle= 2.25\times 10^{18} \cdot \frac{1\text{ mol CO$_2$}}{6.022\times 10^{23}}[/tex]

Simplify:

[tex]\displaystyle = \frac{2.25 \text{ mol CO$_2$}}{6.022\times 10^5}}[/tex]

Use a calculator:

[tex]=0.000003736...\text{ mol CO$_2$}[/tex]

Since the resulting answer must have three significant figures:

[tex]= 0.00000374\text{ mol CO$_2$}[/tex]

So, 2.25 * 10¹⁸ molecules of carbon dioxide is equivalent to approximately 0.00000374 moles of carbon dioxide.

Answer:

Explanation:

by definition, 1 mole contains 6.02 x 10^23 of atoms (for elements) or molecules (for compounds)

3.00 x 10^21 atoms of copper / 6.02 x 10^23 of atoms

= 0.004983 moles of copper

= 4.98 x 10^(-3) moles of copper

2.25 x 10^18 molecules of carbon dioxide / 6.02 x 10^23 of molecules

= 0.000003737 moles of carbon dioxide

= 3.74 x 10^(-6) moles of carbon dioxide

Classify each molecule as an alcohol, ketone, or aldehyde based on its name. Propanone (acetone) Choose... Ethanal Choose... 3-phenyl-2-propenal Choose... Butanone Choose... Ethanol Choose... 2-propanol Choose...

Answers

Answer:

1.) Propanone (ketone)

2.) Ethanal( aldehyde)

3.) 3-phenyl-2-propenal (aldehyde)

4.) Butanone (ketone)

5.) Ethanol ( alcohol)

6.) 2-propanol (alcohol)

Explanation:

In organic chemistry, ALCOHOL ( also known as alkanol) are compounds in which hydroxyl groups are linked to alkyl groups. They can be considered as being derived from the corresponding alkanes by replacing the hydrogen atoms with hydroxyl groups. The hydroxyl group is the functional group of the alcohol as it is responsible for their characteristic chemical properties. A typical example of alcohol is ethanol and 2-propanol.

Alkanals or ALDEHYDES have the general formula RCHO while alkanones or KETONES have the general formula RR'CO where R and R' may be alkyl or aryl groups. The main similarity between these two classes of compounds is the presence of the carbonyl group. In aldehydes, there is a hydrogen atom attached to the carbon In the carbonyl group while there is none on the ketones.

Some common examples of ketones are Propanone, Butanone while examples of aldehydes are Ethanal and 3-phenyl-2-propenal

Consider the following reaction:

CO(g)+2H2(g)⇌CH3OH(g)

A reaction mixture in a 5.15-L flask at a certain temperature initially contains 26.6 g CO and 2.36 g H2. At equilibrium, the flask contains 8.63 g CH3OH.

Part A
Calculate the equilibrium constant (Kc) for the reaction at this temperature.

Answers

Answer:

26.6

Explanation:

Step 1: Calculate the molar concentrations

We will use the following expression.

M = mass solute / molar mass solute × liters of solution

[CO]i = 26.6 g / (28.01 g/mol) × 5.15 L = 0.184 M

[H₂]i = 2.36 g / (2.02 g/mol) × 5.15 L = 0.227 M

[CH₃OH]e = 8.63 g / (32.04 g/mol) × 5.15 L = 0.0523 M

Step 2: Make an ICE chart

        CO(g) + 2 H₂(g) ⇄ CH₃OH(g)

I        0.184      0.227           0

C         -x           -2x             +x

E     0.184-x   0.227-2x        x

Since [CH₃OH]e = x, x = 0.0523

Step 3: Calculate all the concentrations at equilibrium

[CO]e = 0.184-x = 0.132 M

[H₂]e = 0.227-2x = 0.122 M

[CH₃OH]e = 0.0523 M

Step 4: Calculate the equilibrium constant (Kc)

Kc = [CH₃OH] / [CO] [H₂]²

Kc = 0.0523 / 0.132 × 0.122² = 26.6

How many atoms are present in 0.45 moles of P4010

Answers

Answer:

80g

Explanation:

mass oxygen present in 1 mole of p4010

16×10=160gm

similarly

for 0.5 moles of p4010 160/2= 80gm

The number of atoms present in 0.45 moles of P₄O₁₀ is 1.08 x 10²³ atoms.

To determine the number of atoms, we use Avogadro's number, which states that there are approximately 6.022 x 10²³ particles (atoms, molecules, or formula units) in one mole of a substance.

In this case, we are given 0.45 moles of P₄O₁₀. To calculate the number of atoms, we multiply the number of moles by Avogadro's number:

Number of atoms = 0.45 moles P₄O₁₀ x (6.022 x 10²³ atoms / 1 mole)

Number of atoms = 2.7139 x 10²³ atoms

Rounding to three significant figures, the number of atoms present in 0.45 moles of P₄O₁₀ is approximately 1.08 x 10²³ atoms.

To learn more about atoms   here

https://brainly.com/question/3127831

#SPJ2

Solid potassium chlorate (KClO3)(KClO3) decomposes into potassium chloride and oxygen gas when heated. How many moles of oxygen form when 48.1 gg completely decomposes

Answers

Answer:

0.59 mol O₂

Explanation:

The balanced chemical equation for the decomposition of potassium chlorate (KClO₃) to produce potassium chloride (KCl) and oxygen gas (O₂) is the following:

2 KClO₃ → 2 KCl + 3 O₂

According to the equation, 3 moles of O₂ are produced from 2 moles of KClO ⇒ conversion factor: 3 mol O₂/2 mol KClO₃

Now, we calculate the number of moles of KClO₃ there is in 48.1 g, by dividing the mass into the molecular weight (Mw) of O₂:

Mw(KClO₃) = 39.1 g/mol + 35.4 g/mol + (16 g/mol x 3) = 122.5 g/mol

moles KClO₃ = mass KClO₃/Mw(KClO₃) = 48.1 g/(122.5 g/mol) = 0.3926 mol KClO₃

Finally, we multiply the moles of KClO₃ by the conversion factor to calculate the moles of O₂ produced:

0.3926 mol KClO₃ x 3 mol O₂/2 mol KClO₃ = 0.59 mol O₂

The density of mercury is 13.6 g/cm3, What is its density in mg/mm3?

Answers

Answer:

Density of mercury is 13600 kg

Other Questions
the volume of a cube that is 6 units on an edge in exponential form sort the following numbers from least to greatest.18.5635, 18 13/16, 18.3125 PLEASE HELP MEAn expression is shown below:6x^2y 3xy 24xy^2 + 12y^2Part A: Rewrite the expression by factoring out the greatest common factor. (4 points)Part B: Factor the entire expression completely. Show the steps of your work. (6 points) The participle inflectionalmorpheme ending is used onlywith67conjunctionsadjectives8 adverbs9nouns0 verbs In circle O, the length of OB is 6 inches, and the measure of AOB is 120. What is the length of arc AB, in inches (show your answer in terms of )? * plz help look the photoi need summary of this text plz help asap A chemist is preparing to carry out a reaction that requires 5.75 moles of hydrogen gas. The chemist pumps the hydrogen into a 10.5 L rigid steel container at 20.0 C. To what pressure, in kPa, must the hydrogen be compressed? (Show all work for full credit and circle your final answer) * Exchange of gases in plants occur through: (A): Stomata.(B):Lenticels.(C):Root surface.(D):Choloroplast.(1)A,B and D(2)A,B,CandD(3)AandC(4)A,BandC Why are a number of films produced unsuccessful? A gift box shown below is packed with small cubic 1/2 inch blocks. The blocks are packed tightly with no spaces between them. A. How many blocks are in the gift box?B. What is the volume of the gift box?C. Find how much wrapping paper will be needed to wrap the gift box (hint: find surface area). What is responsible for the red tide phenomenon? It is a phenomenon that usually coincides with storm surges; the name comes from the red kelp that often washes ashore as a result of rough weather. Red tide occurs in patches of water where certain species of dinoflagellates flourish. They are so abundant that the water becomes discolored and takes on a red hue. Red tides occur once a year and in accordance with the lunar cycle. The water appears red as a result of reduced levels of photosynthetic pigmen Discuss the assertion that non-formal institutions have no role to play at the processing stage of the systems theory is an empty rhetoric. Consider a study conducted to determine the average protein intake among an adult population. Suppose that a confidence level of 85% is required with an interval about 10 units wide . If a preliminary data indicate a standard deviation of 20g . What sample of adults should be selected for the study? Consider the formula 4(h-3k)= h+7. (a) Make k the subject of the above formula. (b) If the value of h is decreased by 8, write down the change in the value of k.guys I really need helpplzzzzzz if you are one of officiating, what do you think are the challenges you've encountered in officiating the game ? why was the author on papuan island in the story of in the jaws of the aligator Given the function f(x) = -2c+cx-x^2, and f^-1(5) = -1, find c Need help plz I dont understand Which two details in the poem support the idea that is important to enjoy moments while they last because Time is fleeting Please hurry I will mark you brainliest