If 2x + 5 = 8x, then 12x = ?
A 5
B
10
C
15
D 20

Answers

Answer 1

Answer:

10

Step-by-step explanation:

2x + 5 = 8x

Subtract 2x from each side

2x-2x + 5 = 8x-2x

5 = 6x

We want 12x so multiply each side by 2

2*5 = 6x*2

10 = 12x

Answer 2

Answer:

B. 10

Step-by-step explanation:

To find 12x, you first need to find the value of x using the first equation:

[tex]2x+5=8x[/tex]

You need to get the variables (x) on the same side of the equation in order to simplify them. To do this, use reverse operations. Subtract 2x from both sides to keep the equation balanced:

[tex]2x-2x+5=8x-2x\\\\5=6x[/tex]

Now isolate the variable (x) by dividing both sides of the equation by 6 (using reverse operations):

[tex]\frac{5}{6}=\frac{6x}{6} \\\\\frac{5}{6}=x[/tex]

Now insert the given value of x into 12x:

[tex]12(\frac{5}{6})[/tex]

Simplify:

[tex]12*\frac{5}{6} \\\\\frac{12}{1}*\frac{5}{6}\\\\\frac{60}{6}=10[/tex]

12x equals 10.

:Done


Related Questions

The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:

Answers

Complete Question

On the uploaded image is a similar question that will explain the given question

Answer:

The value of k is  [tex]k = 214285.7[/tex]

The percentage  of the oil that will be cleaned is [tex]x = 80.77\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  cost of cleaning up the spillage is  [tex]C = \frac{ k x }{100 - x }[/tex]  [tex]x \le x \le 100[/tex]

     The  cost of cleaning x =  70% of the oil is  [tex]C = \$500,000[/tex]

   

Now at  [tex]C = \$500,000[/tex] we have  

       [tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]

       [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]k = 214285.7[/tex]

Now  When  [tex]C = \$900,000[/tex]

       [tex]x = 80.77\%[/tex]

       

 

Foram prescritos 500mg de dipirona para uma criança com febre.Na unidade tem disponivel ampola de 1g/2ml.Quantos g vão ser administrados no paciente

Answers

De acordo com a disponibilidade da unidade, há apenas a seguinte dosagem: 1g/2mL - ou seja, uma grama de dipirona a cada 2mL

O enunciado está meio mal formulado, pois é dito que foram prescritos 500mg de dipirona e é essa quantidade de farmaco que a criança tem que tomar. Deseja-se saber quantos mL deverao ser administrados.

Fazendo a classica regra de 3, podemos chegar no volume desejado:

(atentar que 500mg = 0,5g)

     g               mL

     1    ---------   2

    0,5  ---------  X    

1 . X = 0,5 . 2

X = 1mL

Please help ! I’ll mark you as brainliest if correct.

Answers

Answer:

D = -87Dx = 174Dy = -435Dz = 0(x, y, z) = (-2, 5, 0)

Step-by-step explanation:

The determinant of the coefficient matrix is ...

  [tex]D=\left|\begin{array}{ccc}2&5&3\\4&-1&-4\\-5&-2&6\end{array}\right|\\\\=2(-1)(6)+5(-4)(-5)+3(4)(-2)-2(-4)(-2)-5(4)(6)-3(-1)(-5)\\\\=-12+100-24-16-120-15=\boxed{-87}[/tex]

The other determinants are found in similar fashion after substituting the constants on the right for each of the above matrix columns, in turn.

Those determinants are ...

  [tex]D_x=\left|\begin{array}{ccc}21&5&3\\-13&-1&-4\\0&-2&6\end{array}\right|=174[/tex]

  [tex]D_y=\left|\begin{array}{ccc}2&21&3\\4&-13&-4\\-5&0&6\end{array}\right|=-435[/tex]

  [tex]D_z=\left|\begin{array}{ccc}2&5&21\\4&-1&-13\\-5&-2&0\end{array}\right|=0[/tex]

The solutions are ...

  x = 174/-87 = -2

  y = -435/-87 = 5

  z = 0

That is, (x, y, z) = (-2, 5, 0).

