Answer:
1. x + 4 = 9
Hint: the word 'sum' generally refers to addition.
2. 10a = 70
3. [tex]\frac{3}{4} t[/tex] = 15
4. [tex]\frac{1}{4} x[/tex] - 4 = 4
2•^4= ?
A) 1/16
B) 1/8
C) 1
Answer:
1/16.
Step-by-step explanation:
2^-4 = 1/2^4
= 1/16.
Tom swims a 1/2 kilometers every 1/4 hour. How far will he swim in one hour.
Answer:
2 kilometers
Step-by-step explanation:
every 1 kilometer is a 1/2 hour. double that and you get 2
a. 23 = -11 - 4x
b. 23 = -11 + (-4x)
C. 23 + 11 = -11 + (-4x) + 11
d. 23 + 11 = -11 + 11 +(-4x)
e. 34 = - 4x
f. 34/-4 = -4x/ -4
g. -8.5 = x
Which properties of equality justify steps c and f?
A.) addition property of equality; subtraction property of equality B.) addition property of equality; division property of equality C.) subtraction property of equality; multiplication property of equality D.) multiplication property of equality; division property of equality
Answer:
B.) addition property of equality; division property of equality
The police department in Madison, Connecticut, released the following numbers of calls for the different days of the week during a February that had 28 days: Monday (114); Tuesday (152); Wednesday (160); Thursday (164); Friday (179); Saturday (196); Sunday (130). Use a 0.01 significance level to test the claim that the different days of the week have the same frequencies of police calls. Is there anything notable about the observed frequencies
Answer:
different days of the week Do not have the same frequency.
Step-by-step explanation:
Given the data:
Observed values :
Monday (114); Tuesday (152); Wednesday (160); Thursday (164); Friday (179); Saturday (196); Sunday (130).
H0 : frequency are the same
H1 : frequency is not the same
Expected value is the same for all days:
Σ (observed values) * 1/ n
n = number of days in a week. = 7
Expected value = (114+152+160+164+179+196+130) / 7 = 156.428
χ² = Σ (observed - Expected)²/Expected
χ² = (11.508 + 0.125 + 0.082 + 0.366 + 3.257 + 10.01 + 4.465)
χ² = 29.813
The Pvalue(29.813, 6) ;
df = 7 - 1 = 6
The Pvalue(29.813, 6) = 0.000043
α = 0.01
Since, Pvalue < α ; Reject H0 ; and conclude that, different days of the week Do not have the same frequency.
Need help with this math
Answer:
first option : sqrt(26) + 6 units
Step-by-step explanation:
distance office to supermarket OS
OS² = (-7 - -2)² + (-5 - -6)² = (-7+2)² + (-5+6)² = (-5)² + 1² =
= 25 + 1 = 26
OS = sqrt(26)
distance supermarket to home SH
SH² = (-2 - 4)² + (-6 - -6)² = (-6)² + 0² = 36
SH = 6
so in total she travels sqrt(26) + 6 units
The probability that a person will develop the flu after getting a flu shot is 0.04. In a random sample of 100 people in a community who got a flu shot, what is the probability that 5 or more of the 100 people will get the flu
Answer:
0.3711 = 37.11% probability that 5 or more of the 100 people will get the flu
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they will develop the flu after getting the shot, or they will not. The probability of a person developing the flu after getting the shot is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
The probability that a person will develop the flu after getting a flu shot is 0.04.
This means that [tex]p = 0.04[/tex]
Random sample of 100 people:
This means that [tex]n = 100[/tex]
What is the probability that 5 or more of the 100 people will get the flu?
This is:
[tex]P(X \geq 5) = 1 - P(X < 5)[/tex]
In which
[tex]P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{100,0}.(0.04)^{0}.(0.96)^{100} = 0.0169[/tex]
[tex]P(X = 1) = C_{100,1}.(0.04)^{1}.(0.96)^{99} = 0.0703[/tex]
[tex]P(X = 2) = C_{100,2}.(0.04)^{2}.(0.96)^{98} = 0.1450[/tex]
[tex]P(X = 3) = C_{100,3}.(0.04)^{3}.(0.96)^{97} = 0.1973[/tex]
[tex]P(X = 4) = C_{100,4}.(0.04)^{4}.(0.96)^{96} = 0.1994[/tex]
Then
[tex]P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0169 + 0.0703 + 0.1450 + 0.1973 + 0.1994 = 0.6289[/tex]
[tex]P(X \geq 5) = 1 - P(X < 5) = 1 - 0.6289 = 0.3711[/tex]
0.3711 = 37.11% probability that 5 or more of the 100 people will get the flu
Geometry please someone help i cant fail this class
I’ll mark u plz help
Answer:
D is the answer
Step-by-step explanation:
all sides and angles are equal
hope it helps!! let me know if it does
please show me step by step how to simplify this equation
Answer:
1-x^2/x^3 - 1 = 1/x
Step-by-step explanation:
First rewrite x^3 as x^2 * x cancel x^2 in both numerator and denominator.
