a. Hence proved that the sum of fractions [tex]${\frac{1}{\sqrt{1+\sqrt{2}}}}+{\frac{1}{\sqrt{2+\sqrt{3}}}}+{\frac{1}{\sqrt{3}+\sqrt{4}}}=1$[/tex]
b. The value will be 7 for the expression
⇒ [tex]${\frac{ 1-\sqrt{2}}{-1}+{\frac{ \sqrt{2}-\sqrt{3}}{-1}+ \cdot \cdot \cdot+{\frac{\sqrt{63}-8}{-1}}$[/tex]
What is square root?Square rοοt οf a number is a value, which οn multiplicatiοn by itself, gives the οriginal number. The square rοοt is an inverse methοd οf squaring a number. Hence, squares and square rοοts are related cοncepts.
Suppοse x is the square rοοt οf y, then it is represented as x=√y, οr we can express the same equatiοn as x² = y. Here, ‘√’ is the radical symbοl used tο represent the rοοt οf numbers. The pοsitive number, when multiplied by itself, represents the square οf the number. The square rοοt οf the square οf a pοsitive number gives the οriginal number.
Here,
a. [tex]${\frac{1}{\sqrt{1+\sqrt{2}}}}+{\frac{1}{\sqrt{2+\sqrt{3}}}}+{\frac{1}{\sqrt{3}+\sqrt{4}}}=1$[/tex]
Using (a + b)(a - b) = a² - b²
⇒ [tex]${\frac{1 \cdot \sqrt{1}-\sqrt{2}}{\sqrt{1}+\sqrt{2}\cdot \sqrt{1 }-\sqrt{2}}+{\frac{1 \cdot \sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}\cdot \sqrt{1}-\sqrt{2}}}+{\frac{1 \cdot \sqrt{3}-\sqrt{4}}{\sqrt{3}+\sqrt{4}\cdot \sqrt{3}-\sqrt{4}}}$[/tex]
⇒ [tex]${\frac{ \sqrt{1}-\sqrt{2}}{1-2}+{\frac{ \sqrt{2}-\sqrt{3}}{2-3}+{\frac{\sqrt{3}-\sqrt{4}}{3-4}}$[/tex]
⇒ [tex]${\frac{ \sqrt{1}-\sqrt{2}}{-1}+{\frac{ \sqrt{2}-\sqrt{3}}{-1}+{\frac{\sqrt{3}-\sqrt{4}}{-1}}$[/tex]
⇒ [tex]${\frac{ 1-\sqrt{2}}{-1}+{\frac{ \sqrt{2}-\sqrt{3}}{-1}+{\frac{\sqrt{3}-2}{-1}}$[/tex]
⇒ [tex]${\frac{ 1-\sqrt{2}}{-1}+{\frac{ \sqrt{2}-\sqrt{3}}{-1}+{\frac{\sqrt{3}-2}{-1}}$[/tex]
⇒ [tex]$ -1+\sqrt{2}}- \sqrt{2}+\sqrt{3}}-{\sqrt{3}+2}$[/tex]
⇒ [tex]$ -1+2}$[/tex]
⇒ 1
a. Hence proved that the sum of fractions [tex]${\frac{1}{\sqrt{1+\sqrt{2}}}}+{\frac{1}{\sqrt{2+\sqrt{3}}}}+{\frac{1}{\sqrt{3}+\sqrt{4}}}=1$[/tex]
B. This will be done with the same process,
⇒ [tex]${\frac{ 1-\sqrt{2}}{-1}+{\frac{ \sqrt{2}-\sqrt{3}}{-1}+ \cdot \cdot \cdot+{\frac{\sqrt{63}-8}{-1}}$[/tex]
⇒ [tex]${\frac{ 1-\sqrt{2}}{-1}+{\frac{ \sqrt{2}-\sqrt{3}}{-1}+ \cdot \cdot \cdot+{\frac{\sqrt{63}-8}{-1}}$[/tex]
⇒ [tex]$ -1+\sqrt{2}}- \sqrt{2}+\sqrt{3}} \cdot \cdot \cdot -{\sqrt{63}+8}$[/tex]
There, will be same roots of every number until - 8
So,
⇒ [tex]$ -1+8}$[/tex]
= 7
b. The value will be 7 for the expression
⇒ [tex]${\frac{ 1-\sqrt{2}}{-1}+{\frac{ \sqrt{2}-\sqrt{3}}{-1}+ \cdot \cdot \cdot+{\frac{\sqrt{63}-8}{-1}}$[/tex]
To know more about Square rοοt visit:
https://brainly.com/question/4533036
#SPJ1
In a regular pentagon PQRST. PR intersects QS
at O. Calculate angle ROS.
