Answer:
he is a baby art and design
3. If you change the resistance of the resistor:
a. How does the current through the circuit change? (answer, explain, evidence)
b. How does the voltage of the battery change? (answer, explain, evidence)
Answer:
Explanation:
Changing the resistance of a resistor means the resistance is either increased or decreased.
a. When the resistance of the resistor is increased, the value of current flowing through the circuit decreases.
Example: given voltage of 6V, and a resistance of 30 Ohm's. The value of current flowing in the circuit is;
V = IR
6 = I x 30
I = 0.2 A
If the resistance is changed to 50 Ohm's, then:
I = 0.12 A
(ii) When the resistance of the resistor is decreased, the value of the current flowing through the circuit increases.
In the previous example, if the resistance is changed to 5 Ohm's, then:
V = IR
6 = I x 5
I = 1.2 A
(b) The voltage of the battery does not change since it is directly proportional to the current flowing through the circuit. Consider the examples stated above.
Two identical cars, each traveling at 16 m>s, slam into a concrete wall and come to rest. In car A the air bag does not deploy and the driver hits the steering wheel; in car B the driver contacts the deployed air bag. (a) Is the impulse delivered by the steering wheel to driver A greater than, less than, or equal to the impulse delivered by the air bag to driver B
Answer:
I = - m 16 the two impulses are the same,
Explanation:
The impulse is given by the relationship
I = Δp
I = p_f - p₀
in this case the final velocity is zero therefore p_f = 0
I = -p₀
For driver A the steering wheel impulse is
I = - m v₀
I = - m 16
For driver B, the airbag gives an impulse
I = - m 16
We can see that the two impulses are the same, the difference is that in the air bag more time is used to give this impulse therefore the force on the driver is less
A 0.40-kg mass attached to the end of a string swings in a vertical circle having a radius of 1.8 m. At an instant when the string makes an angle of 40 degrees below the horizontal, the speed of the mass is 5.0 m/s. What is the magnitude of the tension in the string at this instant
Answer:
[tex]T=8.1N[/tex]
Explanation:
From the question we are told that:
Mass m=0.40
Radius r=1.8m
Angle Beneath the Horizontal \theta =40 \textdegree
Speed v=5.0m/s
The Tension Angle
[tex]\alpha=90-\theta\\\\\alpha=90-40[/tex]
[tex]\alpha=50 \textdegree[/tex]
Generally the equation for Tension is is mathematically given by
[tex]T=\frac{mv^2}{r}+mgcos \alpha[/tex]
[tex]T=\frac{0.40*5^2}{1.8}+0.40*5cos50[/tex]
[tex]T=8.1N[/tex]
Put the balloon near (BUT NOT TOUCHING) the wall. Leave about as much space as the width of your pinky finger between the balloon and wall. Does the balloon move, if so which way
Answer:
Move towards the wall.
Explanation:
When the balloon is kept near to the wall not touching the wall, there is a force of electrostatic attraction so that the balloon moves towards the wall and stick to it.
As there is some charge on the balloon and the wall is uncharged so the force is there due to which the balloon moves towards the wall.
Two distinct systems have the same amount of stored internal energy. 500 J are added by heat to the first system and 300 J are added by heat to the second system. What will be the change in internal energy of the first system if it does 200 J of work? How much work will the second system have to do in order to have the same internal energy?
Answer:
The change in the internal energy of the first system is 300 J
The second system will do zero work in order to have the same internal energy.
Explanation:
Given;
heat added to the first system, Q₁ = 500 J
heat added to the second system, Q₂ = 300 J
work done by the first system, W₁ = 200 J
The change in the internal energy of the system is given by the first law of thermodynamics;
ΔU = Q - W
where;
ΔU is the change in internal energy of the system
The change in the internal energy of the first system is calculated as;
ΔU₁ = Q₁ - W₁
ΔU₁ = 500 J - 200 J
ΔU₁ = = 300 J
The work done by the second system to have the same internal energy with the first.
ΔU₁ = Q₂ - W₂
W₂ = Q₂ - ΔU₁
W₂ = 300 J - 300 J
W₂ = 0
The second system will do zero work in order to have the same internal energy.
