If the coefficient of correlation is 0.8, the percentage of variation in the dependent variable explained by the variation in the independent variable is

Answers

Answer 1

Answer:

The percentage of variation in the dependent variable explained by the variation in the independent variable is 80 %.

Step-by-step explanation:

A coefficient of correlation of 0.8 means that dependent variable changes in 0.8 when independent variable changes in a unit. Hence, the percentage of such variation ([tex]\%R[/tex]) is:

[tex]\%R = \frac{\Delta y}{\Delta x}\times 100\,\%[/tex]

Where:

[tex]\Delta x[/tex] - Change in independent variable, dimensionless.

[tex]\Delta y[/tex] - Change in dependent variable, dimensionless.

If [tex]\Delta x = 1.0[/tex] and [tex]\Delta y = 0.8[/tex], then:

[tex]\%R = 80\,\%[/tex]

The percentage of variation in the dependent variable explained by the variation in the independent variable is 80 %.


Related Questions

Match each function name with its equation.

Answers

Answer:

a. Quadratic--[tex]y=x^{2}[/tex]

b. Absolute Value--[tex]y=|x|[/tex]

c. Linear--[tex]y=x[/tex]

d. Reciprocal Squared--[tex]y=\frac{1}{x^{2} }[/tex]

e. Cubic--[tex]y=x^{3}[/tex]

f. Square Root--[tex]y=\sqrt{x}[/tex]

g. Reciprocal--[tex]y=\frac{1}{x}[/tex]

h. Cube root--[tex]y=\sqrt[3]{x}[/tex]

Answer:

Step-by-step explanation:

y=[tex]x^{2}[/tex] is quadratic

y=x  is an absolute value

y= |x| os linear

y= [tex]\frac{1}{x}[/tex] is reciprocal

y= [tex]x^{3}[/tex] is cubic

y= [tex]\sqrt{x}[/tex] is square root

y= [tex]\frac{1}{x^{2} }[/tex] is reciprocal squared

y= [tex]\sqrt[3]{x}[/tex] is cube root

This person made a mistake. what is the mistake and what is the correct answer?!!

Answers

Answer: 44

Step-by-step explanation:

what number should replace the question mark

Answers

Answer: The missing number is 5.

Step-by-step explanation:

In the table we can only have numbers between 1 and 9,

The pattern that i see is:

We have sets of 3 numbers.

"the bottom number is equal to the difference between the two first numers, if the difference is negative, change the sign, if the difference is zero, there goes a 9 (the next number to zero)"

Goin from right to left we have:

9 - 6 = 3

6 - 2 = 4

4 - 9 = - 5 (is negative, so we actually use -(-5) = 5)

4 - 4 = 0 (we can not use zero, so we use the next number, 9)

3 - 3 = 0 (same as above)

? - 1 = 4

? = 4 + 1 =  5

The missing number is 5.

What is the probability that a student who has no chores has a curfew ?

Answers

Answer:

15/22

Step-by-step explanation:

Of the 66 students who have no chores, 45 have a curfew.  So the probability is 45/66 = 15/22.

BRAINLIEST ANSWER GIVEN, WHY CAN'T ANYONE HELP ME?! Find the equation of the line passing through the pair points (-8,6) (-9,-9). The equation of the line in the form is Ax+By=C.

Answers

Answer:

15x - y = - 126

or y = 15x + 126

Step-by-step explanation:

will make it simple and short

to find the equation... we need to find slope first.

                   y2 - y1             -9  -   6

slope = m  = ---------    =       -----------  =  15

                   x2 - x1             -9  -  (-8)

so we know that the equation of the line using point (-8,6) and slope 15             y - 6 = 15( x + 8)

y - 6 = 15x + 120

Writing the equation in the form   Ax + By = C

15x - y = -120-6

therefore.... 15x - y = - 126   or simplify it as or y = 15x + 126

Hope this helps

The joint density function for a pair of random variables X and Y is given. f(x, y) = Cx(1 + y) if 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 0 otherwise f(x,y) = 0
A) Find the value of the constant C. I already have 1/24.
B) Find P(X < = 1, Y < = 1)
C) Find P(X + Y < = 1).

