How many times will the temperature of oxygen with a mass of 1 kg increase if its volume is increased by 4 times, and the pressure is decreased by 2 times?
Round off the answer to the nearest whole number.

Answers

Answer 1

Answer:

9.2 Relating Pressure, Volume,

Figure 1. In 1783, the first (a) hydrogen-filled balloon flight, (b) manned hot air balloon flight, and (c) manned hydrogen-filled balloon flight occurred. When the hydrogen-filled balloon depicted in (a) landed, the frightened villagers of Gonesse reportedly destroyed it with pitchforks and knives. The launch of the latter was reportedly viewed by 400,000 people in Paris.

Explanation:

hope its help :)

nicsfrom #philippines

How Many Times Will The Temperature Of Oxygen With A Mass Of 1 Kg Increase If Its Volume Is Increased

Related Questions

you are stowing items and come across an aerosol bottle of hairspray.what should you do?

Answers

Answer:

below

Explanation:

A 1540-kg truck has a wheel base of 3.13 m (this is the distance between the front and rear axles). The center of mass of the truck is 1.09 m behind the front axle.a) What is the force exerted by the ground on each of the front wheels?b) What is the force exerted by the ground on each of the back wheels? Hint: Remember that the truck has four wheels.

Answers

a. The force exerted by the ground on each of the front wheels is 4918.16 Newton.

b. The force exerted by the ground on each of the back wheels is 2627.84 Newton.

Given the following data:

Mass of truck = 1540 kgDistance between the front and rear axles = 3.13 meters.Center of mass of the truck = 1.09 meters.

a. To determine the force exerted by the ground on each of the front wheels:

First of all, we would take moment about the rear wheels.

[tex]F(3.13) - 1540(9.8) \times (3.13 - 1.09) = 0\\\\3.13F - 15092 \times 2.04 =0\\\\3.13F -30787.68=0\\\\F=\frac{30787.68}{3.13}[/tex]

Force, F = 9836.32 Newton

For each front wheel:

[tex]Force = \frac{9836.32}{2}[/tex]

Force = 4918.16 Newton.

b. To determine the force exerted by the ground on each of the back wheels:

We would determine the sum of the vertical forces acting on the wheels.

[tex]9836.32 + B - 1540(9.8) = 0\\\\9836.32 + B - 15092 = 0\\\\B=15092-9836.32[/tex]

B = 5255.68 Newton.

For each back wheel:

[tex]Force = \frac{5255.68}{2}[/tex]

Force = 2627.84 Newton.

Read more: https://brainly.com/question/22210180

Assume you are going to race the three objects (hollow sphere, disk and ring used in Experiment 8.2) by releasing them from rest at the top of an inclined plane.Which object do you expect to reach the bottom of the inclined plan first? Why?

Answers

Answer:

a. The disk

b. Because it has the smallest rotational inertia

Explanation:

a. Which object do you expect to reach the bottom of the inclined plan first?

I would expect the disk to reach the bottom first.

b. Why?

This is because the disk has the smallest rotational inertia.

The rotational inertial of the hollow sphere, disk and ring are 2/3MR², 1/2MR² and MR² respectively.

Since the three objects are rolling from the same height, they have the same mechanical energy.

But, since the disk has the smallest rotational inertia, it would have the smallest rotational kinetic energy and largest translational kinetic energy.  The disk's smaller rotational kinetic energy will cause  to rotate less but translate more than the other objects and thus reach the bottom first.

The object which is expected to reach the bottom of the inclined plan first is the disk, as it has the lowest rotational inertia.

What is a moment of inertia?

Moment of inertia is the force which acts in the opposite direction of the force of angular acceleration acting on the body.

There are three objects, hollow sphere, disk and ring.

The moment of inertia of the hollow sphere object is given as,

       [tex]I=\dfrac{2}{3}mr^2[/tex]

The moment of inertia of the ring is,

        [tex]I=mr^2[/tex]

The moment of inertia of the disk is,[tex]I=\dfrac{1}{2}mr^2[/tex]

Here, (m) is the mass and (r) is the radius of the object.

These three objects are going to race by releasing from rest at the top of an inclined plane to the bottom of the plane.

As moment of inertia is the force which acts in the opposite direction of the force of angular acceleration acting on the body.

