Answer:
254 m
Explanation:
Applying,
v = λf............... Equation 1
Where v = velocity of radio wave, λ = wave length, f = frequency
make λ the subject of the equation
λ = v/f............ Equation 2
From the question,
Given: f = 1180 kHz = 1180000 Hz
Constant: v = 3×10⁸ m/s
Substitite into equation 2
λ = 3×10⁸/1180000
λ = 2.54×10²
λ = 254 m
5. A bicyclist is finishing her repair of a flat tire when a friend rides by at a constant velocity of
3.5 m/s. Three seconds later, the bicyclist hops on her bike and accelerates at 3.6 m/s² until she
catches her friend.
a. How much time does it take until she catches her friend?
b. How far has she traveled in this time?
c. What is her speed when she catches up?
Answer:
a) t = 3.6 s
b) d = 23 m
c) v = 13 m/s
Explanation:
Let t be the time the accelerating rider rides
the distance she travels is
d = ½3.6t²
the distance for the other cyclist is
d =3.5(t + 3)
½3.6t² = 3.5(t + 3)
1.8t² - 3.5t - 10.5 = 0
quadratic formula, positive answer
t = (3.5 + √(3.5² - 4(1.8)(-10.5))) / (2(1.8))
t = 3.575786...
d = ½(3.6)(3.575786²) = 23.015...
v = 3.6(3.575786) = 12.8728...
In a rolling race, two objects are released from the top of two identical ramps. They then roll without slipping to the bottom of the ramp. If the two objects are 2 hoops of the same radius but different masses, which reaches the bottom first?
a. The lighter one reaches the bottom first
b. The heavier one reaches the bottom first
c. We don’t have enough information
d. They reach the bottom at the same time
Answer:
b. The heavier one reaches the bottom first.
Answer:
B
Explanation:
The answer is B the heavier item has more g force pushing it making it roll faster reaching the bottom of the ramp first.
Two hockey players are about to collide on the ice. One player has a mass of
70 kg and is traveling at 1.4 m/s north. The other has a mass of 75 kg and is
traveling at 1.0 m/s south. The system consists of the two hockey players.
According to the law of conservation of momentum, what is the total
momentum of the system after they collide? Assume the collision is an
elastic collision.
A. 173 kg.m/s south
B. 23 kg-m/s north
C. 23 kg.m/s south
D. 173 kg.m/s north
Answer:
B. 23 kg*m/s north
Explanation:
p_1 = p_2
(m*v)_1 + (m*v)_2 = (m*v)_1' + (m*v)_2'
(70kg*1.4m/s)+(75kg*-1.0m/s) = p_2
(98kg*m/s)+(-75kg*m/s) = 23kg*m/s north
B. 23 kg*m/s north
Two hockey players are about to collide on the ice, so the total momentum of the system when they collide is 23 kg m/s. Hence, option B is correct.
What is momentum?The result of a particle's mass and velocity is momentum. It has both magnitude and direction because momentum is a vector quantity. According to Isaac Newton's second law of motion, the force pushing a particle has an equal and opposite effect on the temporal rate at which its momentum changes.
[tex]Momentum (p)= Mass(m)*Velocity(v)[/tex]
The given values according to the question is :
p₁ = p₂
(m × v)₁+ (m × v)₂ = (m × v)₁' + (m × v)₂'
(70 kg × 1.4 m/s) + (75 kg) × (-1.0 m/s) = p₂
(98 kg m/s) + (- 75 kg m/s) = 23 kg m/s North
Therefore, the total momentum after collision is 23 kg m/s North.
To know more about momentum :
https://brainly.com/question/24030570
#SPJ2
The source of sound moves away from the listener.The listener has the impression that the source is lower in pitch. Why?
When the source is moving away from the observer the velocity of the source is added to the speed of light. This increases the value of the denominator, decreasing the value of the observed frequency. Frequency corresponds to pitch or tone; a lower observed frequency will result in a lower observed pitch.
No matter how far you stands from a mirror your image appear errect .the mirror is
Answer:
convex mirror
.....................