The age of some lecturers are 42,54,50,54,50,42,46,46,48 and 48 calculate the mean age and standard deviation

Answers

Answer:

Mean age: 48

Standard deviation: 4

Step-by-step explanation:

a) Mean

The formula for Mean = Sum of terms/ Number of terms

Number of terms

= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10

= 480/10

= 48

The mean age is 48

b) Standard deviation

The formula for Standard deviation =

√(x - Mean)²/n

Where n = number of terms

Standard deviation =

√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]

= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10

=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10

=√160/10

= √16

= 4

The standard deviation of the ages is 4

Three out of every ten dentists recommend a certain brand of fluoride toothpaste. Which assignment of random digits would be used to simulate the random sampling of dentists who prefer this fluoride toothpaste?

Answers

Answer:

eddfdgdccggģdffcdrrfxddxcvgfx

Please help me solve for the median !!!

Answers

Answer:

50.93

Step-by-step explanation:

Add up the frequencies:

2 + 5 + 14 + 15 + 21 + 18 + 15 + 9 + 2 = 101

Divide by 2: 101/2 = 50.5

So the median is the 51st number, with 50 below and 50 above.

Add up the frequencies until you find the interval that contains the 51st number.

2 + 5 + 14 + 15 = 36

2 + 5 + 14 + 15 + 21 = 57

So the median is in the group 49.5 − 51.5.  To estimate the median, we use interpolation.  Find the slope of the line from (36, 49.5) to (57, 51.5).

m = (51.5 − 49.5) / (57 − 36)

m = 2/21

So at x = 51:

2/21 = (y − 49.5) / (51 − 36)

y = 50.93



Type the missing number in this sequence:
1,
4,
,64, 256,
1,024

Answers

Answer:

16

Step-by-step explanation:

The sequence is 1, 4,...,64, 256, 1024

Notice that:

● 1 = 2^0

● 4 = 2^2

● 64 = 2^6

● 256 = 2^8

● 1024 = 2^10

Notice that we add 2 each time to the exponent so the missing number is:

● 2^(2+2) = 2^4 = 16

Which statements about the dilation are true? Check all that apply. Triangle X prime Y prime Z prime. Point X prime is 2 units from the center of dilation C and point Z prime is 3 units from the center of dilation. Triangle X Y Z. Point X is 5 units from point C and point Z is 7.5 units from point C. The center of dilation is point C. It is a reduction. It is an enlargement. The scale factor is 2.5. The scale factor is Two-fifths.

Answers

Pls give brainliest.

Answer:

I only know two right answers.

A: The center of dilation is point C.

C: It is an enlargement.

E: The scale factor is 2/5.

Step-by-step explanation:

These two answers are correct because When you look in the center you see a C.

You tell if it is a reduction because the pre image is small but the image is big.

The center of dilation is point C.

It is an enlargement.

The scale factor is 2/5

The correct options are D, F, H.

What is dilation?

Resizing an item uses a transformation called dilation. Dilation is used to enlarge or shorten the structures. The result of this transformation is an image with the same shape as the original. However, there is a variation in the shape's size. The initial form should be stretched or contracted during a dilatation.

Given:

The transformation of the figure is dilation.

The figure is given in the attached image.

From the diagram:

The center of dilation is point C.

It is an enlargement.

The scale factor is 2/5

Therefore, all the correct statements are given above.

To learn more about the dilation in geometry;

https://brainly.com/question/10713409

#SPJ6

cooks are needed to prepare for a large party. Each cook can bake either 5 Large cakes or 14 small cakes per hour . The kitchen is available for 3 hours and 29 large cakes and 260 cakes need to be baked . How many cooks are required to bake the required number of cakes during the time the kitchen is available?​

Answers

it was all about equating some values

to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Let's determine the number of cooks required to bake the required number of cakes during the available time.

We have the following information:

- Each cook can bake either 5 large cakes or 14 small cakes per hour.

- The kitchen is available for 3 hours.

- We need to bake 29 large cakes and 260 cakes in total.

First, let's calculate the number of large cakes that can be baked by one cook in 3 hours:

1 cook can bake 5 large cakes/hour × 3 hours = 15 large cakes.

Next, let's calculate the number of small cakes that can be baked by one cook in 3 hours:

1 cook can bake 14 small cakes/hour × 3 hours = 42 small cakes.

Now, let's calculate the number of large cakes that can be baked by all the cooks in 3 hours:

Total number of large cakes = Number of cooks × Large cakes per cook per 3 hours

We need to bake 29 large cakes, so:

29 = Number of cooks × 15

Number of cooks = 29 / 15 ≈ 1.93

Since we can't have a fraction of a cook, we need to round up to the nearest whole number. Therefore, we need at least 2 cooks to bake the required number of large cakes.