The same constant force is used to accelerate two carts of the same mass, initially at rest, on horizontal frictionless tracks. The force is applied to cart A for twice as long a time as it is applied to cart B. The work the force does on A is WA; that on B is WB. Which statement is correct?
a. WA = WB
b. WA = 2WB.
c. WA=4WB
d. WB= 2WA
Answer:
Option (c).
Explanation:
Let the mass of each cart is m and the force is F.
Time for cart A is 2t and for cart B is t.
Work done is given by the
W= force x displacement
As the distance is given by
S= u t +0.5 at^2
So, when the time is doubled the distance is four times.
So, WA = F x 4 S
WB = F x S
WA= 4 WB
An infinite plane lies in the yz-plane and it has a uniform surface charge density.
The electric field at a distance x from the plane
a.) decreases as 1/x^2
b.) increases linearly with x
c.) is undertermined
d.) decreases linearly with x
e.) is constant and does not depend on x
Answer:
So the correct answer is letter e)
Explanation:
The electric field of an infinite yz-plane with a uniform surface charge density (σ) is given by:
[tex]E=\frac{\sigma }{2\epsilon_{0}}[/tex]
Where ε₀ is the electric permitivity.
As we see, this electric field does not depend on distance, so the correct answer is letter e)
I hope it helps you!
What would you expect to happen to the velocity of the bobber if the mass of the washers in the cylinder remained the same and the radius was doubled?
Answer:
The velocity becomes [tex]v\sqrt 2[/tex].
Explanation:
The force acting on the bobber is centripetal force.
The centripetal force is given by
[tex]F =\frac{mv^2}{r}[/tex]
when mass remains same, radius is doubled and the force is same, so the velocity is v'.
[tex]F =\frac{mv^2}{r}=\frac{mv'^2}{2r}\\\\v'=v\sqrt 2[/tex]
A building is being knocked down with a wrecking ball, which is a big metal sphere that swings on a 15-m-long cable. You are (unwisely!) standing directly beneath the point from which the wrecking ball is hung when you notice that the ball has just been released and is swinging directly toward you. How much time do you have to move out of the way? answer in seconds.
Answer:
Time to move out of the way = 1.74 s
Explanation:
Time to move out of the way is one fourth of period = 6.95/4 = 1.74 seconds.
Time to move out of the way = 1.74 s
Nhiệt dung riêng của một chất là ?
Answer:
enchantment table language
Explanation:
A 0.20 kg mass on a horizontal spring is pulled back a certain distance and released. The maximum speed of the mass is measured to be 0.30 m/s. If, instead, a 0.40 kg mass were used in this same experiment, choose the correct value for the maximum speed.
a. 0.40 m/s.
b. 0.20 m/s.
c. 0.28 m/s.
d. 0.14 m/s.
e. 0.10 m/s.
Answer:
b. 0.20 m/s.
Explanation:
Given;
initial mass, m = 0.2 kg
maximum speed, v = 0.3 m/s
The total energy of the spring at the given maximum speed is calculated as;
K.E = ¹/₂mv²
K.E = 0.5 x 0.2 x 0.3²
K.E = 0.009 J
If the mass is changed to 0.4 kg
¹/₂mv² = K.E
mv² = 2K.E
[tex]v = \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2\times 0.009}{0.4} } \\\\v = 0.21 \ m/s\\\\v \approx 0.20 \ m/s[/tex]
Therefore, the maximum speed is 0.20 m/s
A force of 15 N toward the WEST is applied to a 4.0 kg box. Another force of 42 N toward the EAST is also applied to the 4.0 kg box. The net force on the 4.0 kg box
is
[tex]\implies F_1 < F_2[/tex]
[tex] \implies F_{net} = F_2 - F1[/tex]
[tex]\implies F_{net} = 42 -15[/tex]
[tex]\implies \underline{ \boxed{ F_{net} = 27 \: N}}[/tex]
The net force on the 4.0 kg box is 27 N towards EAST.
The human eye can readily detect wavelengths from about 400 nm to 700 nm. Part A If white light illuminates a diffraction grating having 910 lines/mm , over what range of angles does the visible m
Answer:
The correct answer is "[tex]21.344^{\circ}[/tex]" and "[tex]39.56^{\circ}[/tex]".
Explanation:
According to the question,
Slit width,
[tex]d=\frac{1}{910 \ lines/mm}[/tex]
[tex]=\frac{1}{910\times 10^3}[/tex]
[tex]=1.099\times 10^{-6} \ m[/tex]
The condition far first order maxima will be:
⇒ [tex]d Sin \theta = 1 \lambda[/tex]
Now,
⇒ [tex]\Theta_{min} = Sin^{-1} (\frac{\lambda}{d} )[/tex]
[tex]=Sin^{-1} (\frac{400\times 10^{-9}}{1.099\times 10^{-6}} )[/tex]
[tex]=21.344^{\circ}[/tex]
⇒ [tex]\Theta_{max} = Sin^{-1} (\frac{\lambda}{d} )[/tex]
[tex]=Sin^{-1} (\frac{700\times 10^{-9}}{1.099\times 10^{-6}} )[/tex]
[tex]=39.56^{\circ}[/tex]
Question 4 of 5
How can the Fitness Logs help you in this class?
O A. They can't; the Fitness Logs are only useful to your teacher.
B. They show your parents how much you're learning.
C. They let you keep track of your thoughts, feelings, and progress.
D. They help you evaluate yourself for your final grade.
SUBMIT
Answer:
C is the right answer
Explanation:
fitness logs is a great way to track your progress. You can easily look back and see how you have progressed over time. In addition, it can help you plan and prepare for future workouts, as well as identify patterns of what seems to work well for you and when you have the most success
hope it was useful for you
A car starting at rest accelerates at 3m/seconds square How far has the car travelled after 4s?
Answer:
24 meters
Explanation:
Find the final velocity. 12m/s
d=[final-initial]/2×time
D=(6m/s)×4=24 m/s
A cylindrical water tank has a height of 20cm and a radius of 14cm. If it is filled to 2/5 of its capacity, calculate.
I. Quantity of water in the tank
II. Quantity of water left to fill the tank to its capacity.
Answer:
4.926 L Y 7.389 L
Explanation:
first you calculate the tank volume
V = π[tex](14 cm)^{2}[/tex](10 cm = [tex]12315 cm^{3}[/tex]
then you convert to liters
[tex]12315 cm^{3}[/tex] = 12.315 l
then you calculate the liters of water
2/5(12.35 l) = 4.926 l
finally we calculate the amount without water
12.315 l - 4.926 l = 7.389 l
HERE IS MORE INFORMATION ON THE SUBJECT. THEY REMOVED THE
ENGLISH SITE BUT YOU CAN USE TRANSLATOR
LINK: https://gscourses.thinkific.com/courses/fisicai
True or false: Increasing the Young’s modulus of a beam in bending will cause it to deflect less.
Answer:
false?
Explanation:
The higher the modulus, the more stress is needed to create the same amount of strain; an idealized rigid body would have an infinite Young's modulus.
Answer:
I think the answer is False.
Suppose that 2 J of work is needed to stretch a spring from its natural length of 34 cm to a length of 46 cm. (a) How much work is needed to stretch the spring from 36 cm to 41 cm
Answer:
0.83 J of work
Explanation:
2 J of work is required to stretch a spring from 34cm to 46cm
So that is 12cm stretched with 2 J of work
We can make that 6cm for 1 J of work
So, we need the find the work for stretching 36cm to 41cm
Which is 5cm
So, What is the work required to stretch 5cm?
1 J of work for 6cm
x work for 5cm
So, by proportion method
1 : 6 :: x : 5
6 * x = 1 * 5
6x = 5
x = 5/6
= 0.83
So to stretch 36cm to 41cm we need 0.83 J of work
A baseball pitcher throws a fastball by spinning his arm at 27.7m/s. The ball has a mass of 0.700kg and experiences a net centripetal force of 625N. How long is the pitchers arm (the radius of the curve)?
In the historical sense, postmodern society is simply a society that occurs after the modern society. ... Many of the elements of a society like this are reactions to what the modern society stood for: industrialism, rapid urban expansion, and rejection of many past principles.
A barge is hauled along a straight-line section of canal by two horses harnessed to tow ropes and walking along the tow paths on
either side of the canal. Each horse pulls with a force of 839 N at an angle of 15° with the centerline of the canal. Find the sum of these
two forces on the barge.
answer in ___kN
Answer:
1.621 kN
Explanation:
Since each horse pulls with a force of 839 N at an angle of 15° with the centerline of the canal, the horizontal component of the force due to the first horse along the canal is F= 839cos15° N and its vertical component is F' = 839sin15° N(it is positive since it is perpendicular to the centerline of the canal and points upwards).
The horizontal component of the force due to the second horse along the canal is f = 839cos15° N and its vertical component is f' = -839sin15° N (it is negative since it is perpendicular to the centerline of the canal and points downwards).
So, the resultant horizontal component of force R = F + f = 839cos15° N + 839cos15° N = 2(839cos15°) N = 2(839 × 0.9659) = 2 × 810.412 = 1620.82 N
So, the resultant vertical component of force R' = F' + f' = 839sin15° N + (-839sin15° N) = 839sin15° N - 839sin15° N = 0 N
The magnitude of the resultant force which is the sum of the two forces is R" = √(R² + R'²)
= √(R² + 0²) (since R' = 0)
= √R²
= R
= 1620.82 N
= 1.62082 kN
≅ 1.621 kN
So, the sum of these two forces on the barge is 1.621 kN
Place each description under the correct theory
Gravity is an attractive force.
Universal Law of Gravitation
General Theory of Relativity
Mass and distance affect force.
Time and space are absolute,
Time and space are relative.
Gravity is due to space-time curving.
Mass affects space-time curving.
Answer:
1) Law of Universal Gravitation Gravity is an attractive force
5) General relativity Gravity is due to the curvature of spacetime
Explanation:
In this exercise you are asked to relate the correct theory and its explanation
Theory Explanation
1) Law of Universal Gravitation Gravity is an attractive force
2) Law of universal gravitation Mass and distance affect force
3) Classical mechanics time and space are absolute
4) Special relativity Time and space are relative
5) General relativity Gravity is due to the curvature of
spacetime
6) General relativity Mass affects the curvature of space - time
Answer:
Explanation:
edge2022
The thermal efficiency (in %) of a system that undergoes a power cycle while receiving 1000 kJ of energy by heat transfer from a hot reservoir at 1000 K and discharging 500 kJ of energy by heat transfer to a cold reservoir at 400 K is:
Answer:
η = 0.5 = 50%
Explanation:
The efficiency of the power cycle is given by the following formula:
[tex]\eta = \frac{W}{Q_1}\\\\\eta = \frac{Q_1-Q_2}{Q_1}[/tex]
where,
where,
η = efficiency = ?
Q₁ = heat received from hot reservoir = 1000 KJ
Q₂ = heat discharged to cold reservoir = 500 KJ
Therefore,
[tex]\eta = \frac{1000\ KJ-500\ KJ}{1000\ KJ}[/tex]
η = 0.5 = 50%
The mass of a hot-air balloon and its occupants is 381 kg (excluding the hot air inside the balloon). The air outside the balloon has a pressure of 1.01 x 105 Pa and a density of 1.29 kg/m3. To lift off, the air inside the balloon is heated. The volume of the heated balloon is 480 m3. The pressure of the heated air remains the same as that of the outside air. To what temperature in kelvins must the air be heated so that the balloon just lifts off
Answer:
In order to lift off the ground, the air in the balloon must be heated to 710.26 K
Explanation:
Given the data in the question;
P = 1.01 × 10⁵ Pa
V = 480 m³
ρ = 1.29 kg/m³
M = 381 kg
we know that; R = 8.31 J/mol.K and the molecular mass of air μ = 29 × 10⁻³ kg/mol
let F represent the force acting upward.
Now in a condition where the hot air balloon is just about to take off;
F - Mg - m[tex]_g[/tex]g = 0
where M is the mass of the balloon and its occupants, m[tex]_g[/tex] is the mass of the hot gas inside the balloon.
the force acting upward F = Vρg
so
Vρg - Mg - m[tex]_g[/tex]g = 0
solve for m[tex]_g[/tex]
m[tex]_g[/tex] = ( Vρg - Mg ) / g
m[tex]_g[/tex] = Vρg/g - Mg/g
m[tex]_g[/tex] = ρV - M ------- let this be equation 1
Now, from the ideal gas law, PV = nRT
we know that number of moles n = m[tex]_g[/tex] / μ
where μ is the molecular mass of air
so
PV = (m[tex]_g[/tex]/μ)RT
solve for T
μPV = m[tex]_g[/tex]RT
T = μPV / m[tex]_g[/tex]R -------- let this be equation 2
from equation 1 and 2
T = μPV / (ρV - M)R
so we substitute in our values;
P = 1.01 × 10⁵ Pa
V = 480 m³
ρ = 1.29 kg/m³
M = 381 kg
we know that; R = 8.31 J/mol.K and the molecular mass of air μ = 29 × 10⁻³ kg/mol
T = [ (29 × 10⁻³) × (1.01 × 10⁵) × 480 ] / [ (( 1.29 × 480 ) - 381)8.31 ]
T = 1405920 / 1979.442
T = 710.26 K
Therefore, In order to lift off the ground, the air in the balloon must be heated to 710.26 K
The temperature required for the air to be heated is 710.26 K.
Given data:
The mass of a hot air-balloon is, m = 381 kg.
The pressure of air outside the balloon is, [tex]P = 1.01 \times 10^{5} \;\rm Pa[/tex].
The density of air is, [tex]\rho = 1.29 \;\rm kg/m^{3}[/tex].
The volume of heated balloon is, [tex]V = 480 \;\rm m^{3}[/tex].
The condition where the hot air balloon is just about to take off is as follows:
[tex]F-mg - m'g =0[/tex]
Here,
m' is the mass of hot gas inside the balloon and g is the gravitational acceleration and F is the force acting on the balloon in upward direction. And its value is,
[tex]F = V \times \rho \times g[/tex]
Solving as,
[tex](V \times \rho \times g)-mg - m'g =0\\\\ m'=(V \rho )-m[/tex]
Now, apply the ideal gas law as,
PV = nRT
here, R is the universal gas constant and n is the number of moles and its value is,
[tex]n=\dfrac{m'}{M}[/tex]
M is the molecular mass of gas. Solving as,
[tex]PV = \dfrac{m'}{M} \times R \times T\\\\\\T=\dfrac{P \times V\times M}{m'R}\\\\\\T=\dfrac{P \times V\times M}{(V \rho - m)R}[/tex]
Since, the standard value for the molecular mass of air is, [tex]M = 29 \times 10^{-3} \;\rm kg/mol[/tex]. Then solve for the temperature as,
[tex]T=\dfrac{(1.01 \times 10^{5}) \times 480\times 381}{(480 \times (1.29) - 381)8.31}\\\\\\T = 710.26 \;\rm K[/tex]
Thus, we can conclude that the temperature required for the air to be heated is 710.26 K.
Learn more about the ideal gas equation here:
https://brainly.com/question/18518493
Can an electron be diffracted? Can it exhibit interference?
Answer:
Yeah, it can be diffracted. Though it depends on a diffracting medium.
It must have some magnetic fields .
Forexample; X-ray diffraction where electrons are diffracted to the target filament.
A long, current-carrying solenoid with an air core has 1550 turns per meter of length and a radius of 0.0240 m. A coil of 200 turns is wrapped tightly around the outside of the solenoid, so it has virtually the same radius as the solenoid. What is the mutual inductance of this system
Answer:
[tex]M=7.05*10^{-4}[/tex]
Explanation:
From the question we are told that:
Coil one turns N_1=1550 Turns/m
Radius [tex]r=0.0240m[/tex]
Turns 2 [tex]N_2=200N[/tex]
Generally the equation for area is mathematically given by
[tex]A=\pi*r^2[/tex]
[tex]A=\pi*0.024^2[/tex]
[tex]A=\1.81*10^{-3} m^2[/tex]
Therefore
The mutual inductance of this system is
[tex]M=\mu*N_1*N_2*A[/tex]
[tex]M=(4 \pi*10^{-7})*1550*200*1.81*10^{-3}[/tex]
[tex]M=7.05*10^{-4}[/tex]
A possible means for making an airplane invisible to radar is to coat the plane with an antireflective polymer. If radar waves have a wavelength of 3.00 cm and the index of refraction of the polymer is n = 1.50, how thick would you make the coating?
Answer:
[tex]t=0.50cm[/tex]
Explanation:
From the question we are told that:
Wavelength [tex]\lamda=3c[/tex]m
Refraction Index [tex]n=1.50[/tex]
Generally the equation for Destructive interference for Normal incidence is mathematically given by
[tex]2nt=m(\frac{1}{2})\lambda[/tex]
Since Minimum Thickness occurs at
At [tex]m=0[/tex]
Therefore
[tex]t=\frac{\lambda}{2}[/tex]
[tex]t=\frac{3}{4(1.50)}[/tex]
[tex]t=0.50cm[/tex]
In a physics lab, light with a wavelength of 560 nm travels in air from a laser to a photocell in a time of 17.2 ns . When a slab of glass with a thickness of 0.810 m is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light a time of 20.8 ns to travel from the laser to the photocell.
Required:
What is the wavelength of the light in the glass?
Answer:
Distance traveled = 3 * 10E8 * 17.2 * 10E-9 = 5.16 m
.81 / 3 * 10E8 = 2.7 * 10E-9 normal time thru glass
(20.8 - 17.2) * E10-9 = 3.6 * 10E-9 additional time due to glass
c tg = c n ta where tg and ta are the times spent in glass and air
(Note you can also write Va = n Vg or D / ta = n D / tg)
n = tg / ta = 3.6 / 2.7 = 1.33 the index of refraction of the glass
Wavelength (air) = Wavelength (glass) * n
Wavelenght = 560 nm / 1.33 = 421 nm
A 1030 kg car has four 12.0 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles
Answer:
The required fraction is 0.023.
Explanation:
Given that
Mass of a car, m = 1030 kg
Mass of 4 wheels = 12 kg
We need to find the fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles.
The rotational kinetic energy due to four wheel is
[tex]=4\times \dfrac{1}{2}I\omega^2\\\\=4\times \dfrac{1}{2}\times \dfrac{1}{2}mR^2(\dfrac{v}{R})^2\\\\=mv^2[/tex]
Linear kinetic Energy of the car is:
[tex]=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times Mv^2[/tex]
Fraction,
[tex]f=\dfrac{mv^2}{\dfrac{1}{2}Mv^2}\\\\f=\dfrac{m}{\dfrac{1}{2}M}\\\\f=\dfrac{12}{\dfrac{1}{2}\times 1030}\\\\=0.023[/tex]
So, the required fraction is 0.023.
Object A has a mass m and a speed v, object B has a mass m/2 and a speed 4v, and object C has a mass 3m and a speed v/3. Rank the objects according to the magnitude of their momentum.
Required:
Rank from smallest to largest.
Answer:
Momentum of object A = Momentum of object C < momentum of B.
Explanation:
The momentum of an object is equal to the product of mass and velocity.
Object A has a mass m and a speed v. Its momentum is :
p = mv
Object B has a mass m/2 and a speed 4v. Its momentum is :
p = (m/2)×4v = 2mv
Object C has a mass 3m and a speed v/3. Its momentum is :
p = (3m)×(v/3) = mv
So,
Momentum of object A = Momentum of object C < momentum of B.
The mass is released from the top of the incline and slides down the incline. The maximum velocity (taken the instant before the mass reaches the bottom of the incline) is 1.06 m/s. What is the kinetic energy at that time
Answer:
0.28 J
Explanation:
Let the mass of the object is 0.5 kg
The maximum velocity of the object is 1.06 m/s.
We need to find the kinetic energy at that time. It is given by :
[tex]K=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times 0.5\times (1.06)^2\\\\K=0.28\ J[/tex]
So, the required kinetic energy is equal to 0.28 J.