Answer:
convex mirror..........
A uniform magnetic field passes through a horizontal circular wire loop at an angle 15.1° from the normal to the plane of the loop. The magnitude of the magnetic field is 3.35 T , and the radius of the wire loop is 0.240 m . Find the magnetic flux Φ through the loop.
Answer:
0.5849Weber
Explanation:
The formula for calculating the magnetic flus is expressed as:
[tex]\phi = BAcos \theta[/tex]
Given
The magnitude of the magnetic field B = 3.35T
Area of the loop = πr² = 3.14(0.24)² = 0.180864m²
angle of the wire loop θ = 15.1°
Substitute the given values into the formula:
[tex]\phi = 3.35(0.180864)cos15.1^0\\\phi =0.6058944cos15.1^0\\\phi =0.6058944(0.9655)\\\phi = 0.5849Wb[/tex]
Hence the magnetic flux Φ through the loop is 0.5849Weber
Which questions would a biopsychologist most likely address when studying depression?
A bio psychologist would address questions on stress, abuse and conflict when studying depression.
A bio psychologist is a person that is involved in the study of the brain and peoples behavior. This person tries to understand why people do the things or act the way they do using a biological and psychological approach.
While trying to understand the cause of this depression, the bio psychologist would
ask to know if the subject is undergoing stressful situationsIf an abuse led to the situation. It could be physical, emotional or mental abuse. Another question would be if a conflict or altercation caused it.read more on
https://brainly.com/question/17343378?referrer=searchResults
What improvements were made in measuring system with the introduction of standard units?
Answer:
Standard units are commonly used units of measurement, which help us measure length, height, weight, temperature, mass and more. These units are standardised, which means that everyone gets the same understanding of the size, weight and other properties of objects and things.
Explanation:
The instrument includes a light source, which is passed through a Choose... , which isolates a single wavelength to pass through an aperture to reach the Choose... . Then, the light travels to the Choose... , which measures the intensity of light reaching it.
Answer:
Following are the response to the given question:
Explanation:
It's being used to measure the amount of light absorbed after traveling through a test tube (the amount of solar radiation received). For several quantitative estimations, this technique is widely employed. Spectrometer and Spectrometer were two devices that are used together to light intensity and light intensity.
It creates and diffuses phosphorescent light into the selected frequency, while the Spectrometer measures the strength of attenuation by the sample solution.
Diffraction beams or prisms are being used to convert polychromatic illumination into monochrome light.
Afterward, the sunlight has a certain hue. Once it reaches the specimen cuvette, it begins absorption. It falls on a sensor that transforms its intensity into such an electronic current.
Here are some ways to fill in such gaps:
In order to reach the specimen cuvette, the light from the light source must be routed via an aperture in order to be isolated by either a diffraction pattern. Light travels to the detector, which detects its intensity.
how interfacial angles are determined using contact goinometer
the number of significant figures in the measurement 4.300×10^5 km are
Answer:
6
Explanation
Any numbers in scientific notation are considered significant. For example, 4.300 x 10-4 has 4 significant figures.
Answer From Gauth Math
Determine the point of contraflexure
Answer:
The point of contraflexure (PoC) occurs where bending is zero and at the point of change between positive and negative (or between compression and tension). In a beam that is flexing (or bending), the point where there is zero bending moment is called the point of contraflexure.
Find the intensity of the electromagnetic wave described in each case. (a) an electromagnetic wave with a wavelength of 655 nm and a peak electric field magnitude of 1.5 V/m. 0.002984 W/m2 (b) an electromagnetic wave with an angular frequency of 6.5 ✕ 1018 rad/s and a peak magnetic field magnitude of 10−10 T. 1.19366E-6 W/m2
The intensity of the electromagnetic wave in terms of the electric field is 0.00298 W/m² and the intensity of the electromagnetic wave in terms of the magnetic field is 1.193x10⁻⁶ W/m².
The intensity of the electromagnetic wave is related to the electric field as well as to the magnetic field.
a) Intensity of the electromagnetic wave for the electromagnetic field.
The intensity of the electromagnetic wave (I) in terms of the electromagnetic field is given by:
[tex] I = \frac{E^{2}*c*\epsilon_{0}}{2} [/tex] (1)
Where:
c: is the speed of light = 3.00*10⁸ m/s
E: is the magnitude of the electric field = 1.5 V/m
ε₀: is the permittivity of free space = 8.85*10⁻¹² C²/Nm²
Hence, the intensity of the electromagnetic wave (eq 1) is:
[tex] I = \frac{(1.5 V/m)^{2}*3.00 \cdot 10^{8} m/s*8.85 \cdot 10^{-12} C^{2}/(N*m^{2})}{2} = 0.00298 W/m^{2} [/tex]
b) Intensity of the electromagnetic wave for the magnetic field
We can calculate the intensity of the electromagnetic wave (I) in terms of the magnetic field with the following equation:
[tex] I = \frac{cB^{2}}{2\mu_{0}} [/tex] (2)
Where:
B: is the magnitude of the magnetic field = 10⁻¹⁰ T
μ₀: is the vacuum permeability = 4π*10⁻⁷ m*T/A
Therefore, the intensity of the electromagnetic wave (eq 2) is:
[tex] I = \frac{3.00 \cdot 10^{8} m/s*(1\cdot 10^{-10} m*T/A)^{2}}{2*4\pi \cdot 10^{-7} T/A} = 1.193 \cdot 10^{-6} W/m^{2} [/tex]
Learn more about electromagnetic waves and magnetic and electric fields here: https://brainly.com/question/11647801?referrer=searchResults
I hope it helps you!
Describing Uses ñ Olivia wants to find out whether a substance will fluoresce. She says she should put it in a microwave oven. Do you agree with her? Why or why not?
PLEASE ANSWER IF YOU CAN AND NOT FOR THE SAKE OF GAINING POINTS!
These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor
Answer:
Following are the solution to the given question:
Explanation:
For charging plates that are connected in a similar manner:
Calculating the total charge:
[tex]\to q =q_1 + q_2 = C_1V_1 +C_2V_2 =1320 + 2714 = 4034 \mu C[/tex]
Calculating the common potential:
[tex]\to V = \frac{q}{C}= \frac{q}{(C_1 + C_2)} =\frac{4034}{6.8} = 593 \ V\\\\[/tex]
Calculating the charge after redistribution:
[tex]When: \\\\q = q_{1}' + q_{2}' = q_1 + q_2[/tex]
[tex]\to q_{1}' = C_1V = 2.2 \times 593 = 1305\ \mu C\\ \\ \to q_{2}' = C_2V = 4.6 \times 593 = 2729 \ \mu C[/tex]
You are working on a project to make a more efficient engine. Your team is investigating the possibility of making electrically controlled valves that open and close the input and exhaust openings for an internal combustion engine. Determine the stability of the valve by calculating the force on each of its sides and the net force on the valve.
The valve is made of a thin but strong rectangular piece of non-magnetic material that has a current-carrying wire along its edges. The rectangle is 0.35 cm x 1.83 cm. The valve is placed in a uniform magnetic field of 0.15 T such that the field lies in the plane of the valve and is parallel to the short sides of the rectangle. The region with the magnetic field is slightly larger than the valve. When a switch is closed, a 1.7 A current enters the short side of the rectangle on one side and leaves on the opposite short side of the rectangle. At the suggestion of a colleague, who is hoping to ensure different currents along the sides of the valve, resistors have been included along the wire on each of the short sides of the valve. The value of the resistor on one side is twice that on the other side.
Answer:
The answer is "0.00466 N".
Explanation:
[tex]F=(B \times i) L\\\\[/tex]
therefore the smaller side is parallel to magnetic field
[tex]\therefore \\\\F= B i L\ \sin\ 'o'=0 \ N[/tex]
calculating the force on the layer side:
[tex]\to F=0.15 \times 1.7 \times 0.0183 \times \sin 90^{\circ}=0.00466\ N\\\\[/tex]
Therefore [tex]F_o[/tex] the net force on the rectangular loop [tex]= 0.00466 \ N[/tex]
The timing device in an automobile’s intermittent wiper system is based on an RC time constant and utilizes a 0.500 micro F capacitor and a variable resistor. Over what range must R be made to vary to achieve time constants from 2.00 to 15.0 s?
Answer:
check 2 photos for answer
check 2 photos for answer
A bicycle tire with a volume of 0.00210 m^3 is filled to its recommended absolute pressure of 495 kPa on a cold winter day when the tire's temperature is -14°C. The cyclist then brings his bicycle into a hot laundry room at 32°C.
a. If the tire warms up while its volume remains constant, will the pressure increase be greater than, less than, or equal to the manufacturer's stated 10% overpressure limit?
b. Find the absolute pressure in the tire when it warms to 32 degrees Celcius at constant volume.
(A) The pressure will be greater than 10% overpressure limit.
(B) The final pressure will be "582.915 kPa".
Given:
Volume,
[tex]V = 0.0021 \ m^3[/tex]Initial pressure,
[tex]P_o= 495 \ kPa[/tex]Initial temperature,
[tex]T_o = -14^{\circ} C[/tex][tex]= 259 \ K[/tex]
Final temperature,
[tex]T = 32^{\circ} C[/tex](B)
Number of moles,
→ [tex]n = (\frac{P_o V}{RT_o} )[/tex]
then,
The final absolute pressure,
→ [tex]P = \frac{nRT}{V}[/tex]
[tex]= (\frac{P_o V}{RT_o} )(\frac{RT}{V} )[/tex]
[tex]=(\frac{T}{T_o} )P_o[/tex]
[tex]= (\frac{305}{259} )\times 495[/tex]
[tex]= 582.915 \ kPa[/tex]
Thus the above approach is correct.
Learn more:
https://brainly.com/question/13033911
The "Pressure" meter allows you to read the pressure at different depths in the fluid. Place the pressure meter close to the bottom of the pool, and read the pressure. Slowly move the pressure meter toward the surface of the water in the pool and read the pressure at different depths in the pool. What happens to pressure in the fluid as the depth of the fluid decreases?
Answer:
The pressure near the surface of the pool will be less as compared that the bottom of the pool as water has weight. This is in relation to gravity
Explanation:
There is a relationship between volume and pressure. The increase in depth leads to an increase in volume and an increase in the force of gravity near the surface as compared to lifting and rising light pressure as light air rises and heavy air sinks.Una persona de 76 kg está siendo retirada de un edificio en llamas mientras se muestra en la figura. Calcule la tensión
en las dos cuerdas si la persona está momentáneamente inmovil.
Ayuda por favor.
Answer:
T1 = 736.6 N, T2 = 193.5 N
Explanation:
W = 76 N
The tension is T1 and T2.
By use of Lami's theorem
[tex]\frac{T_1}{Sin100}=\frac{T_2}{Sin165}=\frac{W}{Sin 95}\\\\So, \\\\T_1 = \frac{76\times 9.8\times Sin 100}{Sin 95} = 736.6 N \\And\\T_2 = \frac{76\times 9.8\times Sin 165}{Sin 95} = 193.5 N \\[/tex]
I only need help with e (bottom of the page).
Explanation:
The box is accelerating along the y-axis at a rate of [tex]+2.5\:\text{m/s}^2[/tex] as well as along the x-axis at a rate of [tex]+5.1\:\text{m/s}^2.[/tex] So the magnitude of the box's total acceleration is given by
[tex]a_T = \sqrt{a_x^2 + a_y^2}[/tex]
[tex]\:\:\:\:= \sqrt{(5.1\:\text{m/s}^2)^2 + (2.5\:\text{m/s}^2)^2}[/tex]
[tex]\:\:\:\:=5.7\:\text{m/s}^2[/tex]
The direction of the acceleration [tex]\theta[/tex] with respect to the horizontal direction is given by
[tex]\theta = \tan^{-1}\!\left(\dfrac{a_y}{a_x}\right) = \tan^{-1}\!\left(\dfrac{2.5\:\text{m/s}^2}{5.1\:\text{m/s}^2}\right)[/tex]
[tex]\:\:\:\:= 26.1°[/tex]
define nortons theorem
Answer:
In direct-current circuit theory, Norton's theorem is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
Mention the importance of occupation??
Answer:
ln the contemporary time , farming can be considered as comparitively important occupation as it can feed the population , So agriculture is having a greater importance than any other occupation.
Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 55.3 kg, down a theta= 79.6º slope at constant acceleration a=-4.3 m/s2, as shown in Figure (here we assume the positive direction is going down the slope. So the given acceleration is a negative value, it means its direction is going up the slope, slowing down as it moving downward). So, the coefficient of friction between the sled and the snow is 0.100. How many Joules of work is done by the tension in the rope as the sled moves 2.1 m along the hill? Use g= 10 m/s2.
The tension in the rope is doing a work of 1662.544 joules as the sled moves 2.1 meters along the hill.
In this case, we need to construct the Free Body Diagram of the sled-victim System in order to determine what Forces are doing Work. Then, we construct the respective Energy equation by Newton's Laws of Motion, Work-Energy Theorem and definition of Work.
Given that system experiments an uniform Acceleration, we must solve the resulting model for the work done by the Tension in the rope.
From the Free Body Diagram (see image attached), we see that both Weight of the sled and Friction between sled and snow are doing work in favor of gravity, whereas Tension forces is against gravity. Normal force is not doing work as its direction is perpendicular to the direction of motion. The energy equation of this system is:
[tex]-W_{T} + \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta = m\cdot a\cdot s[/tex] (1)
Where:
[tex]W_{T}[/tex] - Work done by tension, in joules.
[tex]m[/tex] - Mass of the sled-victim system, in kilograms.
[tex]\mu[/tex] - Coefficient of kinetic friction, no unit.
[tex]g[/tex] - Gravitational acceleration, in meters per square second.
[tex]s[/tex] - Travelled distance, in meters.
[tex]\theta[/tex] - Slope angle, in sexagesimal degrees.
[tex]a[/tex] - Net acceleration of the sled-victim system, in meters per square second.
If we know that [tex]\mu = 0.100[/tex], [tex]m = 55.3\,kg[/tex], [tex]g = 10\,\frac{m}{s^{2}}[/tex], [tex]s = 2.1\,m[/tex], [tex]\theta = 79.6^{\circ}[/tex] and [tex]a = -4.3\,\frac{m}{s^{2}}[/tex], then the work done by the tension in the rope is:
[tex]-W_{T} + \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta = m\cdot a\cdot s[/tex]
[tex]W_{T} = \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta -m\cdot a\cdot s[/tex]
[tex]W_{T} = (0.100)\cdot \left(55.3\,kg\right)\cdot \left(10\,\frac{m}{s^{2}} \right)\cdot (2.1\,m)\cdot \cos 79.6^{\circ} + \left(55.3\,kg\right)\cdot \left(10\,\frac{m}{s^{2}} \right)\cdot (2.1\,m)\cdot \sin 79.6^{\circ} - (55.3\,kg)\cdot \left(-4.3\,\frac{m}{s^{2}} \right) \cdot (2.1\,m)[/tex]
[tex]W_{T} = 1662.544\,J[/tex]
The tension in the rope is doing a work of 1662.544 joules as the sled moves 2.1 meters along the hill.
Related questions:
https://brainly.com/question/22599382
https://brainly.com/question/15447861
The graph below shows a cycle of a heat engine. Add the following labels to the graph. Some labels are used more than once.
Labels: Isobaric process; W= 0J; Work done on the system; Work done by the system.
I will give brainliest!
P.S. AL2006 if you see this please help!
I'm not very good at this material. I'll try it, but if I were you, I wouldn't bet money on these answers.
"Isobaric" means constant pressure. So those are the horizontal lines, where every point on the line is at the same pressure. Those are the processes 1>2 and 3>4 .
I'm going around and around in my mind with the other labels, and I can't decide. So I'm afraid I can't answer any more of them ... they might be wrong.
Answer:
1 -> 2 & 3 -> 4: Isobaric process
4 -> 1: Work done BY the system
2 -> 3: Work done ON the system
W(total): W = 0J
Explanation:
The two horizontal lines (1 -> 2 & 3 -> 4) are "Isobaric" since isobaric processes take place at constant pressure. I believe 4 -> 1 is "Work done BY the system" since pressure increases when there is an increase of thermal energy, in other words, the system is absorbing heat. This is why the volume increases from 1 -> 2 after the system has absorbed heat in 4 -> 1. Following the directions of the arrows, 2 -> 3 would be "Work done ON the system" since pressure is DECREASING, meaning temperature is also exiting the system. That's why the next step (3 -> 4) shows a decrease in volume. This model depicts a process that has a W(total) of 0 J because this is a cycle.
I hope this helps :))
Hi Friends!
please help me with these questions!
SUBJECT: Chemistry, Physics,Biology
Answer:
q.1 : Air near candle gets heated up and after this it rises by convection so the thermometer B will receive more heat than the thermometer A So, according to the given condition thermometer B will show a greater rise in temperature.
q.2 : x is the pure sample of compound . y is the pure sample of element . z is the mixture of different elements
q.3 : the saliva contains an enzyme salivary amylase (ptyalin) which converts starch in roti into maltose, isomaltose and small dextrins called a-dextrin.
What is perfect machine
Answer:
Explanation:
A machine is which no part of the work done on the machine is wasted, is called an ideal or perfect machine
Current is the rate at which charge is flowing.
a. True
b. Fals
Answer:
A. True
Explanation:
A block weighing 400 kg rest on a horizontal surface and supports on top of it another block of weight 100 kg placed on the top of it as shown. The block W2 is attached to a vertical wall by a string 6 m long. Ifthe coefficient of friction between all surfaces is 0.25 and the system is in equilibrium find the magnitude of the horizontal force P applied to the lower block.
The horizontal force applied to the lower block is approximately 1,420.85 Newtons
The known parameters are;
The mass of the block, m₁ = 400 kg, weight, W₁ = 3,924 N
The mass of the block resting on the first block, m₂ = 100 kg, weight, W₂ = 981 N
The length of the string attached to the block, W₂, l = 6 m
The horizontal distance from the point of attachment of the second block to the block W₂, x = 5 m
The coefficient of friction between the surfaces, μ = 0.25
Let T represent the tension in the string
The upward force on W₂ due to the string = T × sin(θ)
The normal force of W₁ on W₂, N₂ = W₂ - T × sin(θ)
The tension in the string, T = N₂ × μ × cos(θ)
∴ T = (W₂ - T × sin(θ)) × μ × cos(θ)
sin(θ) = √(6² - 5²)/6
cos(θ) = 5/6
∴ T = (981 - T × √(6² - 5²)/6) × 0.25 × 5/6
Solving, we get;
T ≈ 183.27 N
The normal reaction on W₂, N₂ = T/(μ × cos(θ))
∴ N₂ = 183.27/(0.25 × 5/6) = 879.7
N₂ ≈ 879.7 N
The friction force, [tex]F_{f2}[/tex] = N₂ × μ
∴ [tex]F_{f2}[/tex] = 879.7 N × 0.25 = 219.925 N
The total normal reaction on the ground, [tex]\mathbf{N_T}[/tex] = W₁ + N₂
[tex]N_T[/tex] = 3,924 N + 879.7 N = 4,803.7 N
The friction force, on the ground [tex]\mathbf{F_T}[/tex] = [tex]\mathbf{N_T}[/tex] × μ
∴ [tex]F_T[/tex] = 4,803.7 N × 0.25 = 1,200.925 N
The horizontal force applied to the lower block, P = [tex]\mathbf{F_T}[/tex] + [tex]\mathbf{F_{f2}}[/tex]
Therefore;
P = 1,200.925 N + 219.925 N = 1,420.85 N
The horizontal force applied to the lower block, P ≈ 1,420.85 N