Write below
1 - 1/x - 1
Subtract
1 - 1 = 0
now simplify
1 -1 /x - 1 = 1/x
1/x = Answer
Can you Understand
help with this question pleaseee !
Answer:
Add equations A and C to eliminate y and add B and C to eliminate y
Step-by-step explanation:
From the equation given, we can see that the coefficient of y in A and C are alternating values 5 and -5 which cancels out on adding same for B and C. Hence t eliminate y, we will add B and C and A and C
Therefore the correct answer will be to eliminate add equations A and C to eliminate y and add B and C to eliminate y
write the following statement in symbolic mongo are delicious but expensive .
Step-by-step explanation:
let a=mangoes are delicious
b=mangoes are expensive
the symbolic form is a^b
PLEASE HELPP ITS AN EMERGENCY
Find the measure of angle A.
Which of the following is equivalent to the product below?
Square root 3 square root 21
I NEED HELP ILL GIVE BRAINLIEST
The equivalent of the products given = 3√7
Simplifying square rootsA perfect square root is said to be a number that gives rise to an integer when it's square root is carried out. Examples are √16, √9 which is 4 and 3 respectively.
√3 × √21
But √a ×√b = √ a×b
Find the prime factors which when multiplied would give 21 = 3 and 7.
Therefore,
[tex] \sqrt{3 \times 3 \times 7} [/tex]
[tex] \sqrt{9 \times 7} [/tex]
[tex] 3 \sqrt{7} [/tex]
Therefore, the equivalent of the products of √3 × √21 =
3√7
Learn more about perfect square roots here:
https://brainly.com/question/3617398
Can someone please answer these?
Answer:
t>-10
31>k
-4>h
f≥6.8
this is the answer
Find the volume of the figure. Express answers in terms of , then round to the nearest
whole number
Please help :)
Answer:
26244π in³
Step-by-step explanation:
Applying,
Voluem of a sphere
V = 4/3(πr³).......... Equation 1
Where r = radius of the sphere, π = pie
From the diagram,
Given: r = 54/2 = 27 in
Substitute these value in equation 1
V = 4/3(27³)(π)
V = 26244π in³
Hence the volume of the figure expressed in terms of π is 26244π in³
Which equation is a point slope form of the equation of this line?
Answer:
D.
Step-by-step explanation:
slope = m = rise/run = 2/1 = 2
The slope is 2.
Use point (-2, 1).
y - y_1 = m(x - x_1)
y - 1 = 2(x - (-2))
y - 1 = 2(x + 2)
Answer: D.
Two different businesses model their profits over 15 years, where x is the year, f(x) is the profits of a garden shop, and g(x) is the profits of a construction materials business. Use the data to determine which function is exponential, and use the table to justify your answer.
1. f(x) is exponential; an exponential function increases more slowly than a linear function.
2. f(x) is exponential; f(x) increased more overall than g(x).
3. g(x) is exponential; g(x) has a higher starting value and higher ending value.
4. g(x) is exponential; an exponential function increases faster than a linear function.
Hi there!
[tex]\large\boxed{\text{Choice 4}}[/tex]
We can look at each function, f(x) and g(x), to determine which is exponential.
Use slope formula: m = y2-y1/x2-x1
f(x) starts off with a slope at about $1800/year, but becomes about $1100/year.
g(x) starts off with a slope of about $1500/year, but becomes about $1874/year.
Thus, g(x) is exponential, because g(x)'s slope is increasing across the interval.
Log(4) 5 + log (4) ? =log(4) 35
Answer:
7
Log(4) 5 + log (4) 7 =log(4) 35
Step-by-step explanation:
We have two circles A and X. The radius and perimeter of the circle A are b and c respectively.
The radius and perimeter of the circle X are y and z respectively. Consider the following ratios
K=c/b and L=Z/y.
Which of the following statements is true? *
K>L
K
K=L
K=2L
Answer:
[tex]K = L[/tex]
Step-by-step explanation:
Given
Circle A
[tex]r = b[/tex] --- radius
[tex]p = c[/tex] ---- perimeter
Circle B
[tex]r = y[/tex] --- radius
[tex]p =z[/tex] --- perimeter
[tex]K = \frac{c}{b}[/tex]
[tex]L = \frac{z}{y}[/tex]
Required
Select the true option
The perimeter of a circle is:
[tex]Perimeter = 2\pi r[/tex] ------ the circumference
So, we have:
[tex]c = 2\pi b[/tex] --- circle A
[tex]z = 2\pi y[/tex] --- circle B
Calculate K
[tex]K = \frac{c}{b}[/tex]
[tex]K = \frac{2\pi b}{b}[/tex]
[tex]K = 2\pi[/tex]
Calculate L
[tex]L = \frac{z}{y}[/tex]
[tex]L = \frac{2\pi y}{y}[/tex]
[tex]L = 2\pi[/tex]
So, we have:
[tex]K = L = 2\pi[/tex]
What is the length of my
?
M
3x
X + 8
7639
630
N
¿
O
A. 8
B. 4
C. 16
a
D. 12
Answer:
The length of MN is 4
Choose B
Solve by graphing. Round each answer to the nearest tenth.