Answers

Answer:

A) C = 1/96

B) P(x<=1, y<=1) = 1/128 or 0.0078125 to 7 places

C) P(x+y<=1) = 5/2305, or 0.0021701 to 7 places

Step-by-step explanation:

f(x,y) = C x (1+y)

A)

To find C, we need to integrate the volume under region bound by

0 <= x <= 4, and

0 <= y <= 4

This volume equals 1.0.

Find integral,

int( int(f(x,y),x=0,4), y = 0,4) = 96C

therefore C = 1/96

or

F(x,y) = x (1+y) / 96  ............................(1)

B)

P(x<=1, y<=1)

Repeat the integral, substitute the appropriate limits,

P = int( int(F(x,y),x=0,1), y = 0,1)

= 1/128 or 0.0078125

P(x<=1, y<=1) = 1/128 or 0.0078125 to 7 places

C)

P(x+y<=1)

From the function, we know that this is going to be less than one half of the probability in (B), closer to 1/4 of the previous.

It will be again a double integral, as follows:

P = int( int(F(x,y),x=0,1-y), y = 0,1)

= 5/2304

= 0.0021701 (to 7 decimals)

P(x+y<=1) = 5/2305, or 0.0021701 to 7 places

(a) A survey of the adults in a town shows that 8% have liver problems. Of these, it is also found that 25% are heavy drinkers, 35% are social drinkers and 40% are non-drinkers. Of those that did not suffer from liver problems, 5% are heavy drinkers, 65% are social drinkers and 30% do not drink at all. An adult is chosen at random, what is the probability that this person i. Has a liver problems? (3 Marks) ii. Is a heavy drinker (2 Marks) iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem? (2 Marks) iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker? (2 Marks) v. If a person is found to be a non –drinker, what is the probability that this person has liver problems. (2 Marks)

Answers

Answer:

i. Has a liver problems?

= 0.08

ii. Is a heavy drinker ?

= 0.066

iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem?

= 0.303

iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker?

= 0.25

v. If a person is found to be a non –drinker, what is the probability that this person has liver problems?

= 0.104

Step-by-step explanation:

We have 2 Events in this question

Event A: People with liver problems

Event B : People without liver problems

Event A: People with liver problems

Let us represent people with liver problems as = (L)

a)8% have liver problems. = P(L)

Under liver problems we have:

b) 25% are heavy drinkers = P( L & H)

c) 35% are social drinkers = P( L & S)

d) 40% are non-drinkers. = P( L & N)

Event B( no liver problem)

Let us represent no liver problem as NL

We are not given in the question but Probability of having no liver problem = 100 - Probability of having liver problem

= 100 - 8% = 92 %

P(NL ) = 92%

From the question, For people without liver problems, we have:

a) 5% are heavy drinkers = P(NL & H)

b) 65% are social drinkers = P( NL & S)

c) 30% do not drink at all = P( NL & N)

An adult is chosen at random, what is the probability that this person

i. Has a liver problems?

P(L) = 8% or 0.08

ii. Is a heavy drinker ?

From the question, we have:

Probability of people that have liver problems and are heavy drinkers P(L & H) = 25% = 0.25

Probability of people that have do not have liver problems and are heavy drinkers P(NL & H) = 5% = 0.05

Probability ( Heavy drinker) =

P(L) × P(L & H) + P(NL) × P(NL & H)

= 0.25 × 0.08 + 0.05 × 0.92

= 0.066

iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem?

Probability (Heavy drinker and has liver problem) = [P(L) × P(L & H)] ÷ [P(L) × P(L & H)] + [P(NL) × P(NL & H) ]

= [0.25 × 0.08] ÷ [0.25 × 0.08] + [0.05 × 0.92]

= 0.303030303

Approximately = 0.303

iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker?

P(L & H) = 25% = 0.25

v. If a person is found to be a non –drinker, what is the probability that this person has liver problems.?