Similarly, let's calculate the number of small cakes that can be baked by all the cooks in 3 hours:

Total number of small cakes = Number of cooks × Small cakes per cook per 3 hours

We need to bake 260 small cakes, so:

260 = Number of cooks × 42

Number of cooks = 260 / 42 ≈ 6.19

Again, rounding up to the nearest whole number, we need at least 7 cooks to bake the required number of small cakes.

Since we need to satisfy both requirements for large and small cakes, we choose the larger number of cooks required, which is 7 cooks.

Therefore, to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Learn more about work here

https://brainly.com/question/13245573

#SPJ2

Use the two highlighted points to find the
equation of a trend line in slope-intercept
form.

Answers

Answer: y=(4/3)x+2/3

Step-by-step explanation:

Slope-intercept form is expressed as y=mx+b

First, find the slope (m):

m= rise/run or vertical/horizontal or y/x (found between the highlighted points)

m = 4/3

Second, find b:

Use one of the highlighted points for (x, y)

2=4/3(1)+b

6/3=4/3+b

2/3=b

b=2/3

Plug it into the equation:

You get y=(4/3)x+2/3 :)

The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100, and the standard deviation is 2. You wish to test H0: μ = 100 versus H1: μ ≠ 100 with a sample of n = 9 specimens.
A. If the acceptance region is defined as 98.5 le x- 101.5, find the type I error probability alpha.
B. Find beta for the case where the true mean heat evolved is 103.
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

Answers

Answer:

A.the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. β  = 0.0122

C. β  = 0.0000

Step-by-step explanation:

Given that:

Mean = 100

standard deviation = 2

sample size = 9

The null and the alternative hypothesis can be computed as follows:

[tex]\mathtt{H_o: \mu = 100}[/tex]

[tex]\mathtt{H_1: \mu \neq 100}[/tex]

A. If the acceptance region is defined as [tex]98.5 < \overline x > 101.5[/tex] , find the type I error probability [tex]\alpha[/tex] .

Assuming the critical region lies within [tex]\overline x < 98.5[/tex] or [tex]\overline x > 101.5[/tex], for a type 1 error to take place, then the sample average x will be within the critical region when the true mean heat evolved is [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P( type \ 1 \ error ) = P( reject \ H_o)}[/tex]

[tex]\mathtt{\alpha = P( \overline x < 98.5 ) + P( \overline x > 101.5 )}[/tex]

when  [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P \begin {pmatrix} \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{\overline 98.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} + \begin {pmatrix}P(\dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{101.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} }[/tex]

[tex]\mathtt{\alpha = P ( Z < \dfrac{-1.5}{\dfrac{2}{3}} ) + P(Z > \dfrac{1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) + P(Z > 2.25) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) +( 1- P(Z < 2.25) })[/tex]

From the standard normal distribution tables

[tex]\mathtt{\alpha = 0.0122+( 1- 0.9878) })[/tex]

[tex]\mathtt{\alpha = 0.0122+( 0.0122) })[/tex]

[tex]\mathbf{\alpha = 0.0244 }[/tex]

Thus, the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. Find beta for the case where the true mean heat evolved is 103.

The probability of type II error is represented by β. Type II error implies that we fail to reject null hypothesis [tex]\mathtt{H_o}[/tex]

Thus;

β = P( type II error) - P( fail to reject [tex]\mathtt{H_o}[/tex] )

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 103[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -103}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-103}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-4.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-6.75 \leq Z \leq -2.25) }[/tex]

[tex]\mathtt{\beta = P(z< -2.25) - P(z < -6.75 )}[/tex]

From standard normal distribution table

β  = 0.0122 - 0.0000

β  = 0.0122

C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 105[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -105}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-105}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-6.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-3.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-9.75 \leq Z \leq -5.25) }[/tex]

[tex]\mathtt{\beta = P(z< -5.25) - P(z < -9.75 )}[/tex]

From standard normal distribution table

β  = 0.0000 - 0.0000

β  = 0.0000

The reason why the value of beta is smaller here is that since the difference between the value for the true mean and the hypothesized value increases, the probability of type II error decreases.

Transform the given parametric equations into rectangular form. Then identify the conic.

