Answer:
it should be true because sum of 3 interior angle of a triangle is 180 degree
Answer:
True.
Step-by-step explanation:
A triangle's angles add up to 180 degrees because one exterior angle is equal to the sum of the other two angles in the triangle. In other words, the other two angles in the triangle (the ones that add up to form the exterior angle) must combine with the third angle to make a 180 angle.
Twelve of the workers received the following salaries: three of them earn P12,500 a month, four of them earn P11,000; twoearn P10,500 and the rest earn P9,000 a month. What is the median salary of the workers?
The median salary of the workers is P11,000.
What is median?In statistics, the median is a measure of central tendency that represents the middle value of a data set when the data set is ordered from least to greatest (or vice versa). If the data set has an odd number of values, the median is the middle value. If the data set has an even number of values, the median is the average of the two middle values. The median is used as a measure of central tendency when the data set has outliers or is not normally distributed.
How to calculate median?To calculate the median of a set of numbers:
Put the numbers in order from lowest to highest.If the number of items in the list is odd, the median is the middle number. For example, if the list is 3, 5, 7, 9, 11, the median is 7.If the number of items in the list is even, the median is the average of the two middle numbers. For example, if the list is 4, 6, 8, 10, the median is (6 + 8)/2 = 7.In the given question,
To find the median salary of the workers, we need to arrange the salaries in order from lowest to highest.
The salaries are:
P9,000, P9,000, P10,500, P10,500, P11,000, P11,000, P11,000, P11,000, P12,500, P12,500, P12,500, P12,500
There are 12 workers, so the median salary will be the average of the 6th and 7th salaries when arranged in order.
Median salary = (P11,000 + P11,000)/2
= P11,000
Therefore, the median salary of the workers is P11,000.
To know more median, visit:
https://brainly.com/question/28060453
#SPJ1
What are inequalities?
Answer:
In mathematics, an inequality is a statement that compares two values, indicating that they are not equal, and specifies the relationship between them. In other words, an inequality expresses a relative difference between two values or quantities, rather than an exact equality.
There are different types of inequalities, but the most common ones involve comparisons between numerical values or algebraic expressions using inequality symbols, such as:
Greater than: x > y (read as "x is greater than y")
Less than: x < y (read as "x is less than y")
Greater than or equal to: x ≥ y (read as "x is greater than or equal to y")
Less than or equal to: x ≤ y (read as "x is less than or equal to y")
Inequalities can also involve multiple variables and can be used to describe ranges of values or conditions that must be satisfied. For example, x + y > 5 is an inequality that describes a region of the xy-plane where the sum of x and y is greater than 5.
Inequalities are used extensively in many areas of mathematics, including algebra, calculus, and optimization, and also have applications in other fields such as economics, physics, and engineering.
Step-by-step explanation:
Proofs help ASAP…….$;$3$3
Prove the following using a direct proof:
The sum of the squares of 4 consecutive integers is an even integer
Answer: A positive whole number multiplied by any whole number will remain positive. In the case of the squares of 4, it will always end in a 6 which is a positive number.
Step-by-step explanation:
4^2= 16
16^2 = 256
256^2= 65,536
etc.
Question 15 (2 points)
A standard deck of cards contains 4 suits of the same 13 cards. The contents of a
standard deck are shown below:
Standard deck of 52 cards
4 suits (CLUBS SPADES, HEARTS, DIAMONDS)
13 CLUBS
13 SPADES
13 HEARTS
DIAMONDS
If a card is drawn at random from the deck, what is the probability it is a jack or ten?
0
4/52- 1/13
8/52 = 2/13
48/52- 12/13
Answer: 2/13
Step-by-step explanation:
There are four jacks and four tens in a standard deck of 52 cards. However, the jack of spades and the ten of spades are counted twice since they are both a jack and a ten. Therefore, there are 8 cards that are either a jack or a ten, and the probability of drawing one of these cards at random is:
P(Jack or Ten) = 8/52 = 2/13
So the answer is 2/13.
Step-by-step explanation:
a probability is airways the ratio
desired cases / totally possible cases
in each of the 4 suits there is one Jack and one 10.
that means in the whole deck of cards we have
4×2 = 8 desired cases.
the totally possible cases are the whole deck = 52.
so, the probability to draw a Jack or a Ten is
8/52 = 2/13
Question 1: 10 pts
A triangle has a base length of 2ac² and a height 6 centimeters more than the base
length. Find the area of the triangle if a = 4 and c = 2.