People with liver problems are non-drinkers. = P( L & N) = 40% = 0.4

People without liver problems and do not drink at all = P( NL & N) = 30% = 0.3

Probability (non drinker and has liver problem) = [P( L & N) × P(L & H)] ÷ [P( L & N) × P(L & H)] + [ P( NL & N) × P(NL & H) ]

= [0.4× 0.08] ÷ [0.4 × 0.08] + [0.3 × 0.92]

= 0.1038961039

Approximately ≈ 0.104

a student ran out of time on a multiple choice exam and randomly guess the answers for two problems each problem have four answer choices ABCD and only one correct answer what is the probability that he answered neither of the problems correctly ​

Answers

Answer:

The probability that he answered neither of the problems correctly ​is 0.0625.

Step-by-step explanation:

We are given that a student ran out of time on a multiple-choice exam and randomly guess the answers for two problems each problem have four answer choices ABCD and only one correct answer.

Let X = Number of problems correctly ​answered by a student.

The above situation can be represented through binomial distribution;

[tex]P(X=r)=\binom{n}{r}\times p^{r}\times (1-p)^{n-r};x=0,1,2,3,....[/tex]    

where, n = number of trials (samples) taken = 2 problems

           r = number of success = neither of the problems are correct

           p = probability of success which in our question is probability that

                 a student answer correctly, i.e; p = [tex]\frac{1}{4}[/tex] = 0.75.

So, X ~ Binom(n = 2, p = 0.75)

Now, the probability that he answered neither of the problems correctly ​is given by = P(X = 0)

             P(X = 0) = [tex]\binom{2}{0}\times 0.75^{0}\times (1-0.75)^{2-0}[/tex]

                            = [tex]1 \times 1\times 0.25^{2}[/tex]

                            = 0.0625

How would you find the coefficient of the third term in (x+5)^7?

Answers

Answer:

The answer is option B

Step-by-step explanation:

To find the coefficient of the third term in

[tex](x + 5)^{7} [/tex]

Rewrite the expansion in the form

[tex](a + x)^{n} [/tex]

where n is the index

So we have

[tex] ({5 + x})^{7} [/tex]

After that we use the formula

[tex]nCr( {a}^{n - r} ) {x}^{r} [/tex]

where r is the term we are looking for

For the third term we are looking for the term containing x²

that's

r + 1 = 3

r = 2

So to find the coefficient of the third term

We have

[tex]7C2[/tex]

Hope this helps you

first of all, the notation is wrong it should be [tex] {}^nC_r \text{ and more usual notation is } {n \choose k} [/tex]

second, the

[tex](r+1)^{\text{th}} \text{ term } T_{r+1} \text{ in the expansion of } (x+a)^n \text{ is } {n \choose r}x^{(n-r)}a^r[/tex]

here [tex] a=5 \text{ and } n=7 \text{ and for } 3^{\text{rd}} \text{ term } T_3, \quad r+1=3 \implies r=2 [/tex]

so the coefficient of third term is, [tex]{7 \choose 2}={7\choose 5}[/tex]

an important property of binomial coefficient you should know:

[tex] {n \choose k}={n \choose {n-k}}[/tex]

and if you interchange [tex] x \text{ and } a[/tex]

only the "order" will get reversed. i.e. the series will start from back.

another thing, the [tex] k^{\text{th}} \text{ term from beginning, is the } (n-k+2)^{\text{th}} \text{ term from behind}[/tex]

A coin is tossed 4 times. Let E1 be the event "the first toss shows heads" and E2 the event "the second toss shows heads" and so on. That is, Ei is the event that the "i"th toss shows up heads.
A. Are the events e e and f f independent?
B. Find the probability of showing heads on both toss.

Answers

Answer:

The events are independent.

The probability of showing heads on both toss is equal to 1/2

Step-by-step explanation:

The sample space for this experiment consists of 2⁴= 16 sample points, as each toss can result in two outcomes we assume that the events are equally likely.

Two events are independent in the sample space if the probability of one event occurs, is not affected by whether the other event has or has not occurred.

In general the k events are defined to be mutually independent if and only if the probability of the intersection of  any 2,3,--------, k  equals the product of their respective probabilities.

P (A∩B) = P(A). P(B)

P (A∩B)   = 1/2. 1/2= 1/4

                                                                  Head          Tail

 P(E1)= 1/2  ----------          Coin 1               H,H              T,H

                                                                1/4                  1/4

  P(E2)= 1/2  ---------------  Coin 2             H, H               H,T

                                                                      1/4           1/4

So the events are independent.

The probability of showing heads on both toss is equal to 1/2

The sample space for this experiment consists of 2⁴= 16 sample points, out of which eight will have heads on both toss.

Or in other words ( 1/4* 1/4) = 2/4 = 1/2

I need help please help meee I don’t understand

Answers

Answer:

204

Step-by-step explanation:

To simplify the shape, you can do multiple things. I've opted to shave down both prongs to take it from a 'T' shape to a rectangular prism.

For height of the prongs, take 4 from 6.

6 - 4 = 2

Divide by 2 as there are 2 prongs.

2 / 2 = 1

Remember L * W * H

6 * 3 * 1 = 18

Remember that there are two prongs!

3 + 4 = 7

6 * 7 * 4 = 168

168 + 2(18) = 204

Multiple-Choice Questions
1. In 1995, Diana read 10 English books and 7 French books. In 1996, she read twice as many French books as English books. If 60% of the books that she read during the 2 years were French, how many English and French books did she read in 1996?
(A) 16
(B) 26
(0) 32
(D) 48​

Answers

Answer:

(D) 48​

Step-by-step explanation:

Let English book = x

Let french book = y

In 1995 x= 10

Y= 7

In 1996

Y = 2x

Total book read in the two years

0.6(Total) = y

0.4(total) = x

We don't know the exact amount of books read in 1996.

Total = 10 + 7 +x +2x

Total = 17+3x

0.6(total) = 7+2x

0.6(17+3x) = 7+2x

10.2 +1.8x= 7+2x

10.2-7= 2x-1.8x

3.2= 0.2x

3.2/0.2= x

16= x

So she read 16 English book

And 16*2 = 32 french book Making it a total of 16+32= 48 books in 1996

This person did something wrong and I do not know what it is :( Please help this is for points!

Answers

Answer:

0.4 cm

Step-by-step explanation:

The magnifying glass basically zooms into smaller objects. If the insect appears to be 2cm, then it is actually smaller than this. It cannot be 10 cm.

If the scale factor is 5, then this means that the insect is zoomed in 5 times through the magnifying glass. Use the following ratio:

[tex]\frac{2}{5}[/tex]

This fraction can also be seen as division, so:

[tex]2[/tex]÷[tex]5=0.4[/tex]

The insect is actually 0.4 cm long.

(or 4 millimeters)

:Done

In a recent​ year, the scores for the reading portion of a test were normally​ distributed, with a mean of and a standard deviation of . Complete parts​ (a) through​ (d) below. ​(a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than . The probability of a student scoring less than is nothing. ​(Round to four decimal places as​ needed.) ​(b) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is between and . The probability of a student scoring between and is nothing. ​(Round to four decimal places as​ needed.) ​(c) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is more than . The probability of a student scoring more than is nothing. ​(Round to four decimal places as​ needed.) ​(d) Identify any unusual events. Explain your reasoning. Choose the correct answer below. A. than 0.05. B. than 0.05. C. The event in part is unusual because its probability is less than 0.05. D. The events in parts are unusual because its probabilities are less than 0.05.

Answers

The question is incomplete. Here is the complete question.

In a recent year, the socres for the reading portion of a test were normally distributed, with a mean of 23.3 and a standard deviation of 6.4. Complete parts (a) through (d) below.

(a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 18. (Round to 4 decimal places as needed.)

(b) Find a probability that a random selected high school student who took the reading portion of the test has a score that is between 19.9 and 26.7.

(c) Find a probability that a random selected high school student who took the reading portion of the test ahs a score that is more than 36.4.

(d) Identify any unusual events. Explain your reasoning.

Answer: (a) P(X<18) = 0.2033

              (b) P(19.9<X<26.7) = 0.4505

              (c) P(X>36.4) = 0.0202

               (d) Unusual event: P(X>36.4)

Step-by-step explanation: First, determine the z-score by calculating:

[tex]z = \frac{x-\mu}{\sigma}[/tex]

Then, use z-score table to determine the values.

(a) x = 18

[tex]z = \frac{18-23.3}{6.4}[/tex]

z = -0.83

P(X<18) = P(z< -0.83)

P(X<18) = 0.2033

(b) x=19.9 and x=26.7

[tex]z = \frac{19.9-23.3}{6.4}[/tex]

z = -0.67

[tex]z = \frac{26.7-23.3}{6.4}[/tex]

z = 0.53

P(19.9<X<26.7) = P(z<0.53) - P(z< -0.67)

P(19.9<X<26.7) = 0.7019 - 0.2514

P(19.9<X<26.7) = 0.4505

(c) x=36.4

[tex]z = \frac{36.4-23.3}{6.4}[/tex]

z = 2.05

P(X>36.4) = P(z>2.05) = 1 - P(z<2.05)

P(X>36.4) = 1 - 0.9798

P(X>36.4) = 0.0202

(d) Events are unusual if probability is less than 5% or 0.05. So, part (c) has an unusual event.

The probability will be:

(a) 0.2038

(b) 0.4046

(c) 0.0203

(d) Event in part (c) is unusual.

According to the question,

[tex]\mu = 23.2[/tex][tex]\sigma = 6.4[/tex]

Let,

"X" shows the test scores.

(a)

The z-score for X=18 will be:

→ [tex]z = \frac{X- \mu}{\sigma}[/tex]

      [tex]= \frac{18-23.3}{6.4}[/tex]

      [tex]= -0.828[/tex]

So,

The probability will be:

→ [tex]P(X<18) = P(z < -0.828)[/tex]

                     [tex]= 0.2038[/tex]

(b)

The z-score for X=19.9 will be:

→ [tex]z = \frac{X -\mu}{\sigma}[/tex]

     [tex]= \frac{19.9-23.3}{6.4}[/tex]

     [tex]= -0.531[/tex]

The z-score for X=26.7 will be:

→ [tex]z = \frac{X -\mu}{\sigma}[/tex]

      [tex]= \frac{26.7-23.3}{6.4}[/tex]

      [tex]= 0.531[/tex]

So,

The probability will be:

→ [tex]P(19.9 < X< 23.3) = P(-0.531 < z< 0.531)[/tex]

                                   [tex]= 0.4046[/tex]

(c)

The z-score for X=36.4 will be:

→ [tex]z = \frac{X -\mu}{\sigma}[/tex]

     [tex]= \frac{36.4-23.3}{6.4}[/tex]

     [tex]= 2.047[/tex]

So,

The probability will be:

→ [tex]P(X > 36.4 )= P(z > 2.047)[/tex]

                       [tex]= 0.0203[/tex]

(d)

Just because it's probability value is less than 0.05, so that the events is "part c" is unusual.

Learn more about probability here:

https://brainly.com/question/23044118

Describe each of the following values as (A) a discrete random variable, (B) a continuous random variable, or (C) not a random variable:
1. Exact weight of quarters now in circulation in the United States
2. Shoe sizes of humans
3. Political party affiliations of adults in the United States
A. 1.C
2.A
3.В
B. 1.B
2.A
3.С
C. 1.A
2.C
3.В
D. 1.A
2.В
3.С

Answers

Answer:

(1) B

(2) A

(3) C

Step-by-step explanation:

A random variable is a variable that denotes a set of all the possible outcomes of a random experiment. It is denotes by a single capital letter such as X or Y.

There are two types of random variables.

Discrete random variable: These type of random variable takes finite number of values, such as 0, 1, 2, 3, 4, ... For example, number of girl child in a neighborhood.Continuous random variable: These type of random variables takes infinite number of possible values. For example, the height, weight.

(1)

Exact weight of quarters now in circulation in the United States.

The variable weight is a continuous variable.

Thus, the exact weight of quarters now in circulation in the United States is a continuous random variable.

(2)

Shoe sizes of humans.

The shoe size of a person are discrete and finite values.

Thus, the shoe sizes of humans are discrete random variables.

(3)

Political party affiliations of adults in the United States.

This variable is not a quantitative variable.

It is a qualitative variable.

Thus, the political party affiliations of adults in the United States is no random variable.

Please help!! find the circumference of a circle with a diameter of 13 meters

Answers

Answer:

C = 2pie(r)

r= d/2= 13/2= 6.5

C = 2*3.14*6.5

C= 41

Step-by-step explanation:

2/5×1 3/12? plz help meh​

Answers

Answer:

[tex]\boxed{\frac{1}{2} }[/tex]

Step-by-step explanation:

Hey there!