Answers

Answer:

Solution : Option B

Step-by-Step Explanation:

We have the following system of equations at hand here.

{ x = 5 cot(t), y = - 3csc(t) + 4 }

Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,

x = 5 cot(t) ⇒ x - 5 = cot(t),

y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)

Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations  as well. --- Step #2

 

( y - 4 / - 3 )² = (csc(t))²

- ( x - 5 / 1 )² = (cot(t))²  

___________________

(y - 4)² / 9 - x² / 25 = 1

And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.

A regular polygon inscribed in a circle can be used to derive the formula for the area of a circle. The polygon area can be expressed in terms of the area of a triangle. Let s be the side length of the polygon, let r be the hypotenuse of the right triangle, let h be the height of the triangle, and let n be the number of sides of the regular polygon. polygon area = n(12sh) Which statement is true? As h increases, s approaches r so that rh approaches r². As r increases, h approaches r so that rh approaches r². As s increases, h approaches r so that rh approaches r². As n increases, h approaches r so that rh approaches r².

Answers

Answer:

Option (D)

Step-by-step explanation:

Formula to get the area of a regular polygon in a circle will be,

Area = [tex]n[\frac{1}{2}\times (\text{Base})\times (\text{Height})][/tex]

        = [tex]n[\frac{1}{2}\times (\text{s})\times (\text{h})][/tex]

Here 'n' is the number of sides.

If n increases, h approaches r so that 'rh' approaches r².

In other words, if the number of sides of the polygon gets increased, area of the polygon approaches the area of the circle.

Therefore, Option (4) will be the answer.

In this exercise it is necessary to have knowledge about polygons, so we have to:

Letter D

Then using the formula for the area of ​​a regular polygon we find that:

[tex]A=n(1/2*B*H)\\=n(1/2*S*H)[/tex]

So from this way we were not able to identify the option that best corresponds to this alternative.

See more about polygons at  brainly.com/question/17756657

one third multiplied by the sum of a and b

Answers

Answer:

1/3(a+b)

hope it helps :>

a+b/3
This is the answer of ur question

10) How many possible outfit combinations come from six shirts, three
slacks, and five ties? *
A 15
B 18
C 30
D 90

Answers

Answer:

The answer is D)90

Hope I helped

A machine used to fill​ gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of ounces and a standard deviation of ounce. You randomly select cans and carefully measure the contents. The sample mean of the cans is ounces. Does the machine need to be​ reset? Explain your reasoning. ▼ Yes No ​, it is ▼ very unlikely likely that you would have randomly sampled cans with a mean equal to ​ounces, because it ▼ lies does not lie within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means.

Answers

Complete question is;

A machine used to fill gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of 128 ounces and a standard deviation of 0.20 ounce. You randomly select 35 cans and carefully measure the contents. The sample mean of the cans is 127.9 ounces. Does the machine need to be? reset? Explain your reasoning.

(yes/no)?, it is (very unlikely/ likely) that you would have randomly sampled 35 cans with a mean equal to 127.9 ?ounces, because it (lies/ does not lie) within the range of a usual? event, namely within (1 standard deviation, 2 standard deviations 3 standard deviations) of the mean of the sample means.

Answer:

Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

We are given;

Mean: μ = 128

Standard deviation; σ = 0.2

n = 35

Now, formula for standard error of mean is given as;

se = σ/√n

se = 0.2/√35

se = 0.0338

Normally, the range of values should be within 2 standard deviations of mean. In this case, normal range of values will be;

μ ± 2se = 128 ± 0.0338

This gives; 127.9662, 128.0338

So, Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

You are studying for your final exam of the semester up to this point you received 3 exam scores of 61% 62% and 86% to receive a grade of c and the class you must have an average exam score between 70% and 79% for all four exams including the final find the widest range of scores that you can get on the final exam in order to receive a grade of C for the class 63 to 100% 71 to 100% 68 to 97

Answers

There will be a total of 4 test scores including the final exam. To get a 70, the 4 tests need to equal 4 x 70 = 280 points , to be 79, they have to equal 4 x 79 = 316 points.

The 3 already done = 61 + 62 + 86 = 209 points.

The final exam needs to be between :

280 -209 = 71

316 -209 = 107. The answer would be between 71 and 100%

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?
A)Right
B)Obtuse
C)Can't be determined
D) Acute

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?
A)0.33 feet
B)3.75 feet
C)3 feet
D)5 feet

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?
A)Acute
B)Right
C)Can't be determined
D)Obtuse

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
A)21.34 ft.
B)21.93 ft.
C)27.73 ft.
D)19.21 ft.

Answers

Answer:

Question 1 = D) Acute

Question 2 = C)3 feet

Question 3 = D) Obtuse

Question 4 = C)27.73 ft.

Step-by-step explanation:

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths

5 = a, 6 = b and c = 7

a² + b² = c²

5² + 6² = 7²

25 + 36 = 49

61 = 49

61 ≠ 49, Hence 61 > 49

Therefore, this is an Acute Triangle

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?

This is question that deals with proportion.

The formula to solve for this:

Height of the statue/ Length of the shadow of the person = Height of the person/ Length of the shadow of the person

Height of the statue = 15 feet

Length of the shadow of the person = 20 feet

Height of the person = unknown

Length of the shadow of the person = 4

15/ 20 = Height of the person/4

Cross Multiply

15 × 4 = 20 × Height of the person

Height of the person = 15 × 4/20

= 60/20

Height of the person = 3 feet

Therefore, the person is 3 feet tall.

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths 17, 12, 9

9 = a, 12 = b and c = 17

a² + b² = c²

9² + 12² = 17²

81 + 144 = 289

225 = 289

225 ≠ 289

225 < 289

Hence, This is an Obtuse Triangle.

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?

To calculate how far apart the two friends are we use the formula

Distance = √ ( Length² + Breadth²)

We are given dimensions: 12ft by 25ft

Length = 12ft

Breadth = 25ft

Distance = √(12ft)² + (25ft)²

Distance = √144ft²+ 625ft²

Distance = √769ft²

Distance = 27.730849248ft

Approximately ≈27.73ft

Therefore, the friends are 27.73ft apart.

You are ordering two pizzas. A pizza can be small, medium, large, or extra large, with any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8). How many possibilities are there for your two pizzas

Answers

Answer:

1048576

Step-by-step explanation:

Given the following :

Pizza order :

Size = small, medium, large, or extra large = 4 possible sizes

Toppings = any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8).

Combination of Toppings = 2^8

Four different sizes of pizza = 4

Number of possibilities in ordering for a single pizza :

(4 * 2^8) = 4 * 256 = 1024

Number of possibilities in ordering two pizzas :

(4 * 2^8)^2

(2^2 * 2^8)^2

From indices :

[2^(2+8)]^2

[2^(10)]^2

2^(10*2)

2^20

= 1048576

Findℒ{f(t)}by first using a trigonometric identity. (Write your answer as a function of s.)f(t) = 12 cost −π6

Answers

Answer:

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

Step-by-step explanation:

Given that:

[tex]f(t) = 12 cos (t- \dfrac{\pi}{6})[/tex]

recall that:

cos (A-B) = cos AcosB + sin A sin B

[tex]f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}][/tex]

[tex]f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}][/tex]

[tex]f(t) = 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t)[/tex]

[tex]L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \dfrac{S}{S^2 + 1^2}+ 6 \dfrac{1}{S^2 +1^2}[/tex]

[tex]L(f(t)) = \dfrac{6 \sqrt{3} +6 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6( \sqrt{3} \ S +1 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

5x+4(-x-2)=-5x+2(x-1)+12

Answers

Answer:

x=9/2

Step-by-step explanation:

Let's solve your equation step-by-step.

5x+4(−x−2)=−5x+2(x−1)+12

Step 1: Simplify both sides of the equation.

5x+4(−x−2)=−5x+2(x−1)+12

5x+(4)(−x)+(4)(−2)=−5x+(2)(x)+(2)(−1)+12 (Distribute)

5x+−4x+−8=−5x+2x+−2+12

(5x+−4x)+(−8)=(−5x+2x)+(−2+12) (Combine Like Terms)

x+−8=−3x+10

x−8=−3x+10

Step 2: Add 3x to both sides.

x−8+3x=−3x+10+3x

4x−8=10

Step 3: Add 8 to both sides.

4x−8+8=10+8

4x=18

Step 4: Divide both sides by 4.

4x/4=18/4

x=9/2

At a local high school, the student population is growing at 12% a year. If the original population was 242 students, how long will it take the population to reach 300 students? Round to the nearest tenth of a year.

Answers

Answer: 2 years

Step-by-step explanation:

The exponential growth function is given by :-

[tex]y=A(1+r)^x[/tex] (i)

, where A = initial value , r = rate of growth and  x= time period.

As per given ,

A= 242

r= 12% = 0.12

To find : t when y= 300.

Put all the values in (i)

[tex]300=242(1+0.12)^x\\\\\Rightarrow\ \dfrac{300}{242}=(1.12)^x\\\\\Rightarrow\ 1.23967=(1.12)^x[/tex]

Taking log on both sides , we get

[tex]\log (1.2396) = t \log (1.12)\\\\\Rightarrow\ 0.09328=t(0.049218)\\\\\Rightarrow t=\dfrac{0.09328}{0.049218}=\approx2[/tex]

hence, it will take 2 years.

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

Gail paid a total of $12,000 for stock that was $6 per share. If she sold all her shares for $18,000, how much profit on each share did she make?
A
$9
B
$3
С.
S2000
D
$6.000

Answers

Answer:

$3

Step-by-step explanation:

Given

Total Cost Price: $12,000

Unit Cost Price= $6

Total Selling Price = $18,000

Required

Determine the profit on each share

First, we need to determine the units of share bought;

Units = Total cost price / Unit Cost Price

[tex]Units = \frac{\$12000}{\$6}[/tex]

[tex]Units = 2000[/tex]

Next is to determine the selling price of each share; This is calculated as follows;

Unit Selling Price = Total Selling Price / Units Sold

[tex]Unit\ Selling\ Price = \frac{\$18000}{\$2000}[/tex]

[tex]Unit\ Selling\ Price = \$9[/tex]

The profit is the difference between the unit cost price and unit selling price

[tex]Profit = Unit\ Selling\ Price - Unit\ Cost\ Price[/tex]

[tex]Profit = \$9 - \$6[/tex]

[tex]Profit = \$3[/tex]

find the perimeter of a square of sides 10.5cm​

Answers

Answer:

Perimeter = 42 cm

Step-by-step explanation:

A square has all equal sides so you would just add 10.5 + 10.5 + 10.5 + 10.5 to get 42 cm.

Answer:

42 cm

Step-by-step explanation:

Side of square = 10.5 cm (given)

Perimeter of square = Side X 4

                                  = 10.5 X 4

                                  = 42 cm

HOPE THIS HELPED YOU !

:)

Find a cubic polynomial with integer coefficients that has $\sqrt[3]{2} + \sqrt[3]{4}$ as a root.

Answers

Find the powers [tex]a=\sqrt{2}+\sqrt{3}[/tex]

$a^{2}=5+2 \sqrt{6}$

$a^{3}=11 \sqrt{2}+9 \sqrt{3}$

The cubic term gives us a clue, we can use a linear combination to eliminate the root 3 term $a^{3}-9 a=2 \sqrt{2}$ Square $\left(a^{3}-9 a\right)^{2}=8$ which gives one solution. Expand we have $a^{6}-18 a^{4}-81 a^{2}=8$ Hence the polynomial $x^{6}-18 x^{4}-81 x^{2}-8$ will have a as a solution.

Note this is not the simplest solution as $x^{6}-18 x^{4}-81 x^{2}-8=\left(x^{2}-8\right)\left(x^{4}-10 x^{2}+1\right)$

so fits with the other answers.

Answer:

[tex]y^3 -6y-6[/tex]

The cost of a daily rental car is as follows: The initial fee is $39.99 for the car, and it costs $0.20 per mile. If Julie's final bill was $100.00 before taxes, how many miles did she drive?

Answers

Answer:

300.05 miles

Step-by-step explanation:

initial fee= $39.99

final bill = $ 100

cost =$ 0.20 per mile

remaining amount = $ 60.01

solution,

she drive = remaining amount / cost

=60.01/0.20

=300.05 miles

Answer:

500 miles

Step-by-step explanation:

Let us use cross multiplication to find the unknown amount.

Given:

1) Cost for 1 mile=$0.20

2)Cost for x miles=$100

Solution:

No of miles                             Cost

1) 1                                             $0.20

2)x                                             $100

By cross multiplying,

100 x 1= 0.20x

x=100/0.20

x=500 miles

Thank you!

A professional soccer player kicked a ball across the field. The ball’s height, in meters, is modeled by the function graphed below. What's the average rate of change between the point when the ball reached its maximum height and the point where it hit the ground?

