Answer:
Step-by-step explanation:
180 = ∠BAC + 52 +62
66 = ∠BAC
1. Find the 4th term for the sequence with formula tn= n² + 1
Answer:
17
Step-by-step explanation:
T4 = 4² + 1
T4 = 4² + 1 = 17
Yip yip that's all
Please help! Thank you!
In the figure below, O is the center of the circle. Name a tangent of the circle.
A. AO
B. FG
C. AB
D. HK
Answer:
Its A
Step-by-step explanation:
The tangent of the given circle is FG hence the correct option will be an option (B).
What is a tangent of a circle?The tangent of a circle is a line that intersects the circle at the periphery of the circle.
If you draw a line that goes through the center to the tangent touching point then it will give you a 90-degree angle.
Given the circle it's clear that the tangent is only FG hence it will be the correct option
A circle can have an infinite number of tangents.
In other words, a straight line that only touches a circle twice is said to be tangent to it. The term point of intersection refers to this location
At the tangent line, the tangent to a circle is orthogonal to the radius.
For more information about the tangent of the circle
https://brainly.com/question/23265136
#SPJ2
anyone know the answers for the final exam for part one of algebra 2 on edg?
Answer:
just show the questions i will help
Step-by-step explanation:
The 3rd and 6th term of a geometric progression are 9/2 and 243/16 respectively find the first term, common ratio, seventh term
Answer:
Hello,
Step-by-step explanation:
[tex]Let\ (u_n)\ the\ geometric\ progression.\\\\r\ is\ the\ common\ ratio.\\\\u_3=u_0*r^3\\u_6=u_0*r^6\\\\\dfrac{u_6}{u_3} =r^3=\dfrac{\frac{243}{16} }{\frac{9}{2} } =\dfrac{27}{8} =(\frac{3}{2} )^3\\\\\boxed{r=\dfrac{3}{2} }\\\\\\u_3=u_1*r^2 \Longrightarrow\ u_1=\dfrac{u_3}{r^2} =\dfrac{\frac{9}{2} }{(\frac{3}{2^2}) } =2\\\\\\u_7=u_6*\dfrac{3}{2} =\dfrac{729}{32}[/tex]
Alejandro wants to adopt a puppy from an animal shelter. At the shelter, he finds eight puppies that he likes: a male and female puppy from each of the four breeds of and Labrador. The puppies are each so cute that Alejandro cannot make up his mind, so he decides to pick the dog randomly. Find the probability that Alejandro chooses a .
Answer:
Hence the required probability is, 3/4
Step-by-step explanation:
At the shelter, he likes :
a male coolie, a female coolie, a male boxer, a female boxer, a male beagle, a female beagle, a male Labrador, and a female Labrador.
Let, A denote the event of selecting a male coolie and B denote the event of selecting a male Labrador.
P(A) = 1/8 = P(B)
Here the probability of selecting a puppy except A & B is,
P(AUB)c = 1 - P(AUB) = 1 - { P(A) + P(B) } = 1 - 1/8 - 1/8 = 3/4
Find the value of x in each case:
We know
Sum of two interior angles =exterior angle
[tex]\\ \sf\longmapsto 2x+x=3x[/tex]
[tex]\\ \sf\longmapsto 3x=3x[/tex]
[tex]\\ \sf\longmapsto x=1[/tex]
Find the length of the missing sides. Round your answers to the nearest tenth. 8 y x 21
Answer:
x = 20.8
y = 22.3
Step-by-step explanation:
tan(21) = 8/x
or, x = 8/tan(21)
or, x = 20.8 (rounded to the nearest tenth)
sin(21) = 8/y
or, y = 8/sin(21)
or, y = 22.3 (rounded to the nearest tenth)
Answered by GAUTHMATH
Twelve different video games showing drug use were observed. The duration times of drug use were recorded, with the times (seconds) listed below. Assume that these sample data are used with a 0.05 significance level in a test of the claim that the population mean is greater than 85 sec. If we want to construct a confidence interval to be used for testing that claim, what confidence level should be used for a confidence interval? If the confidence interval is found to be −1.8 sec<μ<213.5 sec, what should we conclude about the claim? The given confidence interval ▼ does not contain contains the value of 85 sec, so there ▼ is is not sufficient evidence to support the claim that the mean is greater than 85 sec
Answer:
95% confidence level should be used for a confidence interval.
The given confidence interval contains the value of 85 sec, so there is not sufficient evidence to support the claim that the mean is greater than 85 sec.
Step-by-step explanation:
0.05 significance level
1 - 0.05 = 0.95
0.95*100% = 95%
This means that a 95% confidence level should be used for a confidence interval.
Confidence interval is found to be −1.8 sec<μ<213.5 sec, what should we conclude about the claim?
Contains the value of 85 sec, thus there is not sufficient evidence to support the claim that the mean is greater than 85 sec.
Which of the following represents 32/100? A. thirty-two hundredths B. 0.032 C. 0.23 D. thrity-two tenths
Answer:
A
Step-by-step explanation:
32 hundredths is 32/100
Side note
32/100 can be simplified to 8/25.
When multiplying by 10 how many spaces do you move the decimal point
Answer:
If you multiply a decimal by 10, the decimal point will move one place to the right. If you divide a decimal by 10, the decimal point will move one place to the left.
Step-by-step explanation:
Multiplying a decimal by 10 increases the value of each digit by 10. Multiplying a decimal by a power of 10 increases the value of each digit by a number of times that is equivalent to that power of 10. When a digit's value is changed, that digit is moved to the appropriate place.
2.5 cm in the ratio of 1:500000
Answer:
1250000cm
Step-by-step explanation:
1:500000
1x2.5 : 500000x2.5
2.5:1250000
Graph the compound inequality on the number line. x > 7 or x < -4
OSEAMENTE no se la respuesta
Write an expression for the baseball team’s Purchase.
90units needed 8 units per case what's the #of cases & # of additional units
Answer:
# of cases: 11
Additional units: 2
Step-by-step explanation:
If each case can hold 8 units, and we want to find the total # number of cases, we have to divide the # of units (8) for one case by the total # units (90).
As you can see, after dividing by 8, we have a total of 11 cases and a remainder of 2 units. The remainder will be the # of additional units because we cannot have another case filled with 8 units.
Factorise 24e^2-28e-12
Answer:
4(2e - 3)(3e + 1)
Step-by-step explanation:
Given
24e² - 28e - 12 ← factor out 4 from each term
= 4(6e² - 7e - 3) ← factor the quadratic
Consider the factors of the product of the e² term and the constant term which sum to give the coefficient of the e- term.
product = 6 × - 3 = - 18 and sum = - 7
The factors are - 9 and + 2
Use these factors to split the e- term
6e² - 9e + 2e - 3 ( factor the first/second and third/fourth terms )
= 3e(2e - 3) + 1 (2e - 3) ← factor out (2e - 3) from each term
= (2e - 3)(3e + 1)
Then
24e² - 28e - 12 = 4(2e - 3)(3e + 1) ← in factored form
translate into a variable expression and then simplify. five times the sum of a number and four
Answer:
5(n+4)
5n+20
Step-by-step explanation:
Let n be the number
5* (n+4)
Distribute
5n+20
Which graph matches the exponential function f(x) = (3)x?
Start with the number 2380.
Divide by 10,
The 8 will end up in the _____ place.
The 8 will end up in the "ones place".
How can we interpret the division?When 'a' is divided by 'b', then the result we get from the division is the part of 'a' that each one of 'b' items will get. Division can be interpreted as equally dividing the number that is being divided into total x parts, where x is the number of parts the given number is divided.
We need to find the 8 will end up in which place
A negative divided by a negative is positive, then;
2380/ 10 = 238
Therefore, The 8 will end up in the _ ones_ place.
Learn more about division here:
brainly.com/question/26411682
#SPJ2
Please helpppppp I need to pass
Answer:
x = -1.4 and x=2
Step-by-step explanation:
The solutions are where the graphs intersect
The graphs appear to intersect at x = -1.4 and x=2
First make a substitution and then use integration by parts to evaluate the integral. integral t^11 e^-t^6 dt + C
It looks like you want to find
[tex]\displaystyle \int t^{11} e^{-t^6}\,\mathrm dt[/tex]
Substitute u = -t ⁶ and du = -6t ⁵ dt. Then
[tex]\displaystyle \int t^{11} e^{-t^6}\,\mathrm dt = \frac16 \int (-6t^5) \times (-t^6) e^{-t^6}\,\mathrm dt = \frac16 \int ue^u \,\mathrm du[/tex]
Integrate by parts, taking
f = u ==> df = du
dg = eᵘ du ==> g = eᵘ
Then
[tex]\displaystyle \frac16 \int ue^u \,\mathrm du = \frac16\left(fg-\int g\,\mathrm df\right) \\\\ =\frac16 ue^u - \frac16\int e^u\,\mathrm du \\\\ =\frac16 ue^u - \frac16 e^u + C \\\\ =-\frac16 t^6 e^{-t^6} - \frac16 e^{-t^6} + C \\\\ =\boxed{-\frac16 e^{-t^6} \left(t^6+1\right) + C}[/tex]
represent 21/14 and -20/8 on the number line
Step-by-step explanation:
SEE THE IMAGE FOR SOLUTION
HOPE IT HELPS
HAVE A GREAT DAY
Please help im new and i need help!
Please help me if you onlw the answers please!!
9514 1404 393
Answer:
a) 2.038 seconds
b) 5.918 meters
c) 1.076 seconds
Step-by-step explanation:
For the purpose of answering these questions, it is convenient to put the given equation into vertex form.
h = -4.9t² +9.2t +1.6
= -4.9(t² -(9.2/4.9)t) +1.6
= -4.9(t² -(9.2/4.9)t +(4.6/4.9)²) +1.6 +4.9(4.6/4.9)²
= -4.9(t -46/49)² +290/49
__
a) To find h = 0, we solve ...
0 = -4.9(t -46/49)² +290/49
290/240.1 = (t -46/49)² . . . . subtract 290/49 and divide by -4.9
√(2900/2401) +46/49 = t ≈ 2.0378 . . . . seconds
The ball takes about 2.038 seconds to fall to the ground.
__
b) The maximum height is the h value at the vertex of the function. It is the value of h when the squared term is zero:
290/49 m ≈ 5.918 m
The maximum height of the ball is about 5.918 m.
__
c) We want to find t for h ≥ 4.5.
h ≥ 4.5
-4.9(t -46/49)² +290/49 ≥ 4.5
Subtracting 290/49 and dividing by -4.9, we have ...
(t -46/49)² ≥ 695/2401
Taking the square root, and adding 46/49, we find the time interval to be ...
-√(695/2401) +46/49 ≤ t ≤ √(695/2401) +46/49
The difference between the interval end points is the time above 4.5 meters. That difference is ...
2√(695/2401) ≈ 1.076 . . . . seconds
The ball is at or above 4.5 meters for about 1.076 seconds.
__
I like a graphing calculator for its ability to answer these questions quickly and easily. The essentials for answering this question involve typing a couple of equations and highlighting a few points on the graph.
_____
Additional comment
I have a preference for "exact" answers where possible, so have used fractions, rather than their rounded decimal equivalents. The calculator I use deals with these fairly nicely. Unfortunately, the mess of numbers can tend to obscure the working.
"Vertex form" for a quadratic is ...
y = a(x -h)² +k . . . . where the vertex is (h, k) and 'a' is a vertical scale factor.
In the above, we have 'a' = -4.9, and (h, k) = (46/49, 290/49) ≈ (0.939, 5.918)
90./04/ (C) 98.7877 TD) (D) 98.7777 12. If two perpendicular sides of a right-angled triangle are 5 cm and 12 cm, its perimeter is: (A) 13 cm (B) 17 cm (C) 27 cm (D) 30 cm 3. An article is purchased for 7,500 and sold for 8,400. The profit percent is : (A) 8% (B) 10%
Answer:
1) D - 30 cm 2) 12 percents
Step-by-step explanation:
The first question was If two perpendicular sides of a right-angled triangle are 5 cm and 12 cm, its perimeter is: (A) 13 cm (B) 17 cm (C) 27 cm (D) 30 cm
two perpendicular sides are legs, find the hipotenuse of the triangle
It is equal to sqrt(5^2+12^2)= sqrt169=13
5+12+13=30 - D - the perimeter
The second question
7500 -100 percents
8400- x
7500/8400=100/x
75/84=100/x
(25/28)*x=100
(1/28)*x=4
x=4/(1/28)= 4*28= 112 percents
The profit is 12 percents
2) Option D is correct. If two perpendicular sides of a right-angled triangle are 5 cm and 12 cm, its perimeter will be 30cm.
3) None of the given options are correct. If an article is purchased for 7,500 and sold for 8,400, the profit percentage will be 12%
2) A right-angled triangle is a triangle with three sides and one of its angles is 90degrees. Find the image of a right-angled triangle attached below.
The triangle consists of 3 sides which are:
The opposite sideThe adjacent sideThe hypotenuse sideBefore we can get the perimeter of the right triangle, we need to get the third side first (the hypotenuse side) using the Pythagoras theorem. According to the theorem:
[tex]c^2=a^2+b^2[/tex]
Given
a = 5 cm
b =12 cm
[tex]c^2=5^2+12^2\\c^2=25+144\\c^2=169\\c=\sqrt{169}\\c=13 cm[/tex]
Perimeter of the right triangle = a + b + c
Perimeter of the right triangle = 5 cm + 12 cm + 13 cm
Perimeter of the right triangle = 30 cm
Hence the perimeter of the right triangle is 30 cm.
3) If an article is purchased for 7,500, then;
Cost price (C.P) = 7,500If the same article is sold for 8,400, then:
Selling price (S.P) = 8,400[tex]\% profit=\frac{SP-CP}{CP} \times 100[/tex]
Substitute the given parameters
[tex]\% profit=\frac{8400-7500}{7500} \times 100\\\%profit=\frac{900}{7500} \times 100 \\\%profit=\frac{900}{75}\\\% profit = 12 \%[/tex]
This shows that the profit percent is 12%
Learn more on perimeter and percentage profit here: https://brainly.com/question/23264165
https://brainly.com/question/22104935
What is the approximate value of log b to the nearest hundredth? 0.93 1.23 9.16 65.53
Answer:
1.23
Step-by-step explanation:
complete the table below?
ABC = $425
Load = 0
Total Cost = $425
Sales Price = $850
Sales price ÷ total cost = 850/425
= 2%
DEF = $600
Load = $375
Total Cost = $975
Sales Price = $1200
Sales Price ÷ Total cost = 1200/975
= 1% (Nearest 1%)
Must click thanks and mark brainliest
Which graph represents the function f(x) = x-2?
Answer:
click in photo
nejdjjd
nxndjdbbdjf
lấy x=0 ta có y= -2 => A(0;-2)
lấy y=0 ta có x=2 => B(2;0)
nối 2 điểm A và B ta có đồ thị:
Help!!! QUICK! What is the pattern of the exponents on the a terms in Pascal's Triangle?
A. The largest exponent value of the a terms is equal to one more than the value of the exponent on the binomial. The exponent values then decrease from left to right.
B. The largest exponent value of the a terms is equal to the value of the exponent on the binomial. The exponent values then decrease from left to right.
C. The largest exponent value of the a terms is equal to the value of the exponent on the binomial. The exponent values are then equal to 0 throughout the expansion.
D.The largest exponent value of the a terms is equal to one more than the value of the exponent on the binomial. The exponent values are then equal to 1 throughout the expansion.
Answer:
B. The largest exponent value of the a terms is equal to the value of the exponent on the binomial. The exponent values then decrease from left to right.
Step-by-step explanation:
The exponent values of the a terms increase from one side of the binomial to the other. The value of the largest exponent is equal to part of the binomial expression.
The object of a popular carnival game is to roll a ball up an incline into regions with different
values. The probability that Angus will get 100 points in a roll is 40%, 200 points is 35%, and
300 points is 25%. Find the expected value, E(X), of a roll.
O 185
O 200
O 400
O 150
The expected value, E(x) of the given observation is 185
The expected value is the mean of the overall observed value or random value. In other words, it is the average of the observed values.
The given parameters can be represented as:
[tex]\begin{array}{cccc}x & {100} & {200} & {300} \ \\ P(x) & {40\%} & {35\%} & {25\%} \ \end{array}[/tex]
The following formula calculates the expected value:
[tex]E(x) =\sum x * P(x)[/tex]
So, we have:
[tex]E(x) = 100 * 40\% + 200 * 35\% + 300 * 25\%[/tex]
[tex]E(x) = 40 + 70 + 75[/tex]
[tex]E(x) = 185[/tex]
Learn more about expected values at:
https://brainly.com/question/16726343
A factory used 99.19 kilograms of tomatoes to make 7 batches of pasta sauce. What quantity of tomatoes did the factory put in each batch?
Answer:
14.17 kilograms
Step-by-step explanation:
Find what quantity of tomatoes was in each batch by dividing the total amount of tomatoes by the number of batches:
99.19/7
= 14.17
So, the factory put 14.17 kilograms of tomatoes in each batch.
i need help on 8-9 plss :))
Answer:
8. SU = 24
9. TU = 16√3
Step-by-step explanation:
Recall: SOH CAH TOA
8. Reference angle (θ) = 30°
Opposite = 8√3
Adjacent = SU
Apply TOA,
Tan θ = Opp/Adj
Substitute
Tan 30° = 8√3/SU
Tan 30° × SU = 8√3
SU = 8√3/Tan 30°
SU = 8√3/(1/√3) (tan 30° = 1/√3)
SU = 8√3*√3/1
SU = 8*3
SU = 24
9. Reference angle (θ) = 30°
Opposite = 8√3
Hypotenuse = TU
Apply SOH,
Sin θ = Opp/Hyp
Substitute
Sin 30° = 8√3/TU
Sin 30° × TU = 8√3
TU = 8√3/sin 30°
TU = 8√3/(½) (sin 30° = ½)
TU = 8√3 × 2/1
TU = 16√3