I
7. Clarissa Santo worked in a position that earned $2,247 per month for 7 months. Then, she
received a promotion to a position that earned $2,310 per month. What total gross pay did Clarissa
earn for the year?​

Answers

Answer 1

Answer: $27,279

Step-by-step explanation:

The data is:

Clarissa earned $2,247 per month, in the first 7 months.

After that, she earned $2,310 per month.

What total gross pay did Clarissa  earned in one year?

Ok, a year has 12 months, in the first 7 months she earned $2,247 per month, so 7 times $2,247, this is:

7*$2,247 = $15,729

And in the other 12 - 7 = 5 months, she earned $2,310 per month, so 5 times $2,310.

5*$2,310 = $11,550

Adding those togheter:

Total gross = $15,729 + $11,550  = $27,279


Related Questions

A ship leaves the port of Miami with a bearing of S80°E and a speed of 15 knots. After 1 hour, the ship turns 90° toward the south. After 2 hours, maintain the same speed. What is the bearing to the ship from port?

Answers

Answer:

The bearing is N 55.62° W

Step-by-step explanation:

ship leaves the port of Miami with a bearing of S80°E and a speed of 15 knots.

It then turns 90° towards the south after one hour.

Still maintain the same speed and direction for two hours.

The bearing is just the angle difference from the ship current location to where it started.

Let the speed be km/h

Distance covered in the first round

= 15*1

= 15km

Distance covered in the second round

=15*2

= 30 km

Angle at C = (90-80)+90

Angle at C = 10+90= 100

Let the distance between the port and the ship be c

C²= a² + b² -2abcos

C²= 15²+30²-2(15)(30)cos 100

C²= 225+900+156.28

C²= 1281.28

C= 35.8 km

Using sine formula

30/sin x= 35.8/sin 100

30/35.8 * sin 100 = sinx

0.838*0.9848= sin x

0.8253= sin x

Sin ^-1 0.8253 = x

55.62° = x

The bearing is N 55.62° W

Evaluate −x^2−5 y^3 when x = 4 and y = 1

Answers

Answer:

Simplify:

[tex]-4^2-5(1^3)[/tex]

So you get:

[tex]-21\\[/tex]

Answer:

[tex]\huge\boxed{-21}[/tex]

Step-by-step explanation:

-x²-5y³

Given that x = 4, y = 1

[tex]-(4)^2-5(1)^3[/tex]

[tex]-16-5(1)\\-16-5\\-21[/tex]

Which property of equality was used to solve this equation? x − 5 = -14 x − 5 + 5 = -14 + 5 x = -9 A. addition property of equality B. subtraction property of equality C. multiplication property of equality D. division property of equality

Answers

Answer:

A

Step-by-step explanation:

In the second step, they added 5 to both sides to get rid of the -5 on the left side. Since the same thing was done to both sides (addition), the answer is the addition property of equality.

Answer:

Addition property of equality

Step-by-step explanation:

The equation is like:

=> x - 5 = -14

=> x - 5 + 5 = -14 + 5

=> x = -9

Since, we add 5 to both sides to solve for "x", the answer is "Addition Property of Equality".

Hope this helps.

Need Help
Please Show Work​

Answers

Answer:

18 - 8 * n = -6 * n

The number is 9

Step-by-step explanation:

Let n equal the number

Look for key words such as is which means equals

minus is subtract

18 - 8 * n = -6 * n

18 -8n = -6n

Add 8n to each side

18-8n +8n = -6n+8n

18 =2n

Divide each side by 2

18/2 = 2n/2

9 =n

The number is 9

━━━━━━━☆☆━━━━━━━

▹ Answer

n = 9

▹ Step-by-Step Explanation

18 - 8 * n = -6 * n

Simple numerical terms are written last:

-8n + 18 = -6n

Group all variable terms on one side and all constant terms on the other side:

(-8n + 18) + 8n = -6n + 8n

n = 9

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

Suppose a 99% confidence interval for the mean salary of college graduates in a town in Mississippi is given by [$34,393, $47,207]. The population standard deviation used for the analysis is known to be $14,900.

Required:
a. What is the point estimate of the mean salary for all college graduates in this town?
b. Determine the sample size used for the analysis.

Answers

Answer: a. $40,800 b. 36

Step-by-step explanation:

Given : a 99% confidence interval for the mean salary of college graduates in a town in Mississippi is given by [$34,393, $47,207].

[tex]\sigma= \$14,900[/tex]

a. Since Point estimate of of the mean = Average of upper limit and lower limit of the interval.

Therefore , the point estimate of the mean salary for all college graduates in this town = [tex]\dfrac{34393+47207}{2}=\dfrac{81600}{2}[/tex]

= 40,800

hence, the point estimate of the mean salary for all college graduates in this town = $40,800

b.  Since  lower limit = Point estimate - margin of error, where Margin of error is the half of the difference between upper limit and lower limit.

Margin of error[tex]=\dfrac{47207-34393}{2}=6407[/tex]

Also, margin of error = [tex]z\times\dfrac{\sigma}{\sqrt{n}}[/tex], where z= critical z-value for confidence level and n is the sample size.

z-value for 99% confidence level  = 2.576

So,

[tex]6407=2.576\times\dfrac{14900}{\sqrt{n}}\\\\\Rightarrow\ \sqrt{n}=2.576\times\dfrac{14900}{6407}=5.99\\\\\Rightarrow\ n=(5.99)^2=35.8801\approx 36[/tex]

The sample size used for the analysis =36

WILLL GIVE ALL MY POINT PLUS MARK BRAILIEST PLS HELP ASAP TY <3

Answers

Answer:

The unknown integer that solves the equation is 6.

Step-by-step explanation:

In order to find the missing number, we can set up an equation as if we are solving for x.

x + (-8) = -2

Add 8 on both sides of the equation.

x = 6

So, the unknown integer is 6.

Answer:

6

Step-by-step explanation:

6 plus -8 is -2

What is the value of x to the nearest tenth?

Answers

Answer:

x=9.6

Step-by-step explanation:

The dot in the middle represents the center of the circle, so therefore, the line that is represented by 16 is the radius. Since that is the radius, the side that is the hypotenuse of the small triangle is also 16, since they have the same distance.

The line represented by 25.6 with x as its bisector shows that when we divide it by 2, the other side of the triangle besides the hypotenuse is 12.8.

Now that we have the two sides of the triangle, we can find the last side (represented by x). Use pythagorean theorem:

[tex]a^2 +b^2=c^2\\x^2+(12.8)^2=16^2\\x^2+163.84=256\\x^2=92.16\\x=9.6[/tex]

You are starting a sock company. You must determine your costs to manufacture your product. The start-up cost is $2000 (which helps you purchase sewing machines). Material and labor is $2.50 per pair of socks.

a. Write an equation to model your company’s cost for manufacturing the socks. (i.e. y=mx+b)
b. Which variable represents the domain? Explain your answer.
c. What is the domain for this situation?
d. Which variable represents the range? Explain your answer.
e. What is the range for this situation?
f. Using your equation, what would be the cost of manufacturing 25 pairs of socks?
g. How many socks could you make with $2500?
h. Create a coordinate graph on a sheet of paper to represent this situation. Describe the graph. Include the dimensions you would use for the x and y axes.
PLS HELP ASAP!

Answers

a. y = 2.5x + 2000

b. The variable x represents the domain because the domain is the range of the possible x values.

c. x ≥ 0

d. The variable y represents the range because the range is the range of the possible y values.

e. y ≥ 2000

f. y = 2.5(25) + 2000

  y = 62.5 + 2000

  y = $2062.50

g. 2500 = 2.5x + 2000

   2.5x = 500

   x = 200

h. I am sorry I cannot make the graph but hopefully you can figure out how to make it using the info I have given in the above parts of the problem :)

If vectors i+j+2k, i+pj+5k and 5i+3j+4k are linearly dependent, the value of p is what?​

Answers

Answer:

[tex]p = 2[/tex] if given vectors must be linearly independent.

Step-by-step explanation:

A linear combination is linearly dependent if and only if there is at least one coefficient equal to zero. If [tex]\vec u = (1,1,2)[/tex], [tex]\vec v = (1,p,5)[/tex] and [tex]\vec w = (5,3,4)[/tex], the linear combination is:

[tex]\alpha_{1}\cdot (1,1,2)+\alpha_{2}\cdot (1,p,5)+\alpha_{3}\cdot (5,3,4) =(0,0,0)[/tex]

In other words, the following system of equations must be satisfied:

[tex]\alpha_{1}+\alpha_{2}+5\cdot \alpha_{3}=0[/tex] (Eq. 1)

[tex]\alpha_{1}+p\cdot \alpha_{2}+3\cdot \alpha_{3}=0[/tex] (Eq. 2)

[tex]2\cdot \alpha_{1}+5\cdot \alpha_{2}+4\cdot \alpha_{3}=0[/tex] (Eq. 3)

By Eq. 1:

[tex]\alpha_{1} = -\alpha_{2}-5\cdot \alpha_{3}[/tex]

Eq. 1 in Eqs. 2-3:

[tex]-\alpha_{2}-5\cdot \alpha_{3}+p\cdot \alpha_{2}+3\cdot \alpha_{3}=0[/tex]

[tex]-2\cdot \alpha_{2}-10\cdot \alpha_{3}+5\cdot \alpha_{2}+4\cdot \alpha_{3}=0[/tex]

[tex](p-1)\cdot \alpha_{2}-2\cdot \alpha_{3}=0[/tex] (Eq. 2b)

[tex]3\cdot \alpha_{2}-6\cdot \alpha_{3} = 0[/tex] (Eq. 3b)

By Eq. 3b:

[tex]\alpha_{3} = \frac{1}{2}\cdot \alpha_{2}[/tex]

Eq. 3b in Eq. 2b:

[tex](p-2)\cdot \alpha_{2} = 0[/tex]

If [tex]p = 2[/tex] if given vectors must be linearly independent.

In 2018, the population of a district was 25,000. With a continuous annual growth rate of approximately 4%, what will the
population be in 2033 according to the exponential growth function?
Round the answer to the nearest whole number.

Answers

Answer:

40,000 populations

Step-by-step explanation:

Initial population in 2018 = 25,000

Annual growth rate (in %) = 4%

Yearly Increment in population = 4% of 25000

= 4/100 * 25000

= 250*4

= 1000

This means that the population increases by 1000 on yearly basis.

To determine what the  population will be in 2033, we need to first know the amount of years we have between 2018 and 2033.

Amount of years we have between 2018 and 2033 = 2033-2018

= 15 years

After 15 years, the population will have increased by 15*1000 i.e 15,000 more than the initial population.

Hence the population in 2033 will be Initial population + Increment after 15years = 25,000+15000 = 40,000 population.

A cube has an edge of 2 feet. The edge is increasing at the rate of 5 feet per minute. Express the volume of the cube as a function of m, the number of minutes elapsed.

Answers

Answer:

[tex]V(m) = (2 + 5m)^3[/tex]

Step-by-step explanation:

Given

Solid Shape = Cube

Edge = 2 feet

Increment = 5 feet per minute

Required

Determine volume as a function of minute

From the question, we have that the edge of the cube increases in a minute by 5 feet

This implies that,the edge will increase by 5m feet in m minutes;

Hence,

[tex]New\ Edge = 2 + 5m[/tex]

Volume of a cube is calculated as thus;

[tex]Volume = Edge^3[/tex]

Substitute 2 + 5m for Edge

[tex]Volume = (2 + 5m)^3[/tex]

Represent Volume as a function of m

[tex]V(m) = (2 + 5m)^3[/tex]

A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%.​

Answers

Answer:

109

Step-by-step explanation:

Use a chart or calculator to find the z-score corresponding to a probability of 1%.

P(Z > z) = 0.01

P(Z < z) = 0.99

z = 2.33

Now find the sample standard deviation.

z = (x − μ) / s

2.33 = (30.5 − 30) / s

s = 0.215

Now find the sample size.

s = σ / √n

s² = σ² / n

0.215² = 5 / n

n = 109

What is the name of a geometric figure that looks an orange


A. Cube

B. Sphere

C. Cylinder

D. Cone

Answers

Answer:

b . sphere

Step-by-step explanation:


[tex]4x - 2x = [/tex]

Answers

Answer:

2x

Step-by-step explanation:

These are like terms so we can combine them

4x-2x

2x

Answer:

2x

Explanation:

Since both terms in this equation are common, we can simply subtract them.

4x - 2x = ?

4x - 2x = 2x

Therefore, the correct answer should be 2x.

The radius of a right circular cylinder is increasing at the rate of 7 in./sec, while the height is decreasing at the rate of 6 in./sec. At what rate is the volume of the cylinder changing when the radius is 20 in. and the height is 16 in.

Answers

Answer:

[tex]\approx \bold{6544\ in^3/sec}[/tex]

Step-by-step explanation:

Given:

Rate of change of radius of cylinder:

[tex]\dfrac{dr}{dt} = +7\ in/sec[/tex]

(This is increasing rate so positive)

Rate of change of height of cylinder:

[tex]\dfrac{dh}{dt} = -6\ in/sec[/tex]

(This is decreasing rate so negative)

To find:

Rate of change of volume when r = 20 inches and h = 16 inches.

Solution:

First of all, let us have a look at the formula for Volume:

[tex]V = \pi r^2h[/tex]

Differentiating it w.r.to 't':

[tex]\dfrac{dV}{dt} = \dfrac{d}{dt}(\pi r^2h)[/tex]

Let us have a look at the formula:

[tex]1.\ \dfrac{d}{dx} (C.f(x)) = C\dfrac{d(f(x))}{dx} \ \ \ (\text{C is a constant})\\2.\ \dfrac{d}{dx} (f(x).g(x)) = f(x)\dfrac{d}{dx} (g(x))+g(x)\dfrac{d}{dx} (f(x))[/tex]

[tex]3.\ \dfrac{dx^n}{dx} = nx^{n-1}[/tex]

Applying the two formula for the above differentiation:

[tex]\Rightarrow \dfrac{dV}{dt} = \pi\dfrac{d}{dt}( r^2h)\\\Rightarrow \dfrac{dV}{dt} = \pi h\dfrac{d }{dt}( r^2)+\pi r^2\dfrac{dh }{dt}\\\Rightarrow \dfrac{dV}{dt} = \pi h\times 2r \dfrac{dr }{dt}+\pi r^2\dfrac{dh }{dt}[/tex]

Now, putting the values:

[tex]\Rightarrow \dfrac{dV}{dt} = \pi \times 16\times 2\times 20 \times 7+\pi\times 20^2\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 22 \times 16\times 2\times 20 +3.14\times 400\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 14080 -7536\\\Rightarrow \dfrac{dV}{dt} \approx \bold{6544\ in^3/sec}[/tex]

So, the answer is: [tex]\approx \bold{6544\ in^3/sec}[/tex]

Tina's age is 4 years less than 3 times her niece's age. If her niece's age is x years, which of the following expressions best shows Tina's age? x − 4 4x − 3 3x − 4 4 − 3x

Answers

Answer:

3x - 4

Step-by-step explanation:

As Tina's age is 3 into x ( 3 x x= 3x)but 4years less (-4)

Therefore Tina's age is 3x - 4

Answer:

3x - 4

Step-by-step explanation:

Use these representations:  niece's age: x

We triple x and then subract 4 years from the result, obtaining:

Tina's age:  3x - 4

identify(describe) each part of the ellipse as labeled by a letter​

Answers

Answer: see below

Step-by-step explanation:

A) y has the smaller radius so this is the Minor Axis

B) y has the smaller radius so these are the CoVertices

C) x has the bigger radius so these are the Vertices

D) This is the Center of the ellipse.

F & G) These are the Foci (plural for Focus)

H) x has the bigger radius so this is the Major Axis

Money is invested into an account earning 4.25% interest compounded annually. If the accumulated value after 18 years
will be $25,000, approximately how much money is presently in the account?
a $5,875
b. $11,820
c. $19,125
d. $23,960

Answers

Answer:

  b.  $11,820

Step-by-step explanation:

The 'rule of 72' tells you the doubling time of this account is about ...

  (72 years)/(4.25) = 16.9 years

So, in 18 years, the amount will be slightly more than double the present value. That is, the present value is slightly less than half the future amount.

  $25,000/2 = $12,500

The closest answer choice is ...

  $11,820

__

The present value of that future amount is ...

  PV = FV×(1 +r)^-t = $25,000×1.0425^-18 ≈ $11,818.73

The present value is about $11,820.

Answer:

B

Step-by-step explanation:

Two charged particles, Q1, and Q2, are a distance r apart with Q2 = 5Q1 Compare the forces they exert on one another when F1 is the force Q2 exerts on Q1and F2 is the force Q1 exerts on Q2.
a) F2 = 5F1.
b) F2 =-5F1.
c) F2 = F1.
d) F2 = -F1.
e) 5F2 = F1.

Answers

Answer:

d) F2 = -F1.

Step-by-step explanation:

According to Coulomb's law of forces on electrostatic charges, the force of attraction is proportional to the product of their charges, and inversely proportional to the square of their distance apart.

What this law means is that both particles will experience an equal amount of force on them, due to the presence of the other particle. This force is not just as a result of their individual charges, but as a result of the product of their charges. Also, the force is a vector quantity that must have a direction alongside its magnitude, and the force on the two particles will always act in opposite direction, be it repulsive or attractive.

2/5 × 3/7? please help ​

Answers

Answer:

[tex]\frac{2}{5}[/tex] • [tex]\frac{3}{7}[/tex] = [tex]\frac{6}{35}[/tex]

Answer: 0.171

Step-by-step explanation:

First, do 2/5 which would equal 0.4

Second, so 3/7 which would equal 0.428571428571429

Lastly multiply the two answers together to get 0.171428571428571

Step 1: Subtract 3 from both sides of the inequality
Step 2
Step 3: Divide both sides of the inequality by the
coefficient of x.
What is the missing step in solving the inequality 5 -
8x < 2x + 3?
O Add 2x to both sides of the inequality
O Subtract 8x from both sides of the inequality
O Subtract 2x from both sides of the inequality
Add 8x to both sides of the inequality.
Mark this and return
Save and Exit
Intext
Submit

Answers

Answer:

add 8x to both sides

Step-by-step explanation:

5-8x<2x+3

first step, subtract 3 from both sides:

2-8x<2x

second step,?

2<?x

so you need to add 8x first

PLEASE HELP!!! TIMED QUESTION!!! FIRST CORRECT ANSWER WILL BE BRAINLIEST!!!

The bar graph shows the number or each item sold at a bake sale. Which statement about the graph is true?​

Answers

The answer is 2. You can see from the graph that 10 cookies were sold. If you take 1% of 10 and add it to 10, you get 11, which is exactly how many cupcakes were sold
Number 1 is correct.
Let me know if you need the working out. Hope it helps :)

Will Give Brainliest Please Answer Quick

Answers

Answer:

Option (2)

Step-by-step explanation:

If a perpendicular is drawn from the center of a circle to a chord, perpendicular divides the chord in two equal segments.

By using this property,

Segment MN passing through the center Q will be perpendicular to chords HI ans GJ.

By applying Pythagoras theorem in right triangle KNJ,

(KJ)² = (KN)² + (NJ)²

(33)² = (6√10)² + (NJ)²

NJ = [tex]\sqrt{1089-360}[/tex]

NJ = [tex]\sqrt{729}[/tex]

    = 27 units

Since, GJ = 2(NJ)

GJ = 2 × 27

GJ = 54 units

Option (2) will be the answer.

-4-(-1) answer the question

Answers

Answer:

-3

Step-by-step explanation:

Since you are subtracting a negative, it turns positive so it will be.

-4+1

-3

Answer:

-3

Step-by-step explanation:

-4-(-1) = -4 + 1 = -3

Prove that for all integers m and n, m - n is even if, and only if, both m and n are even or both m and n are odd.

Answers

Answer:

Below

Step-by-step explanation:

Suppose that m and n are both even numbers.

So we can express them as the product of 2 and another number.

● n = 2×a

● m = 2×b

● m-n = 2b-2a

● m-n = 2(b-a)

m-n is an even number since it is divisible by 2.

■■■■■■■■■■■■■■■■■■■■■■■■■■

Suppose that both n and m are odd numbers.

● n = 2a+1

● m = 2b+1

● m-n = 2b+1-(2a+1)

● m-n = 2b+1-2a-1

● m-n = 2b-2a

● m-n = 2(b-a)

So m-n is even since it is divisible by 2.

■■■■■■■■■■■■■■■■■■■■■■■■■■

Suppose that m is odd and n is even ir vice versa

● n = 2a or n= 2a+1

● m = 2b+1 or m = 2b

● m-n = 2b+1-2a or m-n = 2b-2a-1

● m-n = 2(b-a) +1 or m-n = 2(b-a)-1

In both cases m-n isn't even.

■■■■■■■■■■■■■■■■■■■■■■■■■■

So m-n is even if and only if m and n are odd or m and are even

Answer:

Case 1

both m and n are even

Therefore m/2 and n/2 are integers

Then,

m-n

=2(m/2 - n/2)

Since m/2 and n/2 are integers

Then m/2 - n/2 will be an integer

Therefore,

m-n = 2(Z)

Where Z is an integer

Since 2 is a factor of m-n

Therefore m -n is even

Case 2

Both m and n are odd

m-n

= 2(½m - ½n)

When an odd number is divided by 2 it gives an integer and a remainder of 1

Therefore

½m = Y + ½

And

½n = Z + ½

Where Y and Z are integers

Then

m-n = 2(Y+½-Z-½)

= 2(Y-Z)

Y-Z will also be an integer

m-n= 2A

Therefore m-n is even

Case 3

One is odd and the other even

m-n = 2(m/2 - n/2)

Assume m is even and n is odd

From the discussions above

m-n = 2(Y - Z - ½)

m-n = 2(A - ½)

Hence m-n is not even because when is divided by two it doesn't give an integer.

Therefore for all integers m and n, m - n is even if, and only if, both m and n are even or both m and n are odd.

You are an assistant director of the alumni association at a local university. You attend a presentation given by the university’s research director and one of the topics discussed is what undergraduates do after they matriculate. More specifically, you learn that in the year 2018, a random sample of 216 undergraduates was surveyed and 54 of them (25%) decided to continue school to pursue another degree, and that was up two percentage points from the prior year. The Dean of the College of Business asks the research director if that is a statistically significant increase. The research director says she isn’t sure, but she will have her analyst follow up. You notice in the footnotes of the presentation the sample size in the year of 2017 was 200 undergraduates, and that 46 of them continued their education to pursue another degree.

There is a short break in the meeting. Take this opportunity to answer the dean’s question using a confidence interval for the difference between the proportions of students who continued their education in 2018 and 2017. (Use 95% confidence level and note that the university has about 10,000 undergraduate students).

Answers

Answer:

(0.102, -0.062)

Step-by-step explanation:

sample size in 2018 = n1 = 216

sample size in 2017 = n2 = 200

number of people who went for another degree in 2018 = x1 = 54

number of people who went for another degree in 2017 = x2 = 46

p1 = x1/n1 = 0.25

p2 = x2/n2 = 0.23

At 95% confidence level, z critical = 1.96

now we have to solve for the confidence interval =

[tex]p1 -p2 ± z*\sqrt{((1-p1)*p1)/n1 + ((1-p2)*p2/n2}[/tex]

[tex]0.25 -0.23 ± 1.96*\sqrt{((1 - 0.25) * 0.25)/216 + ((1 - 0.23) *0.23/200}[/tex]

= 0.02 ± 1.96 * 0.042

= 0.02 + 0.082 = 0.102

= 0.02 - 0.082 = -0.062

There is 95% confidence that there is a difference that lies between  - 0.062 and 0.102 on the proportion of students who continued their education in the years, 2017 and 2018.

There is no significant difference between the two.

Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 <= t <= sqrt about the y axis

Answers

The area is given by the integral

[tex]\displaystyle A=2\pi\int_Cx(t)\,\mathrm ds[/tex]

where C is the curve and [tex]dS[/tex] is the line element,

[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]

We have

[tex]x(t)=t+\sqrt 2\implies\dfrac{\mathrm dx}{\mathrm dt}=1[/tex]

[tex]y(t)=\dfrac{t^2}2+\sqrt 2\,t+1\implies\dfrac{\mathrm dy}{\mathrm dt}=t+\sqrt 2[/tex]

[tex]\implies\mathrm ds=\sqrt{1^2+(t+\sqrt2)^2}\,\mathrm dt=\sqrt{t^2+2\sqrt2\,t+3}\,\mathrm dt[/tex]

So the area is

[tex]\displaystyle A=2\pi\int_{-\sqrt2}^{\sqrt2}(t+\sqrt 2)\sqrt{t^2+2\sqrt 2\,t+3}\,\mathrm dt[/tex]

Substitute [tex]u=t^2+2\sqrt2\,t+3[/tex] and [tex]\mathrm du=(2t+2\sqrt 2)\,\mathrm dt[/tex]:

[tex]\displaystyle A=\pi\int_1^9\sqrt u\,\mathrm du=\frac{2\pi}3u^{3/2}\bigg|_1^9=\frac{52\pi}3[/tex]

For the following graph, state the polar coordinate with a positive r and positive q (in radians). Explain your steps as to how you determined the coordinate (in your own words). I'm looking for answers that involve π, not degrees for your angles. State the polar coordinate with (r, -q). Explain how you found the new angle. State the polar coordinate with (-r, q). Explain how you found the new angle. State the polar coordinate with (-r, -q). Explain how you found the new angle.

Answers

Answer:

Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )

Step-by-step explanation:

For the first two cases, ( r, θ ) r would be > 0, where r is the directed distance from the pole, and theta is the directed angle from the positive x - axis.

So when r is positive, we can tell that this point is 8 units from the pole, so r is going to be 8 in either case,

( 8, 240° ) - because r is positive, theta would have to be an angle with which it's terminal side passes through this point. As you can see that would be 2 / 3rd of 90 degrees more than a 180 degree angle,or 60 + 180 = 240 degrees.

( 8, - 120° ) - now theta will be the negative side of 360 - 240, or in other words - 120

Now let's consider the second two cases, where r is < 0. Of course the point will still be 8 units from the pole. Again for r < 0 the point will lay on the ray pointing in the opposite direction of the terminal side of theta.

( - 8, 60° ) - theta will now be 2 / 3rd of 90 degrees, or 60 degrees, for - r. Respectively the remaining degrees will be negative, 360 - 60 = 300, - 300. Thus our second point for - r will be ( - 8, - 300° )

_________________________________

So we have the points ( 8, 240° ), ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). However we only want 3 cases, so we have points ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). Let's convert the degrees into radians,

Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )

A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet.

Required:
Do the results support the manufacturer's claim?

Answers

Complete question is;

A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet. Required:

Do the results support the manufacturer's claim?

Let μ1 be the true mean range of the manufacturer's cordless telephone and μ2 be the true mean range of the competitor's cordless telephone. Use a significance level of α = 0.01 for the test. Assume that the population variances are equal and that the two populations are normally distributed

Answer:

We will fail to reject the null hypothesis as there is no sufficient evidence to support the manufacturers claim.

Step-by-step explanation:

For the first sample, we have;

Mean; x'1 = 1160 ft

standard deviation; σ1 = 32 feet

Sample size; n1 = 19

For the second sample, we have;

Mean; x'2 = 1130 ft

Standard deviation; σ2 = 30 ft

Sample size; n2 = 11

The hypotheses are;

Null Hypothesis; H0; μ1 = μ2

Alternative hypothesis; Ha; μ1 > μ2

The test statistic formula for this is;

z = (x'1 - x'2)/√[(σ1)²/n1) + (σ2)²/n2)]

Plugging in the relevant values, we have;

z = (1160 - 1130)/√[(32)²/19) + (30)²/11)]

z = 2.58

From the z-table attached, we have a p-value = 0.99506

This p-value is more than the significance value of 0.01,thus,we will fail to reject the null hypothesis as there is no sufficient evidence to support the manufacturers claim.

how to write this in number form The difference of 9 and the square of a number

Answers

Answer:

9-x^2

Step-by-step explanation:

The difference of means subtracting. the first number is 9 and the second is x^2, so you get 9-x^2

Other Questions
Michigan Corporation manufactured inventory in the United States and sold the inventory to customers in Canada. Gross profit from sale of the inventory was $500,000. Title to the inventory passed FOB: Destination. How much of the gross profit is treated as foreign source income for purposes of computing Michigan Corporations foreign tax credit in the current year? please i need help asap lolA baseball league is holding registration for both a men's league and a women's league. Only a total of 546 players can register, and each team consists of exactly 13 players. If 25 women's teams have already registered, which inequality could be used to find m, the number of men's teams that can register? A. 25(13) + 13m 546 C. 25(13 + 13m) 546 Read the text, choices, and question carefully and choose the best option to answer the question. Patrick is a high school teacher in the United States, and he is talking today to his students about an experience he had in a Spanish-speaking country. He is concerned that only 53% of the high school students there go to school. Based on the text and on what you learned in the lesson, which Spanish-speaking country did he visit and have this experience? Honduras Nicaragua Costa Rica United States Who is the first president of Nepal?1.Ram Baran Yadav2.K.P Sharma Oli3.Pushpa Kamal Dahal4.Narendra Modi the principal p is borrowed at a simple interest rate r for a period of time t. find the loan's future value g P = 700, r = 8.25, t = 3 months The main difference between archaeologists and anthropologists is that archaeologists find and excavate the artifacts of ancient people, while anthropologists excavate the tombs of ancient people. archaeologists concentrate on the physical artifacts of ancient people, while anthropologists study a wider range of human cultures and behaviors. archaeologists search for and excavate the artifacts of ancient people, while anthropologists interpret the findings of archaeologists. archaeologists focus on artifacts of ancient people, while anthropologists study human remains of ancient people. BRAINLEST , If y varies inversely with the square of x, and y = 26 when x = 4, find y when x = 2. i need help will rate you branliest If you invest $ 30 , 700 with an annual interest rate of 8.9 % , compounded daily, how much would you have at the end of 4 years? what is the meaning of Alkaline medium in life processes A baking scale measures mass to the tenth of a gram up to 650 grams .Which of the following measurements is possible 5) Could you me some water, please?A ) takeB pickC) bringD) drop An AC voltage is represented by the relation v= 12. Determine the: (a) peak-to-peak voltage; (b) frequency; (c) root-mean-square voltage; (d) Period of the signal. If you have a piece of glass that is 12in X 12in - how many square feet is it? Why did Washington refuse to help France or Britain? Ciara is doing research for an article on keeping cats inside instead of letting them roam outdoors. Shes decided to quote the following source in her article: Home Sweet Home: Bringing an Outside Cat In from www.humanesociety.org. Is this source credible? Why or why not? A. This source isnt credible, because its a commercial website about animals. B. This source isnt credible, because its from a privately owned veterinary organization. C. This source is credible because its from a well-known national association dedicated to animal welfare. D. This source is credible because its from a website about pet animals that has been updated fairly recently. The four principal types of stress are __________.A. frustration, conflict, pressure, and anxiety B. frustration, conflict, pressure, and change C. anger, anxiety, depression, and annoyance D. frustration, conflict, depression, and annoyance Examine four factors that have affected tha traditional roles of Ghanian woman [PLEASE HELP] Consider this function, f(x) = 2X - 6.Match each transformation of f (x) with its descriptions.. Its time to write your report on Adolf Hitler to submit to your government..