Answers

Answer:

Hey there!

You can think of the rate of change as the slope of a quadratic function- here we see that it is 9/-3, or - 3.

Let  me know if this helps :)

Answer:

–3 meters per second

Step-by-step explanation:

Use Lagrange multipliers to minimize the function subject to the following two constraints. Assume that x, y, and z are nonnegative. Question 18 options: a) 192 b) 384 c) 576 d) 128 e) 64

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

Option C is the correct option

Step-by-step explanation:

From the question we are told that

   The equation is  [tex]f (x, y , z ) = x^2 +y^2 + z^2[/tex]

    The constraint is  [tex]P(x, y , z) = x + y + z - 24 = 0[/tex]

Now using Lagrange multipliers  we have that  

   [tex]\lambda = \frac{ \delta f }{ \delta x } = 2 x[/tex]  

   [tex]\lambda = \frac{ \delta f }{ \delta y } = y[/tex]  

   [tex]\lambda = \frac{ \delta f }{ \delta z } = 2 z[/tex]

=>       [tex]x = \frac{ \lambda }{2}[/tex]

          [tex]y = \frac{ \lambda }{2}[/tex]

         [tex]z = \frac{ \lambda }{2}[/tex]

From the constraint  we have

      [tex]\frac{\lambda }{2} + \frac{\lambda }{2} + \frac{\lambda }{2} = 24[/tex]

=>   [tex]\frac{3 \lambda }{2} = 24[/tex]

=>   [tex]\lambda = 16[/tex]

substituting for x, y, z

=>   x =  8

=>  y =  8

=>   z =  8        

Hence

    [tex]f (8, 8 , 8 ) = 8^2 +8^2 + 8^2[/tex]

    [tex]f (8, 8 , 8 ) = 192[/tex]

 

(21x-3)+21=23x+6 solve​

Answers

Answer:

False

Step-by-step explanation:

You Cnat solve it

Answer:

you cannot solve it

Step-by-step explanation:

false

Other Questions
Describe how to solve an absolute value equation*will give brainliest* What effect or process is responsible for the higher temperatures that occur in urban areas? Heat island effect Hilt's Law Eutrophication Greenhouse effect Consider the equation x2+4x+9=0 in standard form. Which equation shows the coefficients a, b, and c correctly substituted into the quadratic formula? Please show all steps to get to the answer, please!! I REALLY NEED HELP PLEASE HELP ME :( * Graph these numbers on a number line.-5,3, -2,1-5 Calculate JK if LJ = 14, JM = 48, and LM = 50 (x+3)(x-5)=(x+3)(x5)= Name brand drugs are able to continue capitalizing on their market power even after generic drugs enter the market because (i) almost all people fear the generic drug companies are devoting too few resources to research and development. (ii) some people fear that generic drugs are inferior. (iii) some people are loyal to the name brand. Group of answer choices Which property of equality was used to solve this equation? x 5 = -14 x 5 + 5 = -14 + 5 x = -9 A. addition property of equality B. subtraction property of equality C. multiplication property of equality D. division property of equality Need Help Please Show Work what is the spainsh alphlipet What is the slope of the line that passes through the points (-10, 8) and(-15, 7)? Write your answer in simplest form. Which governing principles are identified in the Constitution? write the slope- intercept form of the equation for the liney=-8/7x-3/2y=7/8x-3/2y=-7/8x-3/2y=-3/2x+7/8 Many gluten-free food options are found on the store shelves in the United States, but they are scarcely available in international markets. Given the increasing awareness of a healthy lifestyle, such products satisfy an unmet need. Therefore, a product such as gluten-free food in international markets:_________. Dennis throws a volleyball up in the air. It reaches its maximum height 1.1\, \text s1.1s1, point, 1, start text, s, end text later. We can ignore air resistance. What was the volleyball's velocity at the moment it was tossed into the air? Water pressurized to 3.5 x 105 Pa is flowing at 5.0 m/s in a horizontal pipe which contracts to 1/3 its former area. What are the pressure and velocity of the water after the contraction A saturated sodium carbonate solution at 0C contains 7.1 g of dissolved sodium carbonate per 100. mL of solution. The solubility product constant for sodium carbonate at this temperature is [tex]4x - 2x = [/tex] Nina has the flu and a high fever. Her immune system is exhibiting the