608 cm²
224 cm²
1,216 cm²
576 cm²
The area of the triangle with the given base and height where a = 4 and c = 2 is: 608 cm²
What is the Area of a Triangle?Area = 1/2(base)(height).
Given the parameters:
Base length = 2ac² cmHeight = 2ac² + 6 cmIf a = 4 and c = 2, then:
Area = 1/2(base)(height) = 1/2(2ac²)(2ac² + 6)
Area = 1/2(2 × 4 × 2²)(2 × 4 × 2² + 6)
Area = 1/2(32)(38)
Area = 608 cm²
Learn more about the area of a triangle on:
https://brainly.com/question/21735282
factorise completely.
3x²-12xy
Answer:
Hence, factors are 3x,(x−4y).
Step-by-step explanation:
We need to factorise 3x 2 −12xy
Here we can take 3x common.
Thus we have 3x 2−12xy=3x(x−4y)
Hence, factors are 3x,(x−4y).
Answer: 3x ( x - 4y )
Step-by-step explanation:
Factorizing 3x²-12xy
3x ( x - 4y )
determine, without actually computing the z transform, the rocs for the z transform of the following signals:
The ROC of a given signal's Z-transform can be determined without actually computing the Z-transform by identifying the maximum and minimum magnitude of the signal and checking for any poles of the Z-transform within the resulting annular region.
Let's take a signal as an example, suppose x[n] = {1, -2, 3, -4, 5}. In order to determine the ROC of its Z-transform, we are firstly required to first look for any regions in the complex plane where the sum of the absolute values of the Z-transform is found finite. It can be done by looking for the maximum and minimum magnitude of x[n] and denote them as R1 and R2 respectively. Then, the ROC of the Z-transform will be the annular region between R1 and R2, excluding any poles of the Z-transform that lie within this annular region.
In this case, the maximum absolute value of x[n] is 5 and the minimum is found being 1. So, the ROC of the Z-transform will be the annular region between |z| = 1 and |z| = 5. We can denote this as 1 < |z| < 5. We also need to check if there are any poles of the Z-transform within this annular region. Since we haven't actually computed the Z-transform, we cannot determine the exact location of any poles.
However, we can check for any values of z that would make the Z-transform infinite. For example, if x[n] is a causal signal (i.e., x[n] = 0 for n < 0), then the ROC cannot include any values of z for which |z| < 1, since this would make the Z-transform infinite.
So, the ROC of the Z-transform for the given signal x[n] can be written as 1 < |z| < 5, assuming that x[n] is a causal signal.
Learn more about Z-Transform :
https://brainly.com/question/14979001
#SPJ4
The complete question is :
Can you explain how to determine the ROCs (regions of convergence) for the Z-transform of a given signal without actually computing the Z-transform? Please provide an example signal with random data and demonstrate how to find its ROCs using this method.
What is the limit of (n!)^(1/n) as n approaches infinity?
Note: n! means n factorial, which is the product of all positive integers up to n.
Answer:
Step-by-step explanation:
To find the limit of (n!)^(1/n) as n approaches infinity, we can use the Stirling's approximation for n!, which is:
n! ≈ (n/e)^n √(2πn)
where e is the mathematical constant e ≈ 2.71828, and π is the mathematical constant pi ≈ 3.14159.
Using this approximation, we can rewrite (n!)^(1/n) as:
(n!)^(1/n) = [(n/e)^n √(2πn)]^(1/n) = (n/e)^(n/n) [√(2πn)]^(1/n)
Taking the limit as n approaches infinity, we have:
lim (n!)^(1/n) = lim (n/e)^(n/n) [√(2πn)]^(1/n)
Using the fact that lim a^(1/n) = 1 as n approaches infinity for any constant a > 0, we can simplify the second term as:
lim [√(2πn)]^(1/n) = 1
For the first term, we can rewrite (n/e)^(n/n) as [1/(e^(1/n))]^n and use the fact that lim a^n = 1 as n approaches infinity for any constant 0 < a < 1. Thus, we have:
lim (n/e)^(n/n) = lim [1/(e^(1/n))]^n = 1
Therefore, combining the two terms, we have:
lim (n!)^(1/n) = lim (n/e)^(n/n) [√(2πn)]^(1/n) = 1 x 1 = 1
Hence, the limit of (n!)^(1/n) as n approaches infinity is 1.
Answer:1
Step-by-step explanation:
Due today!! Pls helppp
if we that Abby spent 50% of her time on School, 30% on Work, and 20% on Sleep, we can estimate that she spent:
100% - (50% + 30% + 20%) = 100% - 100% = 0% on Other.
What do you mean by spending?If Abby divided her time into four categories (School, Work, Other, and Sleep), the percentage she spent on Other would be 100% less the sum of the percentages she spent on School, Work, and Sleep.
So, assuming Abby spending 50% of her time at school, 30% at work, and 20% sleeping, we can estimate she spent:
On Other, 100% - (50% + 30% + 20%) = 100% - 100% = 0%.
However, this is just a guess based on assumptions about how Abby spent her time. It's difficult to provide a more accurate estimate without more information.
To know more about spending visit:
brainly.com/question/15587297
#SPJ1
A boat is heading towards a lighthouse, whose beacon-light is 148 feet above the water. The boat’s crew measures the angle of elevation to the beacon, 8 degrees. What is the ships horizontal distance from the lighthouse(and the shore)? Round your answer to the nearest hundredth of a foot if necessary.
We can use trigonometry to solve this problem. Let's call the horizontal distance from the boat to the lighthouse "x". We can use the tangent function to find x:
tangent(8 degrees) = opposite / adjacent
tangent(8 degrees) = 148 / x
To solve for x, we can rearrange the equation:
x = 148 / tangent(8 degrees)
x ≈ 1041.87 feet
So the ship's horizontal distance from the lighthouse (and the shore) is approximately 1041.87 feet or 1041.87 rounded to the nearest hundredth of a foot if necessary.
Answer:
Your answer is 1053.07
Hope I helped!
Step-by-step explanation:
The odometer in Mr. Washington's car does not work correctly. The odometer recorded 14.3 miles for his last trip to the hardware store,but he knows the distant traveled is 17 miles.What is the percent error. Show steps
Find the percent errors, use the formula a-x/x ×100%
Answer:
15.8823% error
Step-by-step explanation:
Percent Error Formula
abs([tex]\frac{(a-x)}{x}[/tex]) * 100%
abs: absolute value
a: actual value
x: expected value
Percent Error = abs([tex]\frac{14.3 - 17}{17}[/tex]) * 100%
= abs(-0.158823) * 100%
15.8823% error
-6(4p+5) > 34-8p HELP ASAP
Answer:
p < -4
Step-by-step explanation:
-6(4p+5) > 34 - 8p
-24p - 30 > 34 - 8p
-16p - 30 > 34
-16p > 64
p < -4
draw a new of a square pyramid for which the base is 2 units long and the height of each triangular face is 5 units>
After answering the provided question, we can conclude that slant height of pyramid [tex]= \sqrt((2/2)^2 + 5^2) = \sqrt(29) = 5.39 units.[/tex]
What exactly is a pyramid?A pyramid is a polygon formed by connecting points known as bases and polygonal vertices. For each hace and vertex, a triangle known as a face is formed. A cone with a polygonal shape. A pyramid with a floor and n pyramids has n+1 vertices, n+1 vertices, and 2n edges. Every pyramid is dual in nature. A pyramid contains three dimensions. A pyramid is made up of a flat tri face and a polygonal base that come together at a single point known as the vertex. A pyramid is formed by connecting the base and peak. The edges of the base form triangle faces known as sides, which connect to the top.
/\
/ \
/ \
/______\
5
|
|
|
|
|
2
The square pyramid in the diagram above has a two-unit-long square base and four five-unit-high triangular faces. The Pythagorean theorem can be used to calculate the slant height of each triangular face:
slant height [tex]= \sqrt((2/2)^2 + 5^2) = \sqrt(29) = 5.39 units.[/tex]
To know more about pyramid visit:
https://brainly.com/question/17615619
#SPJ1
A bookcase contains 2 statistics books and 5 biology books. If 2 books are chosen at random, the chance that both are statistics books isA 1 / 21B 10 / 21C 11D 21 / 11
If 2 books are chosen at random, then the probability that both are statistics books is (a) 1/21.
The number of statistics book in bookcase is = 2;
The number of biology books in bookcase is = 5;
So, the total number of books is = 7;
The Probability of choosing a statistics book on the first draw is 2/7, since there are 2 statistics books out of a total of 7 books.
After the first book is chosen, there will be 6 books left, including 1 statistics book out of a total of 6 books.
So, the probability of choosing another statistics book on the second draw is 1/6.
In order to find the probability of both events happening together (i.e. choosing 2 statistics books in a row), we multiply the probabilities of each event:
So, P(choosing 2 statistics books) = P(1st book is statistics) × P(2nd book is statistics given that the 1st book was statistics);
⇒ (2/7) × (1/6)
⇒ 1/21
Therefore, the required probability is (a) 1/21.
Learn more about Probability here
https://brainly.com/question/13683807
#SPJ4
The given question is incomplete, the complete question is
A bookcase contains 2 statistics books and 5 biology books. If 2 books are chosen at random, the chance that both are statistics books is
(a) 1/21
(b) 10/21
(c) 11
(d) 21/11
ANYONE GOOD AT ALGEBRA 1?? ( y=mx+b )
PARALLEL, PERPENDICULAR, OR NEITHER?
Directions: Determine whether the lines given in each box are parallel,
perpendicular, or neither.
( y=mx+b )
1. y = 3x - 7
y = 3x + 1
2. y= -2/5x + 3
y= 2/5x + 8
3. y = -1/4x
y= 4x-5
4. 2x + 7y= 28
7x - 2y=4
5. y= -5x + 1
x - 5y = 30
6. 3x + 2y = 8
2x + 3y = -12
7. y= -4x - 1
8x + 2y = 14
8. x + y = 7
x - 7 = 9
9. y= 1/3x + 9
x - 3y =3
10. 4x + 9y = 18
y= 4x+9
11. 5x-10=20
y= -2x+6
12. -9x + 12y =24
y= 3/4x - 5
13. y= x-3
x-y = 8
14. 10x+8y= 16
5y=4x-15
15. y=5/3x + 7
6x-10y=10
16. x-2y=18
2x+y=6
17. x=4
x=-6
18. x=1
y=-8
Answer:
1.Neither
2.Perpendicular
3.Perpendicular
4.Neither
5.Perpendicular
6.Perpendicular
7.Neither
8.Neither
9.Perpendicular
10.Neither
11. Perpendicular
12.Perpendicular
13.Neither
14.Neither
15.Neither
16.Neither
17.Parallel
18.Neither
here are the answers in order from top to bottom
A simple random sample with n = 25 provided a sample mean of 30 and a sample standard deviation of 4. Assume the population is approximately normal. a. Develop a 90% confidence interval for the population mean. b. Develop a 95% confidence interval for the population mean. c. Develop a 99% confidence interval for the population mean. d. What happens to the margin of error and the confidence interval as the confidence level is increased?
Conversely, as the confidence level decreases, the margin of error becomes smaller, and the confidence interval becomes narrower.
What is confidence interval?In statistics, a confidence interval is a range of values that is likely to contain the true value of a population parameter (such as a mean or a proportion), based on a sample from that population. The confidence interval is typically expressed as an interval around a sample statistic, such as a mean or a proportion, and is calculated using a specified level of confidence, typically 90%, 95%, or 99%.
Here,
To develop a confidence interval, we need to use the following formula:
Confidence Interval = sample mean ± margin of error
where the margin of error is calculated as:
Margin of Error = z* (sample standard deviation/ √n)
where z* is the critical value from the standard normal distribution table based on the chosen confidence level.
a. For a 90% confidence interval, the critical value (z*) is 1.645. Thus, the margin of error is:
Margin of Error = 1.645 * (4 / √25) = 1.317
So, the 90% confidence interval for the population mean is:
30 ± 1.317, or (28.683, 31.317)
b. For a 95% confidence interval, the critical value (z*) is 1.96. Thus, the margin of error is:
Margin of Error = 1.96 * (4 / √25) = 1.568
So, the 95% confidence interval for the population mean is:
30 ± 1.568, or (28.432, 31.568)
c. For a 99% confidence interval, the critical value (z*) is 2.576. Thus, the margin of error is:
Margin of Error = 2.576 * (4 / √25) = 2.0656
So, the 99% confidence interval for the population mean is:
30 ± 2.0656, or (27.9344, 32.0656)
d. As the confidence level increases, the margin of error also increases, because we need to be more certain that our interval includes the true population mean. This means that the confidence interval becomes wider as the confidence level increases.
To know more about confidence interval,
https://brainly.com/question/28969535
#SPJ1
I will mark you brainiest!
Determine the MOST PRECISE name for the quadrilateral below.
A) rhombus
B) parallelogram
C) square
D) trapezoid
E) kite
The answer is A, rhombus.
a
21 units squared
b
27.6 units squared
c
32.2 units squared
d
42 units squared
The area of the right triangle given in this problem is given as follows:
21 units squared -> Option A.
How to obtain the area of a triangle?To calculate the area of a triangle, you can use the formula presented as follows:
Area = (1/2) x base x height
In which the parameters are given as follows:
"base" is the length of the side of the triangle that is perpendicular to the height."height" is the length of the perpendicular line segment from the base to the opposite vertex.For a right triangle, we can consider one side to be the base and the other side to be the height, hence the parameters are given as follows:
Base of 7 units.Height of 6 units.Hence the area of the triangle is given as follows:
A = 0.5 x 7 x 6 = 21 units squared.
Missing InformationThe complete problem is defined as follows:
"Calculate the area of the given triangle".
More can be learned about the area of a triangle at brainly.com/question/21735282
#SPJ1
Find the value of v+8 given that 3v+1=7
Answer:
v + 8 = 10
Step-by-step explanation:
Find the value of v+8 given that 3v+1=7
1st find v solving 3v + 1 = 7
3v + 1 = 7
3v = 7 - 1
3v = 6
v = 6 : 3
v = 2
solve v + 8
v + 8 =
replace v with 2
2 + 8 = 10
Answer:
10
Step-by-step explanation:
Solve for the value of the variable, v, in the given equation of 3v + 1 = 7, by isolating the variable. Do the opposite of PEMDAS.
PEMDAS is the order of operations, and stands for:
Parenthesis
Exponents (& Roots)
Multiplications
Divisions
Additions
Subtractions
~
First, subtract 1 from both sides of the equation:
[tex]3v + 1 = 7\\3v + 1 (-1) = 7 (-1)\\3v = 7 - 1\\3v = 6[/tex]
Next, divide 3 from both sides of the equation:
[tex]3v = 6\\\frac{3v}{3} = \frac{6}{3} \\v = \frac{6}{3} \\v = 2[/tex]
Then, plug in 2 for v in the first given expression:
[tex]v + 8\\=(2) + 8\\=10[/tex]
10 is your answer for v + 8 when 3v + 1 = 7.
~
Learn more about solving for variables, here:
https://brainly.com/question/29583350
1 cubic meter = _____ cm cube
Answer:
1 cubic meter = 1000000 cm cubed
Step-by-step explanation:
[tex]1m^3*10^6=1000000cm^3[/tex]
Answer:
1 cubic meter = 10000000 cm cube
solve the equation
x/2-2=4+1/2
Step-by-step explanation:
7eh8heusvush0wio0w92726 2is 3the world ydgugd8jd8djkd0jd9jd8hd7hd
i need the answer to this question
The measure of angle BAC is 55°, which is closest to option B (50°).
What is a tangent angle?The ratio of the length of the side directly opposite an acute angle to the side directly adjacent to the angle is known as the tangent in trigonometry. Only triangles with straight angles can have this.
Let's give the angles shown in the diagram the following labels:
Angle ACD = 55°
Angle ABD = 35°
Angle BCD = 90°
To determine the size of angle ABC, we can use the knowledge that a triangle's total angles equal 180°. Because the straight line formed by angles ABD and BCD, we have:
[tex]Angle ABC = 180° - Angles ABD and BCD.[/tex]
[tex]Angle ABC = 180° - 35° - 90°Angle ABC = 55°[/tex]
Given that triangle ABC has two angles, we can use the knowledge that a triangle's total of angles equals 180° to determine the size of angle BAC:
[tex]Angle BAC = 180° - Angle ABC - Angle ACBAngle BAC = 180° - 55° - 70°Angle BAC = 55°[/tex]
To know more about angle visit:-
https://brainly.com/question/28451077
#SPJ1
It is most similar to option B (50°) when the angle BAC is 55°.
What is a tangent angle?
The tangent in trigonometry is the length of the side directly opposite an acute angle divided by the length of the side directly next to the angle.
This property can only be found in triangles with straight angles.
Let's give the angles shown in the diagram the following labels:
Angle ACD = 55°
Angle ABD = 35°
Angle BCD = 90°
We can use the fact that a triangle's total number of angles is 180° to calculate the size of angle ABC. due to the fact that the straight line created by angles ABD and BCD
Triangle ABC has two angles, so we can use the fact that a triangle's sum of angles is 180° to calculate the size of angle BAC.
Therefore, the BAC measurement is 55°, which is closest to option B's 50°.C is 55°, which is closest to option B (50°).
To know more about angle from the given link:-
brainly.com/question/28451077
#SPJ1
What rotation centered about the origin maps (4, − 7) to (7,4) ? 90° counterclockwise 180° counterclockwise 270° counterclockwise I don't know. ←
Answer:
What rotation centered about the origin maps (4, − 7) to (7,4) ? 90° counterclockwise 180° counterclockwise 270° counterclockwise I don't know. ←
Step-by-step explanation:
To map the point (4, -7) to (7, 4) by a rotation centered about the origin, we need to find the angle of rotation and direction.
We can start by finding the vector from the origin to (4, -7), which is <4, -7>. We want to rotate this vector to the vector from the origin to (7, 4), which is <7, 4>.
To do this, we need to find the angle between these two vectors. Using the dot product, we have:
<4, -7> · <7, 4> = (4)(7) + (-7)(4) = 0
Since the dot product is zero, we know that the two vectors are orthogonal, and the angle between them is 90 degrees.
To map (4, -7) to (7, 4) with a 90-degree rotation counterclockwise, we can use the matrix:
[0 -1]
[1 0]
Multiplying this matrix by the vector <4, -7>, we get:
[0 -1] [4] = [-7]
[1 0] [-7] [ 4]
which corresponds to the point (-7, 4). This matches our desired endpoint, so the answer is 90° counterclockwise.
Answer:
90° counterclockwise
Step-by-step explanation:
I am not sure if the picture helps or not. I am trying to show that I traced the point (4,-7). Then I have a plus sign at (0,0). I start rotating the tracing paper counterclockwise until I get to the point (7,4). I needed to turn one turn of the plus sign. That would be 90°
Helping in the name of Jesus.
How do I solve? I don’t understand
Step-by-step explanation:
Use the 110 to find the 70 degree angle (they form a straight line = 180°)
then 70 + 64 + R angle = 180° ( sum of angles of a triangle)
then : R angle = 46°
then the R angle + 2x-10 = 90° ( because the two lines are perpendicular)
(2x -10)° + 46 ° = 90 °
x = 27
Census data for a certain county shows that 19% of the adult residents are Hispanic. Suppose 92 people are called to jury duty and only 11 of them are Hispanic. Does this apparent underrepresentation of Hispanics call into question the fairness of the jury selection process? Again run a test using the PHANTOMS method to complete all parts of your problem.
Yes, the apparent under representation of Hispanics on the jury duty calls into question the fairness of the jury selection system, as the results of the hypothesis test suggest that the system may be systematically excluding Hispanics.
To determine whether the apparent underrepresentation of Hispanics on the jury selection system is statistically significant and calls into question its fairness, we need to perform a hypothesis test.
First, we set up the null hypothesis, which is the assumption that there is no difference between the proportion of Hispanics in the county population and the proportion of Hispanics in the jury pool. That is, the proportion of Hispanics in the jury pool is expected to be equal to 19%.
The alternative hypothesis is that there is a difference between the proportion of Hispanics in the county population and the proportion of Hispanics in the jury pool.
We can use a one-tailed z-test to test the null hypothesis, where the test statistic is calculated as:
z = (p - P) / sqrt(P(1-P)/n)
where p is the proportion of Hispanics in the jury pool, P is the proportion of Hispanics in the county population (0.19), and n is the sample size (72).
Plugging in the values, we get
z = (9/72 - 0.19) / sqrt(0.19*(1-0.19)/72) = -2.39
Assuming a significance level of 0.05, we compare the calculated z-value with the critical z-value of -1.645 (obtained from a standard normal distribution table). Since the calculated z-value is less than the critical z-value, we reject the null hypothesis and conclude that the proportion of Hispanics in the jury pool is significantly different from the proportion of Hispanics in the county population.
Learn more about hypothesis test here
brainly.com/question/30588452
#SPJ4
3. Factor 72x³ +72x² +18x.
The expression's fully factored form is:[tex]72x^{3} + 72x^{2} + 18x = 18x(4x^{2} + 1)(x + 1)[/tex]
Factored value is what?Factored Value, also known as "trended value," is the base annual value plus a yearly inflation factor based on a variation in the cost if live that is not to exceed 2% and is set by the State Agency of Equalization.
What is a factored expression example?Rewriting an expression as the sum of factors is referred to as factor expressions or factoring. For instance, 3x + 12y may be expressed as 3 (x + 4y), which is a straightforward equation. The computations get simpler in this method. Three or (x + 4y) were examples of factors.
We can factor out [tex]18x[/tex] from each term to simplify the expression:
[tex]72x^{3} + 72x^{2} + 18x = 18x(4x^{3} + 4x^{2} + 1)[/tex]
An expression enclosed in parentheses can now be calculated by grouping or factoring.
[tex]4x^{3} + 4x^{2} + 1 = (4x^{2} + 1)(x + 1)[/tex]
The expression's properly factored version has the following result,
[tex]72x^{3} + 72x^{2} + 18x = 18x(4x^{2} + 1)(x + 1)[/tex]
To know more about factored visit:
https://brainly.com/question/20168177
#SPJ1
for a given positive integer n, output all the perfect numbers between 1 and n, one number in each line.
Perfect numbers between 1 and n (where n is a positive integer) are 6, 28, 496, 8128.
A positive integer that is the sum of its appropriate divisors is referred to as a perfect number. The sum of the lowest perfect number, 6, is made up of the digits 1, 2, and 3. The digits 28, 496, and 8,128 are also ideal.
Perfect numbers are whole numbers that are equal to the sum of their positive divisors, excluding the number itself. Examples of perfect numbers include 6 (1 + 2 + 3 = 6), 28 (1 + 2 + 4 + 7 + 14 = 28) and 496 (1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496).
To learn more about Perfect numbers link is here
brainly.com/question/29291022
#SPJ4
The complete question is:
What are all the perfect numbers between 1 and n (where n is a positive integer)?
he buys a 5kg lwisa samp and repacks the samp into 125g packets. determine how many packets will be able to get from one pack of 5kg samp?
Answer:5
Step-by-step explanation:5555555
In Problems 21 through 30, set up the appropriate form of a
particular solution yp, but do not determine the values of the
coefficients.y" – 2y' + 2y = et sin x = . =
The particular solution of Differential equation y" – 2y' + 2y = et sin x is yp = (1/2et - 1/2et cos(x))sin(x).
We assume the particular solution is of the form of given differential equation is
yp = (Aet + Bcos(t))sin(x) + (Cet + Dsin(t))cos(x)
where A, B, C, and D are constants to be determined.
Taking the first and second derivative of yp with respect to t:
yp' = Aet sin(x) - Bsin(t)sin(x) + Cet cos(x) + Dcos(t)cos(x)
yp'' = Aet sin(x) - Bcos(t)sin(x) - Cet sin(x) + Dsin(x)cos(t)
Substituting these into the differential equation and simplifying, we get:
(et sin x) = (A - C)et sin(x) + (B - D)cos(x)sin(t)
Since et sin x is not a solution to the homogeneous equation, the coefficients of et sin x and cos(x)sin(t) on both sides of the equation must be equal. Therefore:
A - C = 1 and B - D = 0
Solving for A, B, C, and D, we get:
A = 1/2, B = 0, C = -1/2, D = 0
So the particular solution is:
yp = (1/2et - 1/2et cos(x))sin(x)
To know more about Differential Equation:
https://brainly.com/question/2273154
#SPJ4