Answer: 72°
Step-by-step explanation:
To find the interior angle of this shape, use the formula 180(n-2)/n, where n is the amount of sides. Plugging 5 in for the interior angle of a pentagon, you get 180(3)/5, or 108°.
Using the statement that PR intersects QS, we can see that triangle QOR is isosceles (to get this, look at triangle PQR, and note that because it has 2 equal side lengths, and its last length is not equivalent to the other 2 sides, it is isosceles). Solving for angle PRQ, we know one angle is 108°, and the other two are equal. The total angle in a triangle is 180°, so (180°-108°)/2 = 36° (angles QPR and PRQ).
Since the angle of R = 108°, we can find angle PRS as 108° - 36°, or 72°. Since triangles PQR and QRS are similar (share the same angles and side lengths), we can see that angle RQS and RSQ are both 36°.
Since ORS is a triangle, its angle total is 180°. Since we know the angles ORS and OSR (respectively) already as 72° and 36°, we can subtract these angles to find angle ROS. 180°-72°-36° = 72°
You ate 4/12 of the pizza your family bought for dinner. Your brother ate 3/12 of the pizza. Which equation represents the fraction of pizza both you and your brother ate?
Answer:
7/12 pizzas have been eaten
Step-by-step explanation:
3 + 4= 7
7/12
7-12=5
5 pizzas left
using the net below find the area of the triangular prism
6 cm
3 cm
4 cm
6 cm
5 cm
2 cm
Answer:153
Step-by-step explanation:
I need help with these 2 please
Question 7. C (rectangular pyramid)
Question 8. 17 cm
Answer:
Question 7:C rectangular pyramid
Question 8: C 120 in
A=2(wl+hl+hw)=2·(10·2+5·2+5·10)=160
Step-by-step explanation:
8. Using only a compass and straightedge, find the image of A after a rotation by 180° counterclockwise about point B. Label the image A', please provide a picture of the answer
When a point is rotated, it must be rotated around a point.
See attachment for the image of the rotation about point K
How to construct triangles?We should note the following:
In order to construct triangles, you will need a protractor, a pair of compasses and a ruler. To draw the triangle, three properties must be taken into account: length, angle and shape
The given parameters are:
ΔEFG
The angle of rotation is
∅ = 180⁰
The above angle of rotation means that:
The translated triangle will be 180 degrees from ΔEFG about point K.
It also means that:
ΔEFG and ΔE'F'G' will be equidistant from point K
See attached image for ΔE'F'G'
Learn more about construction of triangles on https://brainly.com/question/12990797
#SPJ1
The rectangular garden is 175 m long and 96 m broad . find the cost of fencing it at 17.50per m.also find the cost of ploughing it at 4.50 paise per square metre
Hence, the cost of fencing the garden is ₹9485. Hence, the cost of plowing the garden is ₹756.
What is perimeter?Perimeter is the total distance around the outside of a closed two-dimensional shape. It is the sum of the lengths of all the sides of the shape. For example, the perimeter of a rectangle is found by adding the lengths of all its four sides, whereas the perimeter of a circle is found by multiplying the diameter by π (pi). Perimeter is usually expressed in units of length, such as meters, centimeters, feet, or inches.
Here,
The perimeter of the rectangular garden is twice the sum of its length and width. So, the length of the fence needed to enclose the garden is:
2 × (length + width) = 2 × (175 m + 96 m) = 542 m
Therefore, the cost of fencing the garden at 17.50 per meter is:
Cost of fencing = length of fence × cost per meter
= 542 m × 17.50
= 9485
Hence, the cost of fencing the garden is ₹9485.
To find the cost of plowing the garden, we need to first calculate its area, which is given by:
Area = length × width
= 175 m × 96 m
= 16800 m²
Therefore, the cost of plowing the garden at 4.50 paise per square meter is:
Cost of plowing = area of garden × cost per square meter
= 16800 m² × 0.045
= 756
Hence, the cost of plowing the garden is ₹756.
To know more about perimeter,
https://brainly.com/question/7720055
#SPJ1
Luke bought 4 kilograms of apples and 0.29 kilograms of oranges. How much fruit did he buy
in all?
He bought 4.29 Kilos of fruit.
4+0.29=4.29
Luke bought 4.29 kilograms of fruit in all
Step-by-step explanation:
Simple addition will be used to find the total fruit Luke bought.
Given
Amount of apples he bought = 4 kilograms
Amount of oranges he bought = 0.29 kilograms
so the total fruit will be:
[tex]\text{total fruit}=\text{Apples}+\text{oranges}[/tex]
[tex]=4+0.29[/tex]
[tex]=4.29[/tex]
So,
Luke bought 4.29 kilograms of fruit in all
Keywords: Measurement, addition
Learn more about addition at:
https://brainly.com/question/568799https://brainly.com/question/567922#LearnwithBrainly
How to graph it on a coordinate plan to the right 5x-3y=18
Tο shift the graph tο the right, we can simply add a pοsitive cοnstant tο the x values οf each pοint befοre plοtting them. Fοr example, if we want tο shift the graph tο the right by 2 units.
What is cοοrdinate plan?The intersectiοn οf twο number lines creates a twο-dimensiοnal plane knοwn as a cοοrdinate plane. The x-axis, a hοrizοntal number line, and the y-axis, a vertical number line, are twο examples οf these number lines.
Tο graph the equatiοn 5x - 3y = 18 οn a cοοrdinate plane, we can fοllοw these steps:
1. Sοlve fοr y in terms οf x:
5x - 3y = 18
-3y = -5x + 18
y = (5/3)x - 6
2. Chοοse sοme values fοr x and use the equatiοn tο find the cοrrespοnding y values. Fοr example, we can chοοse x = 0, 3, and 6:
When x = 0: y = (5/3)(0) - 6 = -6
When x = 3: y = (5/3)(3) - 6 = -3
When x = 6: y = (5/3)(6) - 6 = 2
3. Plοt the pοints (0, -6), (3, -3), and (6, 2) οn the cοοrdinate plane.
4. Draw a straight line passing thrοugh these three pοints. This line represents the graph οf the equatiοn 5x - 3y = 18.
To know more about coordinate plan visit,
https://brainly.com/question/27481419
#SPJ1
Let A, B, and C be subsets of some universal set U. (a) Draw two general Venn diagrams for the sets A, B, and C. On one, shade the region that represents A - (B nC), and on the other, shade the region that represents (A -B) U (A C). Based on the Venn diagrams, make a conjecture about the relationship between the sets A-(BnC) and (A -B)U (A -C). (b) Use the choose-an-element method to prove the conjecture from Exer- cise (5a). (c) Use the algebra of sets to prove the conjecture from Exercise (5a).
In conclusion, we can prove that[tex](A -B) U (A C)[/tex] is a superset of[tex]A - (B nC)[/tex] using both the choose-an-element method and the algebra of sets.
To answer this question, let's first draw two Venn diagrams to represent the sets A, B, and C. In the first Venn diagram, shade the region that represents[tex]A - (B nC)[/tex].
This is the region outside of the intersection of B and C and inside of A. In the second Venn diagram, shade the region that represents [tex](A -B) U (A C).[/tex] This is the union of the region outside of B and the region outside of C, both of which are inside of A. Based on these diagrams, we can make the conjecture that (A -B) U (A C) is a superset of A - (B nC).
To prove this conjecture, we can use the choose-an-element method. Let a be an element of A - (B nC). This means that a is in A, but not in B or C. Since a is in A, it is also in (A -B) U (A C), and therefore (A -B) U (A C) is a superset of A - (B n C).
We can also use the algebra of sets to prove this conjecture.[tex]A - (B n C) = (A -B) U (A -C) since A - (B n C)[/tex]is the union of the regions outside of B and outside of C, both of which are inside of A. This implies that (A -B) U (A C) is a superset of A - (B nC).
for such more questions on Venn diagram
https://brainly.com/question/30599101
#SPJ11
The village of Hampton has 436 families 238 of the families live within 1 mile of the village square use mental math to find how many families live farther than 1 mile from the square show your work
Answer: 198 families live farther than 1 mile from the square.
Step-by-step explanation:
We know that there are 238 families that live within 1 mile of the village square. To find the number of families that live farther than 1 mile from the square, we can subtract 238 from the total number of families:
436 - 238 = 198
Therefore, 198 families live farther than 1 mile from the square. We can do this subtraction mentally without needing a calculator.
I need help, what does this mean
Answer:
2125 ft/min
33,000 ft
y = -2125x + 33,000
Step-by-step explanation:
A. -2125 feet per minute. You get this number when you divide 17,000 by 8 (rise over run). You could also use the formula y2-y/x2-x1 with the points (0, 33,000) and (8, 17,000).
B. 33,000 feet is the height of the plane before it starts descending, so it must be the starting value.
C. Plug in the values you got for A and B into the slope formula y = mx + b
y = -2125x + 33,000
The interest $I on a loan of $P for a year at a rate of 6% varies directly as the loan
find the formula relating I and P
a) I when P = 800 b)P when I = 72
The formula relating I and P is I = kP
a) When P= $800, then I = $48
b) When I = $72, then P = $1200
If the interest $I on a loan of $P for a year at a rate of 6% varies directly as the loan, we can write:
I = kP
where k is a constant of proportionality. To find the value of k, we can use the given information that the interest rate is 6%, or 0.06 as a decimal. We know that when P = 100, the interest I = 0.06 × 100 = 6. Therefore:
I/P = 6/100 = 0.06 = k
Now we can use this value of k to answer the given questions,
a) When P = 800, the formula relating I and P is:
I = kP
I = 0.06 × 800
I = 48
Therefore, the interest on a loan of $800 for a year at a rate of 6% is $48.
b) When I = 72, the formula relating I and P is:
I = kP
72 = 0.06P
Solving for P:
P = 72/0.06
P = 1200
Therefore, a loan of $1200 for a year at a rate of 6% would have an interest of $72.
Learn more about interest rate here
brainly.com/question/29486301
#SPJ4
Bella is splitting her rectangular backyard into a garden in the shape of a trapezoid and a fish pond in the shape of a right triangle. What is the area of her garden?
The Area of Bella's garden as required to be determined in the task content is the difference of the area of the rectangular backyard and the right triangular fish pond.
What is the area of Bella's trapezoidal garden?It follows from the task content that the area of Bella's trapezoidal garden is to be determined from the given information.
Since the garden and the fish pond are from the rectangular backyard; the sum of their areas is equal to the area of the backyard.
Ultimately, the area of the garden is the difference of the area of the rectangular backyard and the right triangular fish pond.
Read more on difference;
https://brainly.com/question/28368605
$SPJ1
The average between 3. 15 and x is 40 what is x?
The value of x that makes the average between 3.15 and x equal to 40 is 76.85.
In this problem, we are given two numbers, 3.15 and x, and told that the average between them is 40. We can set up an equation to solve for x as follows:
(3.15 + x) / 2 = 40
To find the average between 3.15 and x, we add the two numbers together and divide by 2, which gives us the equation above.
To solve for x, we can start by multiplying both sides of the equation by 2:
3.15 + x = 80
Next, we can subtract 3.15 from both sides of the equation:
x = 76.85
To know more about average here
https://brainly.com/question/16956746
#SPJ4
Identify three points that are solutions to
each system.
The solutions for the systems of inequalities are:
a) (0, -100), (0, -150), (0, -1000)
b) (0, 50), (0, 55) , (0, 1,204).
How to identify 3 solutions of each system?When we have a system of inequalities, a solution is a point that solves both ienqualities at the same time.
The first one is:
y ≤ x - 8
y < -3x - 9
Here y must be smaller than x, then we can define x like x = 0, and really small values for y, like y = -100, replacing that we will get:
-100 ≤ 0 - 8 = -8
-100 < - 3*0 - 9 = -9
Both of these are true, so (0, -100) is a solution, and trivially, (0, -150) and (0, -1000) are other two solutions.
For the second system:
y > 5x + 1
y > 3
Let's do the same thing, x = 0 and y gets really large values, like y = 50
50 > 5*0 + 1 = 1 this is true.
50 > 3 this is true.
so (0, 50) is a solution, and also are (0, 55) and (0, 1,204).
Learn more about systems of inequalities:
https://brainly.com/question/9774970
#SPJ1
an equation of a circle is given by (x+3)^2+(y_9)^2=5^2 apply the distributive property to the square binomials and rearrange the equation so that one side is 0.
The equation of the circle is [tex]x^2 + y^2 + 6x - 18y + 65 = 0[/tex].
Given:
Equation of the circle is [tex](x+3)^2+(y-9)^2=5^2[/tex]
Expand the equation
[tex](x+3)^2 = (x+3)(x+3) = x^2 + 3x + 3x + 9 = x^2 + 6x + 9[/tex]
[tex](y-9)^2 = (y-9)(y-9) = y^2 - 9y - 9y + 81 = y^2 - 18y + 81[/tex]
[tex]5^2 = 25[/tex]
Then, substitute the expanded expressions into the equation
[tex](x+3)^2+(y-9)^2=5^2\\(x^2 + 6x + 9) + (y^2 - 18y + 81) = 25\\[/tex]
Simplify and combine like terms
[tex](x^2 + 6x + 9) + (y^2 - 18y + 81) = 25\\x^2 + y^2 + 6x - 18y + 90 = 25[/tex]
Rearrange the equation so that one side is 0
[tex]x^2 + y^2 + 6x - 18y + 90 = 25\\x^2 + y^2 + 6x - 18y + 90 - 25 = 0\\x^2 + y^2 + 6x - 18y + 65 = 0[/tex]
Thus, the equation of a circle [tex](x+3)^2+(y-9)^2=5^2[/tex] can be rearranged using the distributive property to form [tex]x^2 + y^2 + 6x - 18y + 65 = 0[/tex], with one side equaling 0.
Learn more about distributive property here: https://brainly.com/question/2807928
#SPJ11
Y=3x+3 what is the slope and y intercept
Answer:
y-intercept is (0,3) and the slope is 3
Step-by-step explanation:
Answer: the slope is 3x while 3 is the y-intercept.
Step-by-step explanation:
machines at a factory produce circular washers with a specified diameter. the quality control manager at the factory periodically tests a random sample of washers to be sure that greater than 90 percent of the washers are produced with the specified diameter. the null hypothesis of the test is that the proportion of all washers produced with the specified diameter is equal to 90 percent. the alternative hypothesis is that the proportion of all washers produced with the specified diameter is greater than 90 percent. which of the following describes a type i error that could result from the test? responses the test does not provide convincing evidence that the proportion is greater than 90%, but the actual proportion is greater than 90%. the test does not provide convincing evidence that the proportion is greater than 90%, but the actual proportion is greater than 90%. the test does not provide convincing evidence that the proportion is greater than 90%, but the actual proportion is equal to 90%. the test does not provide convincing evidence that the proportion is greater than 90%, but the actual proportion is equal to 90%. the test provides convincing evidence that the proportion is greater than 90%, but the actual proportion is equal to 90%. the test provides convincing evidence that the proportion is greater than 90%, but the actual proportion is equal to 90%. the test provides convincing evidence that the proportion is greater than 90%, but the actual proportion is greater than 90%. the test provides convincing evidence that the proportion is greater than 90%, but the actual proportion is greater than 90%. a type i error is not possible for this hypothesis test.
Answer:
the test does not provide convincing evidence that the proportion is greater than 90%
Hi. Please help me convert this non-linear to linear form y=mx+c. The answer is square root of y= 6/p x - 2/q .
Thank you so much.
Answer: To convert the given equation, √y = (6/p)x - (2/q), into the linear form y = mx + c, we can use the following steps:
Square both sides of the equation to eliminate the square root:
√y = (6/p)x - (2/q)
√y^2 = (6/p)x - (2/q)^2
Simplifying the right-hand side, we get:
y = (36/p^2)x - (4/q) + 4/q^2
Rearrange the equation to the form y = mx + c:
y = (36/p^2)x + (4/q^2 - 4/q)
So the linear form of the given non-linear equation is y = (36/p^2)x + (4/q^2 - 4/q).
Step-by-step explanation:
Please help quick with this question.
Answer:
b = [tex]\frac{S-2la}{h+l}[/tex]
Step-by-step explanation:
S = bh + lb + 2la ( reversing the equation )
bh + lb + 2la = S ( subtract 2la from both sides )
bh + lb = S - 2la ← factor out b from each term on the left side
b(h + l) = S - 2la ← divide both sides by (h + l)
b = [tex]\frac{S-2la}{h+l}[/tex]
when performing a hypothesis test based on a 95% confidence level, what are the chances of making a type ii error?
When performing a hypothesis test based on a 95% confidence level, the chances of making a type II error are 5%.
The process of hypothesis testing is used to determine whether or not a given statistical hypothesis is valid. The objective of this method is to determine whether the null hypothesis can be accepted or rejected based on the sample data obtained.
Hypothesis testing can be used to evaluate two hypotheses. The null hypothesis is the one that must be accepted or rejected, while the alternative hypothesis is the one that must be supported. In other words, hypothesis testing is a way of determining whether the null hypothesis is reasonable or not.
The Type II error is defined as the error that occurs when the null hypothesis is not rejected even though it is incorrect. In hypothesis testing, this type of error is referred to as a beta error or a false-negative error. The chances of making a Type II error depend on several factors, including the sample size, the level of significance, and the power of the test. When the level of significance is lowered to 0.05, the chances of making a Type II error are 5%.
To learn more about type II error refer :
https://brainly.com/question/30699536
#SPJ11
48 identical looking bags of lettuce were delivered to Circle J grocers. Unfortunately, 12 of these bags of lettuce are contaminated with listeria. Joe, from Joes Cafe randomly selects 4 bags of the lettuce for his cafe. Let X equal the number of the selected packets which are contaminated with listeria. a. How many possible ways are there to select the 4 out of 48 packets (order does not matter) without replacement? b. What is the probability thatX=0
c. What is the probability thatX=4? d. What is the probability thatx>2? e. What is the expected value ofX? f. What is the standard deviation ofX? g. What is the probability that X is smaller than its expected value?
h. What is the probability thatX=5?
Probability that X = 5:Since, Joe selects only 4 bags of lettuce. X can't be 5.P(X=5) = 0Hence, the probability that X = 0 is 0.3164 and the probability that X = 5 is 0.
The given problem can be solved using the concept of binomial distribution.
In the given question, there are 48 bags of lettuce out of which 12 bags are contaminated with listeria.
Joe selects 4 bags of lettuce. X is the random variable which represents the number of contaminated bags of lettuce selected by Joe. X can take values from 0 to 4. (as Joe selects only 4 bags).
Part A)Number of ways to select 4 bags of lettuce out of 48:This can be solved using the concept of combinations. The formula to calculate the number of combinations is[tex]:nCr = n! / r!(n-r)![/tex]Here, n = 48 and r = 4.
Number of ways = 48C4 = 194,580
Part B)Probability that X = 0:This can be calculated using the formula for the binomial distribution :
[tex]P(X = r) = nCr * p^r * q^(n-r)[/tex]
Here, p = probability of selecting contaminated bag = 12/48 = 0.25q = probability of selecting non-contaminated bag = 1-0.25 = 0.75Also, n = 4 and r = [tex]0P(X=0) = 4C0 * 0.25^0 * 0.75^4= 0.3164[/tex]
for such more questions on probability
https://brainly.com/question/13604758
#SPJ11
Use substitution to solve -4x + y = 3, 5x - 2y = -9
Using the substitution method, the solution of the system of equations -4x + y = 3 and 5x - 2y = -9 is (x, y) = (1, 7)
We can solve this system of equations using the substitution method by solving for one variable in terms of the other in one equation, and then substituting that expression into the other equation. Here's how:
-4x + y = 3 (Equation 1)
5x - 2y = -9 (Equation 2)
Solving Equation 1 for y, we get:
y = 4x + 3
Now, we substitute this expression for y into Equation 2 and solve for x:
5x - 2(4x + 3) = -9
5x - 8x - 6 = -9
-3x = -3
x = 1
We have found the value of x to be 1. Now, we substitute this value back into Equation 1 to find the value of y:
-4(1) + y = 3
y = 7
Therefore, the solution to the system of equations is (x, y) = (1, 7)
Learn more about substitution method here
brainly.com/question/14619835
#SPJ4
What are the zeros of the function? Set the function = 0, factor, and use the zero-product property. Show your steps!
f(x) = x² + 7x – 60
(100 POINTS AND BRAINLIEST)
The zeroes of the function are -12 and 5.
What is meant by Zeros of the function?Zeros of a function are the values of the input variables that make the output of the function equal to zero. The zeros are the solutions of equation f(x) = 0.
According to the question:
To find the zeros of the function
f(x) = x² + 7x - 60, we must set f(x) equal to zero and solve for x.
So we start with the equation:
x² + 7x - 60 = 0
Next, we need to factor the left side of the equation. We are looking for two numbers that multiply to -60 and add to 7. After some trial and error, we find that the numbers are 12 and -5:
x² + 7x - 60 = (x + 12)(x - 5) = 0
Now we can apply the zero product property, which states that if the product of two factors is zero, then at least one of the factors must be zero. Therefore, we set each factor equal to zero and solve for x:
x + 12 = 0 or x - 5 = 0
Solving for x, we get:
x = -12 or x = 5
The zeros of the function f(x) = x² + 7x - 60 are therefore x = -12 and x = 5.
To know more about Zeros of the function visit:
brainly.com/question/16633170
#SPJ1
the weight of a body above the surface of the earth is inversely proportional to the square of its distance from the center of the earth. what is the effect on the weight when the distance is multiplied by 2?
The weight becomes 1/4 of its original value when the distance is multiplied by 2.
According to the question, "the weight of a body above the surface of the earth is inversely proportional to the square of its distance from the center of the earth." We need to determine the effect on the weight when the distance is multiplied by 2.
Let w be the weight of a body, d be the distance from the center of the earth, and k be the constant of variation. According to the question,
w = k / d²
When the distance is multiplied by 2, the new distance is 2d. Therefore, the new weight is given by:
w' = k / (2d)²
w' = k / 4d²
w' = w / 4
Therefore, the weight becomes 1/4 of its original value when the distance is multiplied by 2.
To learn more about weight refer :
https://brainly.com/question/30825684
#SPJ11
The graph shows the velocity, v metres per second, of a car at time t seconds. Work out an estimate for the distance the car travelled for the first 8 seconds. Use 4 strips of equal width. -1-500- -1000- -500 0 V t
please help!!!
To estimate the distance traveled we need to find the area under the velocity-time graph from 0 to 8 seconds So,The estimate for the distance the car traveled for the first 8 seconds is 4000 meters.
Define velocity-time graph?A velocity-time graph is a graphical representation that shows the velocity of an object on the y-axis and time on the x-axis. It is used to depict the change in velocity over time and can provide information about the acceleration or deceleration of an object.
The height of each strip can be estimated by taking the average of the velocities at the beginning and end of the strip.
Using the trapezium rule, the estimated area of each strip is:
Strip 1: 0.5 x (0 + 2) x (0 + (-500)) = -500 m/s
Strip 2: 0.5 x (2 + 4) x (-500 + (-1000)) = -1500 m/s
Strip 3: 0.5 x (4 + 6) x (-1000 + (-500)) = -1500 m/s
Strip 4: 0.5 x (6 + 8) x (-500 + 0) = -500 m/s
The total estimated area is the sum of the areas of the 4 strips:
Total estimated area = -500 + (-1500) + (-1500) + (-500) = -4000 m/s
Since the area represents the distance traveled by the car, we can take the absolute value of the area to get the estimated distance traveled:
Estimated distance traveled is = |-4000| = 4000 meters
To know more about areas visit:
https://brainly.com/question/18066837
#SPJ1
Given the lengths of two sides of a triangle, write an equality to indicate between which two numbers the length of the third side must fall.
The sides are:
8 and 13
I will award brainliest to the first correct answer with a decent explanation
The length of the third side must fall between 8 and 13. This is because the sum of the lengths of any two sides of a triangle must always be greater than the length of the third side.
Darnel is studying the movement of glaciers, which are bodies of dense ice. The median
annual movement of the Blue Valley Glacier is about 300.2 feet, and the interquartile range is
14 feet. The median annual movement of the Silver Lake Glacier is about 300.4 feet, and the
interquartile range is about 14 feet.
4) What can you conclude from these statistics? Complete the sentence.
Over a year, the Blue Valley Glacier typically moves about
the Silver Lake Glacier, and Blue Valley has
its annual movement compared to Silver Lake.
as
▾ variability in its annual movement compared to silver lake
Over a year, the Blue Valley Glacier typically moves about the same distance as the Silver Lake Glacier, and Blue Valley has the same variability in its annual movement compared to Silver Lake.
How to interpret the statisticsThe median annual movement of the Blue Valley Glacier is 300.2 feet, and the interquartile range is 14 feet.
The interquartile range indicates the spread of the data within the middle 50% of the data
So we know that the annual movement of the Blue Valley Glacier falls within a range of 300.2 ± 7 feet (i.e. 293.2 to 307.2 feet)
Similarly, the median annual movement of the Silver Lake Glacier is 300.4 feet, and the interquartile range is also 14 feet
So the annual movement of the Silver Lake Glacier also falls within a range of 300.4 ± 7 feet (i.e. 293.4 to 307.4 feet)
Since the ranges for both glaciers overlap and have the same size, we can conclude that they typically move about the same distance over a year, and that the variability in the annual movement of Blue Valley is comparable to that of Silver Lake.
Read more about median and IQR at
https://brainly.com/question/15696302
#SPJ1
Bonny has 3 cards and a standard rolling cube. She wants to pick a card and spin the rolling cube at random. How many outcomes are possible?
There are 18 possible outcomes for Bonny to pick a card and spin a rolling cube at random.
How to calculate How many outcomes are possibleThere are a total of 6 outcomes for the rolling cube and 3 outcomes for picking a card. To find the total number of outcomes, we can use the multiplication rule of counting:
Total number of outcomes = number of outcomes for picking a card x number of outcomes for rolling a cube
Total number of outcomes = 3 x 6 = 18
Therefore, there are 18 possible outcomes for Bonny to pick a card and spin a rolling cube at random.
Learn more about probabilities at https://brainly.com/question/24756209
#SPJ1
20x50x30x50 = ?
Please answer someone!!
Answer: 1500000
Step-by-step explanation:
use a calculator
Answer:
1,500,000
Step-by-step explanation:
Breaking it up into an easier problem:
20x50 = 1,000
30x50=1,500
1,000 x 1,500, aka "adding three zeros" to the end of 1,500, as 1,000 is simply 1 x 10 x 10 x 10, and each 10 has one 0 to it.
Thus, the answer is 1,500,000