6x2 = −19x − 15
a: −2, 1.7
b: −1.7, −1.5
c: −1.5, 1.5
d: −1.5, 1.7
9514 1404 393
Answer:
b: -1.7, -1.5
Step-by-step explanation:
The graph is shown below. We have annotated the x-intercepts for the equivalent equation ...
6x^2 +19x +15 = 0
Test the claim that the proportion of men who own cats is significantly different than the proportion of women who own cats at the 0.2 significance level.
Answer:
Test the claim that the proportion of men who own cats is significantly different than the proportion of women who own cats at the 0.2 significance level.
The null and alternative hypothesis would be: H 0 : μ M = μ F H 1 : μ M < μ F H 0 : μ M = μ F H 1 : μ M > μ F H 0 : p M = p F H 1 : p M ≠ p F H 0 : p M = p F H 1 : p M < p F H 0 : p M = p F H 1 : p M > p F H 0 : μ M = μ F H 1 : μ M ≠ μ F
The test is:
right-tailed
left-tailed
two-tailed
Based on a sample of 40 men, 25%Based on a sample of 40 men, 25% owned cats
Based on a sample of 40 women, 40% owned cats
The test statistic is:
The p-value is:
Based on this we:
Reject the null hypothesis
Fail to reject the null hypothesis
Coliform bacteria are randomly distributed in a river at an average concentration of 1 per 20cc of water. What is the variance of the number of Coliform bacteria in a sample of 40cc of water
Answer:
[tex]Var = 1.9[/tex]
Step-by-step explanation:
Given
[tex]p = \frac{1}{20}[/tex] i.e. 1 per 20cc of water
[tex]n = 40[/tex] -- sample size
Required
The variance
This is calculated using:
[tex]Var = np(1 - p)[/tex]
So, we have:
[tex]Var = 40 * \frac{1}{20} * (1 - \frac{1}{20})[/tex]
[tex]Var = 40 * \frac{1}{20} * \frac{19}{20}[/tex]
[tex]Var = 2 * \frac{19}{20}[/tex]
[tex]Var = \frac{38}{20}[/tex]
[tex]Var = 1.9[/tex]
Which division problem does the diagram below best illustrate?
A diagram with 8 ovals containing 4 squares each.
O 16 divided by 4 = 4
O 32 divided by 4 = 8
O 36 divided by 4 = 9
O 8 divided by 2 = 4
Answer:
The answer is 32 divided by 4
Step-by-step explanation:
Because in each box there is 4. There are 8 ovals all together. So 8×4, you get 32 and divide it by the number of squares in an oval which is 4
Answer:
the answer is 32 divided by 4=8
Step-by-step explanation:
because when you look at the ovals there's eight ovals and in side there's four squares..
HOPE THIS HELPS!!!!!
Solve the system using elimination. x – y = –5 3x + y = 1
(–1, 4)
(–1, 2)
(2, –2)
(–3, 4)
Answer:
(–1,4)
Step-by-step explanation:
x – y = –5
3x + y = 1
You omit Ys due to their positive and negative signs and you got
4x = –4===> x= –1
and now place –1 inside the upper linear equation and there you have the Y, look
–1 – Y= –5===> –Y= –4===> Y = 4
(–1,4)
If the angles (4x + 4)° and (6x – 4)° are the supplementary angles, find the value of x.
Answer:
18
Step-by-step explanation:
Supplementary angles means sum of angles is 180.
4x + 4 + 6x - 4 = 180
4x + 6x + 4 - 4 = 180
10x = 180
x = 180 / 10
x = 18
Answer:
x=18 degree
Step-by-step explanation:
If they are supplementary angles, then their sum = 180 degree
4x+4 + 6x-4 =180
4x+6x + 4-4 = 180
10x = 180
x=180/10
x=18
marking brainliest for a simple math problem
Answer:
B. 88
Step-by-step explanation:
the total data = 1+2+4+5 = 12
the median is (a6+a7) /2
a6 = 87, a7 = 89
so, the median = (87+89)/2 = 88
Answer:
B. 88
--
the median is (a6+a7) /2
a6 = 87, a7 = 89
so, the median =[tex]\frac{87+89}{2}[/tex]= 88
The time spent waiting in the line is approximately normally distributed. The mean waiting time is 6 minutes and the variance of the waiting time is 9. Find the probability that a person will wait for more than 9 minutes.
Answer:
0.1587 = 15.87% probability that a person will wait for more than 9 minutes.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean waiting time is 6 minutes and the variance of the waiting time is 9.
This means that [tex]\mu = 6, \sigma = \sqrt{9} = 3[/tex]
Find the probability that a person will wait for more than 9 minutes.
This is 1 subtracted by the p-value of Z when X = 9. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{9 - 6}{3}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a p-value of 0.8413.
1 - 0.8413 = 0.1587
0.1587 = 15.87% probability that a person will wait for more than 9 minutes.
if side of square is 4.05 find its area
Answer:
A
≈
16.4
please give brain listwhat is the slope of a line parallel to the line whose equation is 2x+5y=10
Answer:
1. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -1