Balance the following chemical equation.
CCl4 -> ___ C+ ___ Cl2
Answer:
Explanation:
CCl4 => C + 2Cl2
Si enfriamos mercurio de 100C. Calcular la cantidad de calor que se debe restar sabiendo que la masa de mercurio es de 1800gr
Answer:
I do not speak Spanish.
Explanation:
Which statement is true with respect to standard reduction potentials?
SRP values that are greater than zero always represent a reduction reaction.
SRP values that are less than zero always represent a reduction reaction.
Half-reactions with SRP values greater than zero are spontaneous.
Half-reactions with SRP values greater than zero are nonspontaneous.
Answer:
C). Half-reactions with SRP values greater than zero are spontaneous.
Explanation:
SRPs or Standard Reduction Potentials are characterized as the ability of a probable distinction among the anode and cathode of a usual/standard cell. It aims to examine the capacity of chemicals to reduce themselves.
The third statement asserts a true claim regarding the SRPs(Standard Reduction Potentials) that the 'half-reactions which take place with the SRP possesses the values higher than zero and they are unconstrained.' The other statements are incorrect as they either show the estimation of SRPs more than 0 or display them as being restricted. Thus, option C is the correct answer.
Which of the following are examples of physical properties of ethanol? Select all that apply.
The boiling point is 78.37°C
It is a clear, colorless liquid
It is flammable
It is a liquid at room temperature
us
Which of the following is a chemical property?
A. Hardness
B. Flammability
C. Malleability
D. Melting point
Reset Selection
When butane reacts with Br2 in the presence of Cl2, both brominated and chlorinated products are obtained. Under such conditions, the usual selectivity of bromination is not observed. In other words, the ratio of 2-bromobutane to 1-bromobutane is very similar to the ratio of 2-chlorobutane to 1-chlorobutane. Can you offer and explanation as to why we do not observe the normal selectivity expected for bromination
Answer:
Bromine radical formation is carried out in the presence of Br₂ and Cl₂ causing the normal selectivity not to be observed ( this causes the difference in activation energy to be reduced )
Explanation:
Why the normal selectivity expected for bromination is not observed
On the basis of selectivity and applying the Arrhenius equation the greater the difference between the activation energies the more the selectivity.
as seen in the formation of primary and secondary radicals in the Bromine radical formation. this difference is caused mainly by the propagation step ( exothermic ) . But the main reason why the the usual selectivity of bromination is not observed is because it Bromine radical formation is carried out in the presence of Br₂ and Cl₂ ( this causes the difference in activation energy to be reduced )
Identify the solute and solvent in each solution:
a. 6mL of ethanol and 35mL of water
b. 300 g of water containing 8g of NaHCO3
c. 0.005LofCO2and2LofO2
Answer:
a. 6mL of ethanol and 35mL of water: the solute is ethanol (smallest volume) and the solvent is water (greater volume).
b. 300 g of water containing 8g of NaHCO3: the solute is NaHCO3 (smallest mass) and the solvent is water (greater mass).
c. 0.005L of CO2 and 2L of O2: the solute is CO2 (smallest volume) and the solvent is O2 (greater volume).
Explanation:
Hello there!
In this case, according to the given problem, it turns out possible for us to solve these questions by bearing to mind the fact that in a solution, we can find two substances, solute and solvent, whereas the former is in a smaller proportion in comparison to the latter; in such a way, we infer the following:
a. 6mL of ethanol and 35mL of water: the solute is ethanol (smallest volume) and the solvent is water (greater volume).
b. 300 g of water containing 8g of NaHCO3: the solute is NaHCO3 (smallest mass) and the solvent is water (greater mass).
c. 0.005L of CO2 and 2L of O2: the solute is CO2 (smallest volume) and the solvent is O2 (greater volume).
Regards!
In order to promote the common ion effect, the concentration of the common ion must first: _____________
a. increase
b. decrease
c. be equal to its equilibrium value
d. depends on the equilibrium
Answer:
a. increase.
Explanation:
Hello!
In this case, according to the given information, it turns out possible for us to tell that the common ion effect decreases the solubility of the ionic solid by firstly increasing the concentration of the common ion, which is further solved for the solubility in order to evidence the aforementioned decrease.
As an example, we can consider the solubility equilibrium for silver chloride:
[tex]Ksp=[Ag^+][Cl^-][/tex]
Which goes to:
[tex]Ksp=s^2[/tex]
Whereas s is the solubility to be solved for. However, when a silver- or chloride-containing solution is added, say 0.1 sodium chloride, the equilibrium expression changes to:
[tex]Ksp=(s)(s+0.1)[/tex]
Which turns out into a smaller value for s.
Regards!
2.50 L of 0.700 M phosphoric acid reacts with 5.25 moles of sodium hydroxide. How many moles of hydrogen ions will completely neutralize the moles of hydroxide ions present in this amount of sodium hydroxide? a) 0.583 b) 1.75 c) 3.00 d) 15.75 e) 5.25
Answer:
5.25 moles of protons. Option e
Explanation:
Reaction between phosphoric acid and sodium hydroxide is neutralization.
We can also say, we have an acid base equilibrium right here:
H₃PO₄ + 3NaOH → Na₃PO₄ + 3H₂O
Initially we have 5.25 moles of base.
We have data from the acid, to state its moles:
M = mol/L, so mol = M . L
mol = 1.75 moles of acid
If we think in the acid we know:
H₃PO₄ → 3H⁺ + PO₄⁻³
We know that 1 mol of acid can give 3 moles of protons (hydrogen ions)
If we have 1.75 moles of acid, we may have
(1.75 . 3) /1 = 5.25 moles of protons
These moles will be neutralized by the 5.25 moles of base
H₃O⁺ + OH⁻ ⇄ 2H₂O Kw
In a titration of a weak acid and a strong base, we have a basic pH
5. A beam of photons with a minimum energy of 222 kJ/mol can eject electrons from a potassium surface. Estimate the range of wavelengths of light that can be used to cause this phenomenon. Show your calculations with units of measure (dimensional analysis) and briefly explain your reasoning.
Answer: The range of wavelengths of light that can be used to cause given phenomenon is [tex]8.953 \times 10^{21} m[/tex].
Explanation:
Given: 222 kJ/mol (1 kJ = 1000 J) = 222000 J
Formula used is as follows.
[tex]E = \frac{hc}{\lambda}[/tex]
where,
E = energy
h = Planck's constant = [tex]6.625 \times 10^{-25} Js[/tex]
c = speed of light = [tex]3 \times 10^{8} m/s[/tex]
Substitute the values into above formula as follows.
[tex]E = \frac{hc}{\lambda}\\222000 J = \frac{6.625 \times 10^{-34}Js \times 3 \times 10^{8} m/s}{\lambda}\\\lambda = 8.953 \times 10^{21} m[/tex]
Thus, we can conclude that the range of wavelengths of light that can be used to cause given phenomenon is [tex]8.953 \times 10^{21} m[/tex].
Solutions of Cu2+ turn blue litmus red because of the equilibrium: Cu(H2O)62+(aq) + H2O(l) ↔ Cu(H2O)5(OH)+(aq) + H3O+(aq) for which Ka = 1.0 x 10-8. Calculate the pH of 0.10 M Cu(NO3)2(aq).
Answer: The pH of 0.10 M [tex]Cu(NO_{3})_{2}(aq)[/tex] is 4.49.
Explanation:
Given: Initial concentration of [tex]Cu(H_{2}O)^{2+}_{6}[/tex] = 0.10 M
[tex]K_{a} = 1.0 \times 10^{-8}[/tex]
Let us assume that amount of [tex]Cu(H_{2}O)^{2+}_{6}[/tex] dissociates is x. So, ICE table for dissociation of [tex]Cu(H_{2}O)^{2+}_{6}[/tex] is as follows.
[tex]Cu(H_{2}O)^{2+}_{6} \rightleftharpoons [Cu(H_{2}O)_{5}(OH)]^{+} + H_{3}O^{+}[/tex]
Initial: 0.10 M 0 0
Change: -x +x +x
Equilibrium: (0.10 - x) M x x
As the value of [tex]K_{a}[/tex] is very small. So, it is assumed that the compound will dissociate very less. Hence, x << 0.10 M.
And, (0.10 - x) will be approximately equal to 0.10 M.
The expression for [tex]K_{a}[/tex] value is as follows.
[tex]K_{a} = \frac{[Cu(H_{2}O)^{2+}_{6}][H_{3}O^{+}]}{[Cu(H_{2}O)^{2+}_{6}]}\\1.0 \times 10^{-8} = \frac{x \times x}{0.10}\\x = 3.2 \times 10^{-5}[/tex]
Hence, [tex][H_{3}O^{+}] = 3.2 \times 10^{-5}[/tex]
Formula to calculate pH is as follows.
[tex]pH = -log [H^{+}][/tex]
Substitute the values into above formula as follows.
[tex]pH = -log [H^{+}]\\= - log (3.2 \times 10^{-5})\\= 4.49[/tex]
Thus, we can conclude that the pH of 0.10 M [tex]Cu(NO_{3})_{2}(aq)[/tex] is 4.49.
An endothermic reaction will start when the required
energy is received from the environment or solution.
AH
activation
thermal
kinetic
Answer:
A: ΔH
Explanation:
Endothermic reactions are this that occur as a result of absorption of heat energy from the surroundings by the reactants to form new products.
Thus, we can say it is one with an increase in enthalpy (ΔH) of the system.
Thus, option A is correct.
When perchloric acid (HClO4) reacts with tetraphosphorus decaoxide, phosphoric acid and dichlorine heptaoxide are produced.
a. Trei
b. False
Answer:
я не знаю ответа :(
Explanation:
DATA SHEET p 45. TRIAL 1 TRIAL 2 1. Mass of the ground pretzel 1.00 gram 1.03 g 2. Initial volume of the AgNO3 solution 0.00 mL 9.10 mL 3. Final volume of the AgNO3 solution 9.10 mL 17.25 mL 4. Volume of AgNO3 solution used 9.10 mL 8.15 mL Line 3 – Line 2 5. Volume of AgNO3 solution in liters _____ L _____ L 6. Molarity of AgNO3 solution 0.01 M 0.01 M (given) 7. Number of moles of AgNO3 ______ mol _____ mol (Line 5 × Line 6) 8. Number of mol of NaCl present in pretzel ______ mol _____ mol (Line 7) number of mol NaCl = number of mol AgNO3 9. Mass of NaCl present in the titrated sample ______ gram _____ gram (Line 8) × 58.5 g/mol
Answer:
1. 1.00 gm
2. 50 ml
3. 38.93 ml
4. 11.07 ml
5. 0.01107 L
6. 0.010 moles / L
7. 0.0001107 moles
8. 0.0001107 moles
9. 0.00647042 grams
Explanation:
Silver nitrate can react with various compounds to form different products. The weight of products may be different from the original solution introduced due to combustion reaction, as heat energy is released during the chemical process.
How are all atoms similar?
Answer:
Atoms are similar in the way that their nuclei contain only protons and neutrons.
Answer:
All things are made of atoms, and all atoms are made of the same three basic particles - protons, neutrons, and electrons. But, all atoms are not the same. The difference in the number of protons and neutrons in atoms account for many of the different properties of elements.
I hope this helps :)
Tema: Métodos de Separação de Misturas – Homogêneas e Heterogêneas;
1. Capa (0,5 ponto)
2. Índice ou Sumário (0,5 ponto)
3. Texto do trabalho
a) Introdução (1,0 ponto)
b) Objetivos (0,5 ponto)
c) Método (0,5 ponto)
d) Desenvolvimento: Fundamentação Teórica (5,0 pontos)
e) Conclusão (1,0 ponto)
4. Bibliografia (1,0 ponto)
Answer:
fjskeowkcnekvo Dee five votes come vote for dog even r
the carbon tetrachloride molecule CCI 4 is
Answer:
is a nonpolar molecule with polar bonds
Acid-catalyzed hydrolysis of a nitrile to give a carboxylic acid occurs by initial protonation of the nitrogen atom, followed by nucleophilic addition of water. Draw curved arrows to show the movement of electrons in this step of the reaction mechanism.
Answer:
See explanation and image attached
Explanation:
The acid-catalyzed hydrolysis of a nitrile to give a carboxylic acid occurs by initial protonation of the nitrogen atom. This step is shown in the image attached.
The next step is the nucleophilic addition of water. The task is to show the movement of electrons in this step of the reaction mechanism. This was clearly shown in the image attached to this answer.
0.50 g of hydrogen chloride (HCl) is dissolved in water to make 4.0 L of solution. What is the pH of the resulting hydrochloric acid solution
Explanation:
Given the mass of HCl is ---- 0.50 g
The volume of solution is --- 4.0 L
To determine the pH of the resulting solution, follow the below-shown procedure:
1. Calculate the number of moles of HCl given by using the formula:
[tex]number of moles of a substance=\frac{given mass of the substance}{its molecular mass}[/tex]
2. Calculate the molarity of HCl.
3. Calculate pH of the solution using the formula:
[tex]pH=-log[H^+][/tex]
Since HCl is a strong acid, it undergoes complete ionization when dissolved in water.
[tex]HCl(aq)->H^+(aq)+Cl^-(aq)[/tex]
Thus, [tex][HCl]=[H^+][/tex]
Calculation:
1. Number of moles of HCl given:
[tex]number of moles of a substance=\frac{given mass of the substance}{its molecular mass}\\=0.50g/36.5g/mol\\=0.0137mol[/tex]
2. Concentration of HCl:
[tex]Molarity of HCl=\frac{number of moles of HCl}{its molar mass}\\=\frac{0.0137 mol}{4.0 L} \\= 0.003425 M[/tex]
3. pH of the solution:
[tex]pH=-log[H^+]\\=-log(0.003425)\\=2.47[/tex]
Hence, pH of the given solution is 2.47.
write balanced half-reactions describing the oxidation and reduction that happen in this reaction 2Fe(s)+3Pb(NO3)2(aq)=3Pb(s)+2Fe(NO3)3(aq)
Answer:
Oxidation half-reaction: 2 Fe (s) ----> 2 Fe³+ (aq) + 6e-
Reduction half-reaction: 3 Pb²+ (aq) + 6 e- ----> 3 Pb (s)
Explanation:
A redox reaction reaction is one in which oxidation and reduction occur simultaneously and to the same extent.
Oxidation involves a loss of electron, hence, a positive increase in the oxidation number of the atom or ion. The oxidation half-reaction is as follows:
2 Fe (s) ----> 2 Fe³+ (aq)
The metallic element iron, Fe , having an oxidation number of zero, loses three electrons to form the Fe³+ ion with a charge of +3. Since each atom loses three electrons each, The number of moles of electrons lost is six.
2 Fe (s) ----> 2 Fe³+ (aq) + 6e-
Reduction involves a gain of electrons, hence, a decrease in the oxidation number of the atom or ion. The reduction half-reaction is given below:
3 Pb²+ (aq) ---> 3 Pb (s)
The lead (ii) ion, Pb²+ having a charge of +2 gains two electrons each to become the neutral metallic lead atom, Pb, with oxidation number of zero. Since 3 moles of Pb²+ are reacting, 6 moles of electrons are gained.
3 Pb²+ (aq) + 6 e- ----> 3 Pb (s)
what will the time for half life of the first order reaction?
Answer:
The half-life of a reaction is the time required for the reactant concentration to decrease to one-half its initial value. The half-life of a first-order reaction is a constant that is related to the rate constant for the reaction: t1/2 = 0.693/k. Radioactive decay reactions are first-order reactions.
Explanation:
The half-life of a reaction is the time required for the reactant concentration to decrease to one-half its initial value. The half-life of a first-order reaction is a constant that is related to the rate constant for the reaction: t1/2 = 0.693/k. Radioactive decay reactions are first-order reactions.
In the process of preparing liquid air for fractional distillation, one fraction will be separated as a solid. What is the chemical name of this fraction?
Answer:
carbon dioxide CO₂
Explanation:
Each gas has a characteristic boiling point. You can separate a random sample of gases by gradually cooling the sample until each component gas liquifies. Some compounds, such as CO₂ never liquify. Instead, they turn directly into solids.
The fraction that will be separated as a solid in the process of liquefaction of air is carbon dioxide.
What is sublimation?
Sublimation is the process of changing the material from its solid to gaseous form without it being liquid, according to physics. An illustration is the evaporation of dry ice, which is frozen carbon dioxide, at typical atmospheric pressure and temperature. Vapour pressure and temperature correlations cause the phenomena.
Food is freeze-dried to preserve it by sublimating water from it while it is frozen under a strong vacuum. Phase is a term used in thermodynamics to describe an amount of matter that is chemically and physically uniform or homogeneous, can be mechanically isolated from a nonhomogeneous mixture, and may consist of a single material or a combination of substances.
The three basic phases of matter are solid, liquid, and gas (vapor), however additional phases, including crystalline, colloid, glassy, amorphous, and plasma, are thought to exist.
Therefore, during the liquefaction of air, the gas that will be separated as a solid is carbon dioxide.
Read more about sublimation, here
https://brainly.com/question/9967928
#SPJ2
Bond length is the distance between the centers of two bonded atoms. On the potential energy curve, the bond length is the internuclear distance between the two atoms when the potential energy of the system reaches its lowest value.
a. True
b. False
Answer:
True
Explanation:
When two atoms are at infinite distance from each other, the both atoms posses high energy.
However, as they begin to approach each other, the distance between them gradually decreases and so does their energy.
A point is eventually reached when the potential energy curve reaches its minimum value. The internuclear distance between the two atoms at this point is called the bond length of the system.
Identify the oxidation half-reaction for this reaction:
Fe(s) + 2HCl(aq) → FeCl2(aq) + H2(g)
A. Fe2+ + 2e → Fe(s)
O B. H2(g) → 2H+ + 2e
O C. Fe(s) → Fe2+ + 2e
O D. 2H+ + 2e → H2(9)
Answer:
Fe(s)->Fe2+2e-
Explanation:
A.p.e.x
The oxidation half-reaction for the given reaction is Fe(s) → Fe²⁺ + 2e⁻ Hence, Option (C) is correct
What is Oxidation reaction ?Oxidation reaction is a chemical reaction which can be described as follows ;
Addition of oxygen Removal of hydrogen Loss of ElectronAddition of electronegative atomRemoval of Electropositive elementIn the given reaction ;
Fe(s) + 2HCl(aq) → FeCl₂(aq) + H₂(g)
Fe at RHS got converted to Fe²⁺ state at LHS which shows the gain of electron by Fe with in the reaction.
Therefore,
The oxidation half-reaction for the given reaction is Fe(s) → Fe²⁺ + 2e⁻ Hence, Option (C) is correct
Learn More about redox reaction here ;
https://brainly.com/question/13978139
#SPJ2
Write the symbol for every chemical element that has atomic number greater than 70 and atomic mass less than 185.2
Answer:
HF...Ta... W....Lu...
What is the correct order for the reactions that produce the following transformation. a. (1) H2/Lindlar (2) CH3CO2OH b. (1) H2/Lindlar (2) O3, Zn, HCl c. (1) H2/Pd (2) CH3CO2OH d. (1) Na, NH3 (2) CH3CO2OH
Answer:
Explanation:
Can you provide a picture? I can outline the reactions though. a) will make a Z double bond from a triple bond and then peroxyacid can do epoxidation. b) will make the Z double bond then ozonolysis to double bond will create to aldehyde compounds. c) is essentially useless unless there is a ketone or aldehyde in the compound already since H2/Pd will fully reduce the alkyne (which I am assuming is present) and so the peroxyacid can't do epoxidation and can only do baeyer villiger oxidation, and d) reduces the alkyne to an E alkene and then do epoxidation to give an epoxide (with trans steroechemistry)
PLEASE HELP ASAP MOLES TO MOLECULES
Answer:
4.77mol is the correct answer
When 4.41g of phosphoric acid (H3PO4) react with 9.25g of barium hydroxide, water and insoluble barium phosphate form. [T/I-7] a. Write and balance the chemical equation.
Answer:
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Explanation:
Let's consider the unbalanced equation that occurs when phosphoric acid reacts with barium hydroxide to form water and barium phosphate. This is a neutralization reaction.
H₃PO₄(aq) + Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
We will balance it using the trial and error method.
First, we will balance Ba atoms by multiplying Ba(OH)₂ by 3 and P atoms by multiplying H₃PO₄ by 2.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
Finally, we will get the balanced equation by multiplying H₂O by 6.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
During the postabsorptive state, metabolism adjusts to a catabolic state.
a. True
b. False
Answer:
The postabsorptive state (also called the fasting state) occurs when the food is already digested and absorbed, and it usually occurs overnight, when you sleep (if you skip meals for some days, you will enter in this state).
The catabolic state is the metabolic breakdown of molecules into simpler ones, releasing energy (heat) and utilizable resources.
Now, when you are in a postabsorptive state, the glucose levels start to drop, then the body starts to depend on the glycogen stores, which are catabolized into glucose, this is defined as the start of the postabsorptive state.
So yes, as the postabsorptive states, catabolic processes start to happen, so the statement is true.
A gas mixture, with a total pressure of 300. torr, consists of equal masses of Ne (atomic weight 20.) and Ar (atomic weight 40.). What is the partial pressure of Ar, in torr
Answer:
The partial pressure will be "100 torr".
Explanation:
Given:
[tex]P_{Ar} = 300 \ torr[/tex]
By assuming Ar and Ne having 50 gm each, we get
mol of Ne = [tex]\frac{50}{20}[/tex]
= [tex]2.5 \ mol[/tex]
mol of Ar = [tex]\frac{50}{40}[/tex]
= [tex]1.25 \ mol[/tex]
now,
[tex]n_T= mol.A_r+mol.N_e[/tex]
[tex]=1.25+2.5[/tex]
[tex]=3.75[/tex]
then,
[tex]X_{Ar}=\frac{n_{Ar}}{n_T}[/tex]
[tex]=\frac{1.25}{3.75}[/tex]
[tex]=0.33[/tex]
hence,
The partial pressure of Ar will be:
⇒ [tex]P_{Ar} = P_T\times X_{AT}[/tex]
By substituting the values, we get
[tex]=300\times 0.33[/tex]
[tex]=100 \ torr[/tex]
The partial pressure of Ar in the mixture is 99.9 torr
Let the mass of both gas be 10 g
Next, we shall determine mole of each gas.
For Ne:Mass = 10 g
Molar mass of Ne = 20 g/mol
Mole of Ne =?Mole = mass / molar mass
Mole of Ne = 10 / 20
Mole of Ne = 0.5 mole For Ar:Mass = 10 g
Molar mass of Ar = 40 g/mol
Mole of Ar =?Mole = mass / molar mass
Mole of Ar = 10 / 40
Mole of Ar = 0.25 moleNext, we shall determine the mole fraction of Ar
Mole of Ne = 0.5 mole
Mole of Ar = 0.25 mole
Total mole = 0.5 + 0.25 = 0.75 mole
Mole fraction of Ar =?[tex]mole \: fraction \: = \frac{mole}{total \: mole} \\ \\ mole \: fraction \: of \:Ar = \frac{0.25}{0.75} \\ \\ mole \: fraction \: of \:Ar = 0.333 \\ \\ [/tex]
Finally, we shall determine the partial pressure of Ar
Mole fraction of Ar = 0.333
Total pressure = 300 torr
Partial pressure of Ar =?Partial pressure = mole fraction × total pressure
Partial pressure of Ar = 0.333 × 300
Partial pressure of Ar = 99.9 torrLearn more on partial pressure: https://brainly.com/question/15577259