Thus the less the value of inertia will result in less the time required to reach at the bottom of the inclined plane.

Hence, the object which is expected to reach the bottom of the inclined plan first is the disk, as it has the lowest rotational inertia.

Learn more about the force of inertia here;

https://brainly.com/question/10454047

A ball is thrown horizontally at a speed of 24 meters per second from the top of a cliff. If the ball hits the ground 6.0 seconds later, approximately how high is the cliff? ( EASY QUESTION.. PLZZ HELPPP MEEE I WILL MARK YOU THE BRAINLIEST PLZZ)​

Answers

Answer:

144 meters

Explanation:

the ball is thrown with a speed of 24 meters per second right so if the ball reaches the ground in 6 seconds. the hight of the cliff must be S=v.t

S (height cliff)=24m/s×6s=144

plz answer the question

Answers

Answer:

Ray A - incident ray

Ray B - reflected ray

An object that sinks in water has a mass in air of 0.0675 kg. Its apparent mass when submerged in water is 0.0424 kg. What is the specific gravity SG of the object? What material is the object probably made?

Answers

Answer:

1.  SG  

true

=2.689

2. The object is probably some sort of minerals and rocks such as Feldspar, Corals, Beryl, etc.

Explanation:

Given:

mass in the air= 0.0675 kg

mass in water= 0.0424 kg

The specific gravity of the object will be 2.6892. It is the ratio of the density of the given fluid and the standard fluid.

What is density?

Density is specified as the mass divided by the volume. It is represented by the unit of measurement as kg/m³.

The mass of the object in air;

m=Vρ₀

m=0.0675 kg

Buoyant force on the object;

B= Vρₐg

For equilibrium;

N+B=m₀g

n=m₀g-Vρₓg

N/g=m₀-Vρₓ

N/g=0.0424 kg

[tex]\rm \frac{V\rho_0}{V\rho_x} =\frac{0.0675 }{m_0-0.0424 \ kg} \\\\ \frac{\rho_0}{\rho_x} =\frac{0.0675}{0.0675-0.0424} \\\\ \frac{\rho_0}{\rho_x} =2.6892[/tex]

Hence, the specific gravity of the object will be 2.6892.

To learn more about the density refers to the link;

brainly.com/question/952755

#SPJ2

Una pelota de basket es soltada desde 2.5 m de altura y rebota con una velocidad igual a 3/4 partes de la velocidad que llego. ¿ a qué altura alcanza la bola en el rebote ? ¿ cuánto tiempo transcurre desde que rebota ?

Answers

Answer:

Tenemos dos problemas a resolver acá:

Primero, debemos encontrar la velocidad con la que la pelota impacta el suelo.

Acá podemos usar la conservación de la energía.

E = U + K

U = energía potencial = m*g*H

m = masa

g = aceleración gravitatoria = 9.8m/s^2

H = altura

K = energía cinética = (m/2)*V^2

donde V es la velocidad.

Inicialmente, cuando la pelota es soltada, su velocidad es cero, entonces solo tenemos energía potencial:

Ei = U = m*(9.8m/s^2)*2.5m

Al final, cuando la pelota esta por impactar el suelo, la altura tiende a cero, entonces ya no hay energía potencial, solo hay energía cinética:

Ef = (m/2)*V^2

Y como la energía se conserva, la energía final es igual a la inicial, entonces:

m*(9.8m/s^2)*2.5m = (m/2)*V^2

Podemos resolver esto para V, y asi obtener la velocidad con la que la pelota impacta el suelo.

V = √(2*(9.8m/s^2)*2.5m) = 7m/s

Ahora respondamos la segunda parte.

Una vez la pelota rebota, su aceleración va a estar dada solamente por la aceleración gravitatoria, entonces tenemos:

A(t) = -9.8m/s^2

Para obtener su velocidad integramos:

V(t) = (-9.8m/s^2)*t + V0

donde V0 es la velocidad con la que la pelota reboto, que sabemos que es 3/4 de 7m/s

V0 = (3/4)*7m/s = (21/4) m/s

Así, la ecuación de la velocidad es:

V(t) = (-9.8m/s^2)*t + (21/4) m/s

Sabemos que la altura máxima se da cuando la velocidad es igual a cero, entonces primero calculemos el valor de t tal que esto ocurra:

V(t) = 0 = (-9.8m/s^2)*t + (21/4) m/s

         t =  (21/4) m/s/9.8m/s^2 = 0.54 s

Ahora debemos encontrar la ecuación de la posición y evaluarlo en este tiempo.

Para ello integramos de vuelta:

P(t) = (1/2)(-9.8m/s^2)*t^2 + (21/4 m/s)*t + P0

donde P0 es la posición inicial, como la pelota rebota en el suelo, la posición inicial es el suelo, el cual representamos con 0, entonces la ecuación de la posición es:

P(t) = (1/2)(-9.8m/s^2)*t^2 + (21/4 m/s)*t  

La altura máxima estará dada por esta ecuación evaluada en t = 0.54 s

P(0.54s) =  (1/2)(-9.8m/s^2)*(0.54s)^2 + (21/4 m/s)*0.54s = 1.81 m

La altura máxima es 1.81 metros.

Y entre que rebota y llega a esta altura máxima, transcurren 0.54 segundos.

What does it mean when work is positive?
O Velocity is greater than kinetic energy.
O Kinetic energy is greater than velocity.
O The environment did work on an object.
O An object did work on the environment.

Answers

Answer:

O The environment did work on an object

Explanation:

In an experiment to measure the temperature of a Bunsen burner flame, a 250 g piece of iron is held in the flame for several minutes until it reaches the same temperature as the flame . The hot metal is then quickly transferred to 285 g of water contained in a 40.0 g copper calorimeter at 15.0 oC. The final temperature of the copper and water is 80.0 oC.
Using your answer from determine the temperature of the Bunsen flame.

Answers

Answer:

wait

Explanation:

who is the biggest man in the world​

Answers

Answer:

Sultan Kösen

here is a pic

A jogger travels a route that has two parts. The first is a displacement ->A of 2.20 km due south, and the second involves a displacement ->B that points due east.
(a) The resultant displacement ->A + ->B has a magnitude of 3.81 km.
What is the magnitude of B?
______ km
What is the direction of A + B relative to due south?
_____° west of south or east of south?
(b) Suppose that A - B had a magnitude of 3.81 km. What then would be the magnitude of B and what is the direction of A - B relative to due south?

Answers

Answer:

a) B = 3.11 km.  θ= 54.7º E of S

b) B = 3.11 km  θ= 54.7º W of S

Explanation:

a)

Since we know the value of the total displacement, and the value of the displacement A and its direction, we can find the magnitude of B just applying the Pythagorean Theorem, as follows:

        [tex]C=\sqrt{(2.2km)^{2} + B^{2} } = 3.81 Km (1)[/tex]

Solving for B, the only unknown, we get:

       [tex]B=\sqrt{(3.81km)^{2} -(2.2km)^{2} } = 3.11 Km (2)[/tex]

Now, applying some simple trig, we can find the angle that (A+B) makes with the S axis, as follows:

        [tex]\theta = arc tg (\frac{B}{A} )= arc tg ( \frac{3.11}{2.2} )= arctg (1.414) = 54.7 deg (3)[/tex]

Since it's a positive number, applying the convention that the positive angles are measured counterclockwise, this means that this angle is measured East of South.

b)

If the magnitude of A-B is the same than the one for A+B, this means that the magnitude of B remains the same, i.e. 3.11 Km.But if we do graphically A-B, as it is the same as adding A + (-B),        we find that the angle of A-B is different to the one in A+B, even the       magnitudes of both displacements are the same.In this case, B is a negative number, because it's a displacement due west.So, applying the same trig that for a) we can find the angle that (A-B) makes with the S Axis, as follows:

      [tex]\theta = arc tg (\frac{-B}{A} )= arc tg ( \frac{-3.11}{2.2} )= arctg (-1.414) = -54.7 deg (4)[/tex]

So, since it is negative, it's measured clockwise from the S axis, so it's 54.7º W of S.

A set of data was collected measuring the length of a sheet of steel using three different instruments. The actual length of the sheet is 2.00 m. Which instrument is the most accurate in its measurements

Answers

................hold on

Accuracy of measurement is the degree of how close the measurement is, to the actual measurement.

For a measurement of 2.00 m, 1.99 m is more accurate because it is closer to 2.00 m than 1.95 m.

The set of data is not given. So, I will give a general explanation.

For a measurement to be the accurate, the measurement must be close to the actual measurement, and in some cases, the measurement should be approximated to the actual measurement.

Given that:

[tex]Length =2.00m[/tex]

An example of an accurate measurement is:

[tex]Length =1.95m[/tex]

Why? The reasons are

1.95 m is close to 2.00 m1.95 m is approximately 2.00 m

Another example is:

[tex]Length = 1.99m[/tex]

1.99 m is also an accurate measurement because of the reasons above.

However, 1.99 m is more accurate because it is closer to 2.00 m than 1.95 m

Read more about accuracy of measurements at:

https://brainly.com/question/17618012

Ahmed is pushing a 4 Kg box to the right and Rashid is Pushing it to the right as well with a force of 12 N , the box accelerates by 5 m/s^2. What is the Force that is applied by Ahmed

Answers

Answer:

8 N

Explanation:

Applying,

(F'+F) = ma............... Equation 1

Where F' = Amhed's force, F = Rashid's force, m = mass of the box, a = acceleration of the box.

From the question,

Given: F = 12 N, m = 4 kg, a = 5 m/s²

Substitute these values into equation 1

(F'+12) = 4×5

(F'+12) = 20

F' = 20-12

F' = 8 N.

Hence Ahmed's force is 8 N

Select the correct answer.
What are the directions of an object's velocity and acceleration vectors when the object moves in a circular path with a constant speed?
OA. The question is meanimgless, since the acceleration is zero.
ов.
The vectors point in opposite directions.
Oc.
Both vectors point in the same direction.
OD
The vectors are perpendicular,

Answers

Answer:

A

Explanation:

If the object is moving at a constant speed, the object isn't accelerating as the velocity doesn't change.

Answer: C.

Explanation:  plato users

12. What type of circuit is the diagram below?
series circuit
parallel circuit

Answers

Answer:

parallel circuit

Explanation:

An electric circuit can be defined as an interconnection of electrical components which creates a path for the flow of electric charge (electrons) due to a driving voltage.

Generally, an electric circuit consists of electrical components such as resistors, capacitors, battery, transistors, switches, inductors, etc.

Basically, the components of an electric circuit can be connected or arranged in two forms and these includes;

I. Series circuit

II. Parallel circuit: it's an electrical circuit that has the same potential difference (voltage) across its terminals or ends. Thus, its components are connected within the same common points so that only a portion of current flows through each branch.

Hence, the type of circuit that the above diagram above represents is a parallel circuit.

Answer:

parallel circuit

Explanation:

I got it right on my exam

Ethyl alcohol is :
a. None of the above
b. Semi polar solvent
c. Polar solvent
d. Non-Polar solvant​

Answers

Answer:

D. Non- polar solvant

Explanation:

l think that's it

Answer:

I think the answer is D polar solvent

Which describes farsightedness? O Distant objects are blurry. O Concave lenses can correct it. O Objects appear larger when wearing corrective glasses. O Corrective glasses do not change apparent the size of objects.​

Answers

Answer:

O Distant objects are blurry. describes farsightedness.

Explanation:

Farsightedness (hyperopia) is a common vision condition in which you can see distant objects clearly, but objects nearby may be blurry. The degree of your farsightedness influences your focusing ability.Farsightedness (hyperopia) is a common vision condition in which you can see distant objects clearly, but objects nearby may be blurry.

what is measured by the ammeter

Answers

Answer:

amperes

Ammeter, instrument for measuring either direct or alternating electric current, in amperes. An ammeter can measure a wide range of current values because at high values only a small portion of the current is directed through the meter mechanism; a shunt in parallel with the meter carries the major portion.

Explanation:

hope it helps

On topographic maps, contour lines that are farther apart indicate what ?

Answers

Answer:

if I am correct, they indicate less steep terrain. think of it as the steeper the terrain the closer together the lines would be. hope that makes sense for you guys.

Answer:

gentle slopes

Explanation:

Determine the Mutual Inductance per unit length between two long solenoids, one inside the other, whose radii are r1 and r2 (r2 < r1) and whose turns per unit length are n1 and n2.

Answers

Answer:

M' = μ₀n₁n₂πr₂²

Explanation:

Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.

So, M = N₂Ф₂₁/i₁

substituting the values of the variables into the equation, we have

M = N₂Ф₂₁/i₁

M = N₂B₁A₂/i₁

M = n₂lμ₀n₁i₁πr₂²/i₁

M = lμ₀n₁n₂πr₂²

So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²

M' = μ₀n₁n₂πr₂²

Find the final velocity if the initial velocity of 8 m/s with an acceleration of 7 m/s2 over a 3 second interval?

Answers

I don't know about it your answer will give another people

Answer: Let the final velocity be v.

Given,

Initial velocity(u)=8m/s

Acceleration(a)=7m/s2

Time(t)=3 sec

Then,

v=u+at

  =8+7*3 m/s

  =29m/s

Therefore, the final velocity is 29m/s.

In addition to absorption of a photon, energy can be transferred to an atom by collision. Consider a hydrogen atom in its ground state. Incident on the atom are electrons having a kinetic energies of 10.5 eV. What is a possible result?

Answers

The question is incomplete, the complete question is;

In addition to absorption of a photon, energy can be transferred to an atom by collision. Consider a hydrogen atom in its ground state. Incident on the atom are electrons having a kinetic energies of 10.5 eV. What is a possible result?

A) The atom moves to a state of lower energy

B) The atom is ionized

C) One of the electrons leaves the atom

D) The atom can be excited to a higher energy state

Answer:

The atom can be excited to a higher energy state

Explanation:

According to the Bohr model of the atom, electrons in an atom can be excited from a lower to a higher energy level when energy is absorbed by the atom.

If electrons having an energy of 10.5ev are incident on a hydrogen atom, this energy is transferred to the atom by collision. Since the energy transferred is less than the ionization energy of hydrogen atom in its ground state(13.6ev), the atom is not ionized.

Rather, the atom is excited from ground state to a higher energy level.

A camera lens with focal length f = 50 mm and maximum aperture f>2
forms an image of an object 9.0 m away. (a) If the resolution is limited
by diffraction, what is the minimum distance between two points on the
object that are barely resolved? What is the corresponding distance
between image points? (b) How does the situation change if the lens is
“stopped down” to f>16? Use λ= 500 nm in both cases

Answers

Answer:

The minimum distance between two points on the  object that are barely resolved is 0.26 mm

The corresponding distance between the  image points = 0.0015 m

Explanation:

Given  

focal length f = 50 mm and maximum aperture f>2

s =  9.0 m

aperture = 25 mm = 25 *10^-3 m

Sin a = 1.22 *wavelength /D  

Substituting the given values, we get –  

Sin a = 1.22 *600 *10^-9 m /25 *10^-3 m

Sin a = 2.93 * 10 ^-5 rad

Now  

Y/9.0 m = 2.93 * 10 ^-5

Y = 2.64 *10^-4 m = 0.26 mm

Y’/50 *10^-3 = 2.93 * 10 ^-5  

Y’ = 0.0015 m

A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 4.00 m/s, and her takeoff point is 1.80 m above the pool. We assume the upward direction to be positive, and the downward direction to be negative.
(a) How long are her feet in the air?(b) What is her highest point above the board?(c) What is her velocity when her feet hit the water?

Answers

Answer:

(a) t = 1.14 s

(b) h = 0.82 m

(c) vf = 7.17 m/s

Explanation:

(b)

Considering the upward motion, we apply the third equation of motion:

[tex]2gh = v_f^2 - v_i^2[/tex]

where,

g = - 9.8 m/s² (-ve sign for upward motion)

h = max height reached = ?

vf = final speed = 0 m/s

vi = initial speed = 4 m/s

Therefore,

[tex](2)(9.8\ m/s^2)h = (0\ m/s)^2-(4\ m/s)^2\\[/tex]

h = 0.82 m

Now, for the time in air during upward motion we use first equation of motion:

[tex]v_f = v_i + gt_1\\0\ m/s = 4\ m/s + (-9.8\ m/s^2)t_1\\t_1 = 0.41\ s[/tex]

(c)

Now we will consider the downward motion and use the third equation of motion:

[tex]2gh = v_f^2-v_i^2[/tex]

where,

h = total height = 0.82 m + 1.8 m = 2.62 m

vi = initial speed = 0 m/s

g = 9.8 m/s²

vf = final speed = ?

Therefore,

[tex]2(9.8\ m/s^2)(2.62\ m) = v_f^2 - (0\ m/s)^2\\[/tex]

vf = 7.17 m/s

Now, for the time in air during downward motion we use the first equation of motion:

[tex]v_f = v_i + gt_1\\7.17\ m/s = 0\ m/s + (9.8\ m/s^2)t_2\\t_2 = 0.73\ s[/tex]

(a)

Total Time of Flight = t = t₁ + t₂

t = 0.41 s + 0.73 s

t = 1.14 s

When it comes to the movement of air, friction
A. increases with altitude.
B. is greater near the ground surface.
C. diminishes turbulence.
D. is responsible for weaker winds aloft.

Answers

Answer: When it comes to the movement of air, friction is greater near the ground surface.

Explanation:

A resistance in motion observed by an object while on another object is called friction.

For example, a vehicle moving on road will have friction between its tires and the road.

Friction is more near the ground surface rather than away from the ground surface.

Thus, we can conclude that when it comes to the movement of air, friction is greater near the ground surface.

What is the efficiency of a machine that uses 102 kJ of energy to do 98 kJ of work?

Answers

Mark Brainliest please

Answer : 96.08 % efficiency

The time-average power carried by a UPEMW propagating in vacuum is 0.05 W/m2. i) What is the amplitude value of the electric field and the amplitude value of the magnetic field in the wave

Answers

Answer:

The correct solution is "11.51 mA".

Explanation:

Given:

Time average power,

[tex]P_{avg}=0.05 \ W/m^2[/tex]

n = 377

As we now,

⇒ [tex]P_{avg}=\frac{E_0^2}{n}[/tex]

or,

⇒ [tex]E_0^2=0.05\times 377[/tex]

⇒       [tex]=4.341 \ V[/tex]

hence,

⇒ [tex]H_0=\frac{E_0}{n}[/tex]

By putting the values, we get

         [tex]=\frac{4.341}{377}[/tex]

         [tex]=11.51 \ mA[/tex]

Each year 500 runners run up the stairs to the 86th floor of the Empire State Building in New York City. There are 1576 steps and each step is 0.241 m high. In 2003, Australian Paul Crake (20-29 age group) set the overall record by reaching the 86th floor in 9:33. His mass was 70.0 kg. Question 2 HomeworkUnanswered What was Paul Crake's power output during this climb

Answers

Answer:

The power is 465.44 W.

Explanation:

mass, m = 70 kg

number of steps,  n = 1576

height of each step, h = 0.241 m

time taken, t = 9.33 min= 9.33 x 60 s

The power is given by the rate of doing work.

W = n m g h

W = 1576 x 70 x 9.8 x 0.241

W = 260553.776 J

The power is given by

[tex]P = \frac{W}{t}\\\\P = \frac{260553.776}{9.33\times 60}\\\\P = 465.44 W[/tex]  

A 5.0 Ω resistor is hooked up in series with a 10.0 Ω resistor followed by a 20.0 Ω resistor. The circuit is powered by a 9.0 V battery. Draw a labeled circuit diagram for the circuit described using correct symbols. Calculate the equivalent resistance. Calculate the voltage drop across each resistor in the circuit.

Answers

Answer:

(a) Attached to the response as Figure 1.

(b) 35.0Ω

(c) Across 5.0Ω = 1.3V

   Across 10.0Ω = 2.6Ω

   Across 20.0Ω = 5.2Ω

Explanation:

(a) The labelled circuit using the correct symbols (for the resistors and battery) has been attached to this response.

(b) Since the resistors are hooked up in series, their equivalent resistance R, is found by adding the individual resistances of the resistors (R₁, R₂ and R₃). i.e

R = R₁ + R₂ + R₃               -------------------(i)

Where;

R₁ = 5.0 Ω

R₂ = 10.0 Ω

R₃ = 20.0 Ω

Substitute these values into equation (i) as follows;

∴ R = 5.0 Ω + 10.0 Ω + 20.0 Ω

∴ R = 35.0 Ω

Therefore, the equivalent resistance is ∴ R = 35.0Ω

(c) When resistors are connected in series, the same current passes through them. To get the current through each resistor;

i. First, replace the resistors by their equivalent resistor as calculated above. The diagram has been attached to this response.

ii. As seen in the diagram, the current flowing through the equivalent resistor can be calculated using Ohm's law as follows;

V = I R              ------------------(ii)

Where;

V = Voltage supplied to the circuit = 9.0V

I = Current through the circuit

R = Resistance of the equivalent resistor = 35.0Ω

Substitute these values into equation (ii)

9.0 = I x 35.0

I = [tex]\frac{9.0}{35.0}[/tex]

I = 0.26A

This is also the current flowing through each of the resistors separately.

iii. Calculate the voltage drop across

1. 5.0 Ω resistor

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 5.0Ω resistor

I = current through the 5.0Ω resistor = 0.26A

R = resistance of the 5.0Ω resistor = 5.0Ω

=> V = 0.26 x 5.0

=> V = 1.3V

2. 10.0 Ω resistor

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 10.0Ω resistor

I = current through the 10.0Ω resistor = 0.26A

R = resistance of the 10.0Ω resistor = 10.0Ω

=> V = 0.26 x 10.0

=> V = 2.6V

3. 20.0 Ω resistor

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 20.0Ω resistor

I = current through the 20.0Ω resistor = 0.26A

R = resistance of the 20.0Ω resistor = 10.0Ω

=> V = 0.26 x 20.0

=> V = 5.2V

Kulsum’s TV uses 45 W. How much does it cost her to watch TV for one month (30 days). She watches TV for 4 hours/day during mid-peak time (10.4 cents/kWh).

Answers

Answer:

Total cost = 56.16 cents

Explanation:

Given the following data;

Power = 45 Watts

Time = 4 hours

Number of days = 30 days

Cost = 10.4 cents

To find how much does it cost her to watch TV for one month;

First of all, we would determine the energy consumption of the TV;

Energy = power * time

Energy = 45 * 4

Energy = 180 Watt-hour = 180/1000 = 0.18 Kwh (1 Kilowatts is equal to 1000 watts).

Energy consumption = 0.18 Kwh

Next, we find the total cost;

Total cost = energy * number of days * cost

Total cost = 0.18 * 30 * 10.4

Total cost = 56.16 cents

Other Questions
Select all the correct answers. Which statements about potential energy are true? Answer the question its urgent wahat is 3556+55432plaease fast Amanda set her books on the table and stared at George. The maximum number of students in a classroomis 26. If there are 16 students signed up for theart class, how many more students can join theclass without exceeding the maximum? help !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 What is Douglass saying about his intentions?A. He will continue to try to read, nomatter what.B. He will give up reading if he ispunished for it.C. He will be grateful to the Aulds forfurnishing him with an education.D. He will leave Baltimore in order tobe able to read. David and Peter had $90 and $200 respectively. They were each given an equal amount of money. Then Peter had twice as much money as David. How much money did each boy receive? A bowl has the shape of a hemisphere whose diameter is 14 centimeters. If this bowl is filled with water, how many cubic centimeters will it take to fill the bowl which event is described in the excerpts from the new york times ? Please help 50 points!Simplify the expressed Neuvon Time to RecieveHand free phonemaking a call tim (27 min) Lisa Addison introduces a bill on the floor of the Senate. She is most likely O a constituent the governor . A senator O the speaker The linear function graphed below represents Brendas monthly cell phone bill based on the number of hours she uses. What is her hourly rate? what do you call a dog on the beach what is the domain of the function in this table? Find the radius of the circle whose equation is (x - 2)2 + (y - 4)2 = 9. 8. In the commercial production of sugar (sucrose), the product crystals are washed and centrifuged to partial dryness. The crystals are then sent through a rotary dryer where they are contacted with a hot stream of air that reduces the moisture content from 1:0 wt% to 0:1 wt%. The ratio of wet sugar to inlet air fed to the dryer is 3.3 kg wet sugar/kg inlet air. The inlet air contains 1.5 mole% water. (a) Draw and label the flowchart and do the degree-of-freedom analysis. (b) Taking a basis of 100 kg of wet sugar fed to the dryer, calculate the mass of water and its mole fraction in the air leaving the dryer. (c) If 1000 tons/day of dried sugar is to be produced, at what rate (lbm/h) is water evaporated from the sugar the place value of 4 in 56437 is: Why do scientists only test one independent variable in an experiment?