How many liters would you need to make a 0.8 M solution with 20 grams of lithium chloride?
Answer:
0.5875L
Explanation:
concentration = mole/ volume
n(LiCl) = 20 / (7 + 35.5) = 0.47 mol
volume = mole / conc.
volume = 0.47 /0.8
= 0.5875 dm³ = 0.5875L
Cuo
+ H2 → → Cu + + H20
colorless
water
black
powder
reddish
solid
gas
vapor
Explanation:
because there is 2 hydrogen atoms in the reactions side of the equation (you can tell because the H has a 2 in the subscript) you have to have 2 hydrogen atoms in the reactants side to help balance out the equation. and since the copper and oxygen atoms are already balanced there is no coefficient needed.
Which statement describes the best way to determine how different levels of light affect the growth of seedling plants?
Choose three different light levels, and place four identical plants under each light level to observe the light’s effect on multiple plants.
Choose five different light levels, and place one identical plant under each of the light levels for exactly one week.
Choose four different light levels, and place eight different plant types under the light levels, two under each one, and observe them every day.
Choose one type of light and one type of plant, and then observe the plant for at least four weeks, measuring it each day.
Answer:
Choose three different light levels, and place four identical plants under each light level to observe the light’s effect on multiple plants.
Explanation:
The more energy that particles have, the ___ they move.
The more energy that particles have, the more they move.
which solution has a higher percent ionization of the acid , a .10 M solution of HC2H3O2 (aw) or a .010 M solution of HC2H3O2(aq)
Answer:
0.0010 M of HC2H302(aq)
1) Heat is the ______ of energy and a unit is ____.
A: Measure; Joule
B: Measure; Kelvin
C: Movement; Kelvin
D: Movement; Joule
2) ______ is the internal energy of particles and when this motion is measured, the unit used is ___.
A: Heat; Joule
B: Thermal Energy; Kelvin
C: Thermal Energy; Joule
D: Heat; Kelvin
Answer:
Q1) B
Q2) C
Kelvin is the SI unit of temperature.
Which is the function of the organ shown below
Answer:
c the pancreas produce enzyme that breakdown carbohydrate protein and fat
WHAT IS A ROCK?
Please put the answer below
DO ITTT NOWWWWWWWWWWWWWW
|
\/
Calculate the mass of 0.900 mol of lithium thiocyanate.
Answer:
58.6 g.
Explanation:
Hello there!
In this case, since the molecular formula of lithium thiocyanate is LiCNS and therefore its molar mass is 65.1 g/mol, it possible to perform the calculation of the mass of 0.900 moles of this substance by recalling the following equivalence statement:
1 mol = 65.1 g.
Thereby, we can calculate the required mass as shown below:
[tex]0.900mol*\frac{ 65.1g}{1mol}\\\\58.6 g[/tex]
Best regards!
Carbon-11 decays by position emission.The nuclide formed product is
Answer:
They demonstrated that carbon-11 decays by positron emission to the stable nuclide 11B [Eq. (1)].
Genes influence an organism's traits by coding for:
A
Cells
Answer:
First, the protein may be a structural protein, contributing to the physical properties of cells or organisms. ... Second, the protein may be an enzyme that catalyzes one of the chemical reactions of the cell. Therefore, by coding for proteins, genes determine two important facets of biological structure and function.
Explanation:
i think it will help you
What is the volume, in liters, of 0.350 mol of nitrogen gas at 32°C and
0.980 atm of pressure? *
A. 9.85 L
B. 8.94 L
C. 104.6 L
D. 0.94 L
Answer: The volume is 8.94 L.
Explanation:
Given: no. of moles = 0.350 mol, Pressure = 0.980 atm
Temperature = [tex]32^{o}C = (32 + 273) K = 305 K[/tex]
Formula used to calculate the volume is as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.
[tex]PV = nRT\\0.980 atm \times V = 0.350 mol \times 0.0821 L atm/mol K \times 305 K\\V = 8.94 L[/tex]
Thus, we can conclude that the volume is 8.94 L.
A sample of polonium-210 has an initial mass of 390 milligrams (mg). If the half-life of polonium-210 is 36 days, how many mg of the sample remains after 72 days?
A.
392 mg
B.
195 mg
C.
97.5 mg
D.
48.75 mg
Answer:
C
Explanation:
I got this question right on my test.
Final volume of a .50 M H3PO4 solution prepared from 50 mL of a 6 M H3PO4 solution
Answer:
600 mL
Explanation:
From the question given above, the following data were obtained:
Initial concentration (C₁) = 6 M
Initial volume (V₁) = 50 mL
Final concentration (C₂) = 0.5 M
Final volume (V₂) =?
Using the dilution formula (i.e C₁V₁ = C₂V₂) we can obtain the final volume as illustrated below:
C₁V₁ = C₂V₂
6 × 50 = 0.5 × V₂
300 = 0.5 × V₂
Divide both side by 0.5
V₂ = 300 / 0.5
V₂ = 600 mL
Thus, the final volume is 600 mL
Please answer I will give you brainliest!!
Answer:
Warm front
Explanation:
A warm front forms when a warm air mass pushes into a cooler air mass, shown in the image to the right (A). Warm fronts often bring stormy weather as the warm air mass at the surface rises above the cool air mass, making clouds and storms. Warm fronts move more slowly than cold fronts because it is more difficult for the warm air to push the cold, dense air across the Earth's surface. Warm fronts often form on the east side of low-pressure systems where warmer air from the south is pushed north.
You will often see high clouds like cirrus, cirrostratus, and middle clouds like altostratus ahead of a warm front. These clouds form in the warm air that is high above the cool air. As the front passes over an area, the clouds become lower, and rain is likely. There can be thunderstorms around the warm front if the air is unstable.
On weather maps, the surface location of a warm front is represented by a solid red line with red, filled-in semicircles along it, like in the map on the right (B). The semicircles indicate the direction that the front is moving. They are on the side of the line where the front is moving. Notice on the map that temperatures at ground level are cooler in front of the front than behind it.
What dosage in grams per kilogram of body weight does a 134 lb woman receive if she takes two 275 mg tablets of penicillin?
How many 150. mg tablets should a 31 lb child take to receive the same dosage?
Answer:
The dosage is 0.0906 g/kgThe child should take 8.5 tablets to receive the same dosageExplanation:
First we convert 134 lb into kg:
1 lb = 0.453 kg134 lb * [tex]\frac{0.453kg}{1lb}[/tex] = 60.702 kgThen we convert 275 mg into g:
1000 mg = 1 g275 mg * [tex]\frac{1g}{1000mg}[/tex] = 0.275 gNow we can calculate the dosage in grams per kilogram of body weight, keeping in mind that two tablets are consumed:
(0.275 g) * 2 / 60.702 kg = 0.0906 g/kgAs for the second part, first we convert 31 lb into kg:
31 lb * [tex]\frac{0.453 kg}{1lb}[/tex] = 14.043 kgNow we calculate how many penicillin grams should be consumed:
14.043 kg * 0.0906 g/kg = 1.27 gWe convert 1.27 g of penicilin into mg:
1.27 g * 1000 = 1270 mgFinally we calculate how many 150 mg tables should be taken:
1270 mg / 150 mg = 8.5 tabletsThe pressure on 200 milliliters of a gas at constant
temperature is changed from 380 torr to 760 torr. The new
volume of the gas is
answerA) 100 mL
Explanation:
At constant temperature and number of moles, Using Boyle's law
Given ,
V₁ = 200 mL
V₂ = ?
P₁ = 60 kPa
P₂ = 120 kPa
The new volume of the gas is 100mL
Boyle's law is use to calculate the volume of a gas in relation with its pressure. The Boyle's law equation is as follows:
P1V1 = P2V2
Where;
P1 = initial pressure of the gas (torr)
P2 = final pressure of the gas (torr)
V1 = initial volume of the gas (mL)
V2 = final volume of the gas (mL)
According to the information of this question, the pressure on 200mL of a gas changed from 380 torr to 760 torr. Hence;
V1 = 200mL
V2 = ?
P1 = 380torr
P2 = 760torr
Using P1V1 = P2V2
V2 = P1V1/P2
V2 = (380 × 200) ÷ 760
V2 = 76000 ÷ 760
V2 = 100mL
Hence, the new volume of the gas is 100mL
Learn more: https://brainly.com/question/22467228
A 25.0 mL NaOH solution of unknown concentration was titrated with a 0.189 M HCl solution. 19.6 mL HCl was required to reach the equivalence point. In a separate titration, a 10.0 mL H3PO4 solution was titrated with the same NaOH solution. This time, 34.9 mL NaOH was required to reach the equivalence point. What is the concentration of the H3PO4 solution
Answer:
0.172 M
Explanation:
The reaction for the first titration is:
HCl + NaOH → NaCl + H₂OFirst we calculate how many HCl moles reacted, using the given concentration and volume:
19.6 mL * 0.189 M = 3.704 mmol HClAs one HCl mol reacts with one NaOH mol, there are 3.704 NaOH mmoles in 25.0 mL of solution. With that in mind we determine the NaOH solution concentration:
3.704 mmol / 25.0 mL = 0.148 MAs for the second titration:
H₃PO₄ + 3NaOH → Na₃PO₄ + 3H₂OWe determine how many NaOH moles reacted:
34.9 mL * 0.148 M = 5.165 mmol NaOHThen we convert NaOH moles into H₃PO₄ moles, using the stoichiometric coefficients:
5.165 mmol NaOH * [tex]\frac{1mmolH_3PO_4}{3mmolNaOH}[/tex] = 1.722 mmol H₃PO₄Finally we determine the H₃PO₄ solution concentration:
1.722 mmol / 10.0 mL = 0.172 MHelp me please jus tell me 1 2 3 etc for the answers thank you!
Answer:
1. lakes and rivers 2. groundwater 3. watershed 4. pollution
Explanation:
100.0 g of water was placed in a simple, constant-pressure calorimeter. The temperature of the water was recorded as 295.0 K. A 20.0 g copper block was heated to 353.0 K and then dropped into the water in the calorimeter. What was the final temperature of the water if the specific heat capacities of copper is 0.385 J/g K
Answer:
[tex]296.05\ \text{K}[/tex]
Explanation:
[tex]m_w[/tex] = Mass of water = 100 g
[tex]c_w[/tex] = Specific heat of water = [tex]4.184\ \text{J/g K}[/tex]
[tex]m_c[/tex] = Mass of copper = 20 g
[tex]c_c[/tex] = Specific heat of copper = [tex]0.385\ \text{J/g K}[/tex]
[tex]\Delta T_w[/tex] = Temperature change in water = [tex](T-295)[/tex]
[tex]\Delta T_c[/tex] = Temperature change in cooper = [tex](353-T)[/tex]
T = Final temperature of the system
The heat balance of the system is given by
[tex]m_wc_w\Delta T_w=m_cc_c\Delta T_c\\\Rightarrow 100\times 4.184\times (T-295)=20\times 0.385\times (353-T)\\\Rightarrow 418400\left(T-295\right)=7700\left(353-T\right)\\\Rightarrow 418400T-123428000=2718100-7700T\\\Rightarrow T=\frac{1261461}{4261}\\\Rightarrow T=296.05\ \text{K}[/tex]
The final temperature of the water is [tex]296.05\ \text{K}[/tex].
The final temperature of the water when placed in a calorimeter is 296.05K
HOW TO CALCULATE FINAL TEMPERATURE:
The final temperature of water placed in a calorimeter can be calculated using the following expression:Q(water) = - Q(copper)(m × c × ∆T) water = - {m × c × ∆T} copperWhere;
Mass of water = 100 gSpecific heat of water = 4.184 J/g KMass of copper = 20 gSpecific heat of copper = 0.385 J/g KTemperature change in water = T - 295KTemperature change in copper = T - 353K100 × 4.184 × (T - 295) = - {20 × 0.385 × (T - 353)}418.4T - 123428 = - (7.7T - 2718.1)418.4T - 123428 = -7.7T + 2718.1418.4T + 7.7T = 123428 + 2718.1426.1T = 126146.1T = 126146.1 ÷ 426.1T = 296.05KTherefore, the final temperature of the water when placed in a calorimeter is 296.05K.Learn more at: https://brainly.com/question/10987564?referrer=searchResults
is scandium a transition metal?
Answer:no
Explanation:
Answer:
Scandium is a transition metal
Explanation:
Mechanical digestion begins in the_____ and involves physical processes, such as chewing.
Answer:
begins in the mouth
In both industry and research there are often times when one particular component of a mixture needs to be separated from a solution. Maybe it is a rare metal that is dissolved in a mixture of minerals. Maybe it is a particular protein from lysed plant cells. If the desired component is volatile, distillation could be used. But if the goal is to separate ions in solution, fractional precipitation is preferred.
a. True
b. False
Answer:
a. True
Explanation:
Distillation process is a process that is used to separate the components or the substances from the liquid mixtures by using selectively boiling and condensation.
While fractional precipitation is a process which separates the ions from solution based on the different solubilities.
Therefore, the answer is true.
Terry, a student, performs a titration. He completes these steps as part of his titration procedure: 1. He cleans and rinses a burette with standardized base. 2. He fills the burette with standardized base solution. 3. He reads and records the initial burette volume. 4. He adds a base from the burette to an acid. 5. He observes a color change in the Erlenmeyer flask. 6. He stops the addition of base from the burette. 7. He reads and records the final burette volume. Which steps will provide information needed to calculate the volume of base needed to reach the equivalence point? A. 1 and 6 B. 3 and 7 C. 3, 4, and 6 D. 1, 2, and 7
Answer:
D
Explanation:
D is the answer because 2 is needed to know
Answer:
B) 3 and 7
Explanation:
i just took the test
If 1.00 g of KCl is completely dissolved in 24.5 g of water, what is the percent composition (by mass) of the solution that is formed?
Answer:
3.92%
Explanation:
The solution that is formed is of KCl in water. This means that the percent composition by mass is given by the formula:
Mass of KCl / Mass of Solution * 100%We now calculate the mass of solution:
Mass of Solution = Mass of KCl + Mass of Water = 1.00 g + 24.5 gMass of Solution = 25.5 gFinally we calculate the percent composition:
1.00 g / 25.5 g * 100% = 3.92%what happens to gas molecules as the pressure is increased while the temperature and volume of the container remain constant according to the kinetic molecular theory
Answer:
According to the kinetic molecular theory of gases, the average speed and kinetic energy of gas molecules would INCREASE.
Explanation:
In the kinetic molecular theory of gases, assumptions were made based on macroscopic properties of gas (pressure, volume and temperature) which are as a result of the microscopic properties like the position and the speed of the gas molecules. The kinetic molecular theory explains the behaviour of gases through the following 5 assumptions made about an ideal gas;
--> Molecules of a gas are in constant and rapid motion in straight lines until they collide with one another and with the walls of their containers.
--> The actual volume occupied by the had is negligible compared with the volume of the container.
--> Forces of attraction or repulsion between the molecules of a gas are negligible
--> The collision between the molecules is perfectly elastic.
--> The average kinetic energy of the gas molecules is proportional to the temperature of the gas.
Because gas molecules are in constant motion, it has kinetic energy which can be altered when there is increase in pressure. An increase in pressure will cause gas molecules to collide more frequently with one another. This in turn leads to increase in average speed and the kinetic energy of the individual molecules.
But Are Punnett square percentages always correct?
Answer:
yes
Explanation:
cuz is a square and if all angles are equal of a square then it is correct
t-Butyl alcohol was produced by the liquid-phase hydration (using water, W) of isobutene (I) over an Amberlyst-15 catalyst.
a. True
b. False
Answer:
True
Explanation:
This is because, The hydroboration oxidation of an alkene which is isobutene in the presence of a catalyst will result to alcohol as the product . Therefore, the OH group will attach or link itself to the carbon which is less obstructed. Thus this reaction is in accordance to Anti-Markownikoff's rule.
So isobutene on hydroboration oxidation will produce ter isobutyl alcohol.
A chemistry student heated 2.255 g of oxygen gas in the presence of 5.145
Answer:
a
Explanation:
how real gases differ from ideal gases?
An ideal gas is one that follows the gas laws at all conditions of temperature and pressure. To do so, the gas would need to completely abide by the kinetic-molecular theory. On the other hand, a real gas is a gas that does not behave according to the assumptions of the kinetic-molecular theory.
Furthermore, the particles of an ideal gas are extremely small and have a mass equivalent to practically zero. Ideal gas particles also have no volume.
An example of a real gas is helium, oxygen, and nitrogen.