Well given,

[tex]\frac{2}{5} * 1 \frac{3}{12}[/tex]

We need to make 1 3/12 improper,

1*12 = 12

12 + 3 = 15

[tex]\frac{2}{5} * \frac{15}{12}[/tex]

2*15 = 30

5*12 = 60

[tex]\frac{30}{60}[/tex]

Simplified

[tex]\frac{1}{2}[/tex]

Hope this helps :)

[tex]f(x) = {x}^{2} + 4x - 5[/tex] ; >-2
Find [tex] \frac{d {f}^{ - 1} }{dx} [/tex] at x=16​

Please show solving

Answers

The inverse function theorem says

[tex]\dfrac{\mathrm df^{-1}}{\mathrm dx}(16)=\dfrac1{\frac{\mathrm df}{\mathrm dx}(f^{-1}(16))}[/tex]

We have

[tex]f(x)=x^2+4x-5[/tex]

defined on [tex]x>-2[/tex], for which we get

[tex]f^{-1}(x)=-2+\sqrt{x+9}[/tex]

and

[tex]f^{-1}(16)=-2+\sqrt{16+9}=3[/tex]

The derivative of [tex]f(x)[/tex] is

[tex]f'(x)=2x+4[/tex]

So we end up with

[tex]\dfrac{\mathrm df^{-1}}{\mathrm dx}(16)=\dfrac1{\frac{\mathrm df}{\mathrm dx}(3)}=\dfrac1{10}[/tex]

Techwiz electronics makes a profit of $35 for each mp3 and $18 for each DVD last week techwiz sold a combined total of 118 mp3 and DVD players. Let x be the number of mp3 sold last week write an expression for the combined total profit (in dollars) made last week

Answers

Answer:

The total   profit is [tex]p = 17x + 2124[/tex]

Step-by-step explanation:

From the question we are told that

   The profit made on each mp3 is  k  =  $35

    The profit made on each mp3 is  y =  $18

     The total amount sold is   n  =  118

 Now given that the amount of mp3 sold is x then the amount of  DVD sold is mathematically evaluated as

                      [tex]n - x[/tex]

Now the profit made on the x number of mp3 sold is  

                      [tex]x * 35 = 3x[/tex]

And the the profit made from the n-x number of  DVD  sold is  18 (n-x ) =  18 - 18x

 So the total profit made last week from the sales of both mp3 and DVD  is  

                   [tex]p = 35x + 18n - 18x[/tex]

                    [tex]p = 17x + 18(118)[/tex]

                    [tex]p = 17x + 2124[/tex]

An arithmetic sequence has this recursive formula: (a^1 =8, a^n= a^n-1 -6
A.a^n=8+(n-6)(-1)
B.a^n=8+(n-1)(-6)
C.

Answers

Answer:

[tex]a_n = 8 + (n - 1) (-6)[/tex]

Step-by-step explanation:

Given

[tex]a_1 = 8[/tex]

Recursive: [tex]a_{n} = a_{n-1} - 6[/tex]

Required

Determine the formula

Substitute 2 for n to determine [tex]a_2[/tex]

[tex]a_{2} = a_{2-1} - 6[/tex]

[tex]a_{2} = a_{1} - 6[/tex]

Substitute [tex]a_1 = 8[/tex]

[tex]a_2 = 8 - 6[/tex]

[tex]a_2 = 2[/tex]

Next is to determine the common difference, d;

[tex]d = a_2 - a_1[/tex]

[tex]d = 2 - 8[/tex]

[tex]d = -6[/tex]

The nth term of an arithmetic sequence is calculated as

[tex]a_n = a_1 + (n - 1)d[/tex]

Substitute [tex]a_1 = 8[/tex] and [tex]d = -6[/tex]

[tex]a_n = a_1 + (n - 1)d[/tex]

[tex]a_n = 8 + (n - 1) (-6)[/tex]

Hence, the nth term of the sequence can be calculated using[tex]a_n = 8 + (n - 1) (-6)[/tex]

On a particular production line, the likelihood that a light bulb is defective is 10%. seven light bulbs are randomly selected. What is the probability that at most 4 of the light bulbs will be defective

Answers

Answer:

0.9995

Step-by-step explanation:

10% = 0.10

1 - 0.10 = 0.9

n = number of light bulbs = 7

we calculate this using binomial distribution.

p(x) = nCx × p^x(1-p)^n-x

our question says at most 4 is defective

= (7C0 × 0.1⁰ × 0.9⁷) + (7C1 × 0.1¹ × 0.9⁶) + (7C2 × 0.1² × 0.9⁵) + (7C3 × 0.1³ × 0.9⁴) + (7C4 × 0.1⁴ × 0.9³)

= 0.478 + 0.372 + 0.1239 + 0.023 + 0.0026

= 0.9995

we have 0.9995 probability that at most 4 light bulbs are defective.

Let the following sample of 8 observations be drawn from a normal population with unknown mean and standard deviation:

21, 14, 13, 24, 17, 22, 25, 12

Required:
a. Calculate the sample mean and the sample standard deviation.
b. Construct the 90% confidence interval for the population mean.
c. Construct the 95% confidence interval for the population mean

Answers

Answer:

a

   [tex]\= x = 18.5[/tex]  ,  [tex]\sigma = 5.15[/tex]

b

 [tex]15.505 < \mu < 21.495[/tex]

c

 [tex]14.93 < \mu < 22.069[/tex]

Step-by-step explanation:

From the question we are are told that

    The  sample data is  21, 14, 13, 24, 17, 22, 25, 12

     The sample size is  n  = 8

Generally the ample mean is evaluated as

        [tex]\= x = \frac{\sum x }{n}[/tex]

        [tex]\= x = \frac{ 21 + 14 + 13 + 24 + 17 + 22+ 25 + 12 }{8}[/tex]

         [tex]\= x = 18.5[/tex]

Generally the standard deviation is mathematically evaluated as

         [tex]\sigma = \sqrt{\frac{\sum (x- \=x )^2}{n}}[/tex]

[tex]\sigma = \sqrt{\frac{\sum ((21 - 18.5)^2 + (14-18.5)^2+ (13-18.5)^2+ (24-18.5)^2+ (17-18.5)^2+ (22-18.5)^2+ (25-18.5)^2+ (12 -18.5)^2 )}{8}}[/tex]

[tex]\sigma = 5.15[/tex]

considering part b

Given that the confidence level is  90% then the significance level is evaluated as

         [tex]\alpha = 100-90[/tex]

         [tex]\alpha = 10\%[/tex]

         [tex]\alpha = 0.10[/tex]

Next we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex]  from the normal distribution table the value is  

     [tex]Z_{\frac{ \alpha }{2} } = 1.645[/tex]

The margin of error is mathematically represented as

      [tex]E = Z_{\frac{ \alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E =1.645 * \frac{5.15 }{\sqrt{8} }[/tex]

=>     [tex]E = 2.995[/tex]

The 90% confidence interval is evaluated as

       [tex]\= x - E < \mu < \= x + E[/tex]

substituting values

       [tex]18.5 - 2.995 < \mu < 18.5 + 2.995[/tex]

       [tex]15.505 < \mu < 21.495[/tex]

considering part c

Given that the confidence level is  95% then the significance level is evaluated as

         [tex]\alpha = 100-95[/tex]

         [tex]\alpha = 5\%[/tex]

         [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex]  from the normal distribution table the value is  

     [tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]

The margin of error is mathematically represented as

      [tex]E = Z_{\frac{ \alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E =1.96 * \frac{5.15 }{\sqrt{8} }[/tex]

=>     [tex]E = 3.569[/tex]

The 95% confidence interval is evaluated as

       [tex]\= x - E < \mu < \= x + E[/tex]

substituting values

       [tex]18.5 - 3.569 < \mu < 18.5 + 3.569[/tex]

       [tex]14.93 < \mu < 22.069[/tex]

Please helppp meee I don’t know the answer

Answers

Answer:

First use the protractor then round the number to the nearest 10

Answer:

Round to the nearest tenth

Step-by-step explanation:

If your starting salary is $40000 and you receive a 3% increase at the end of every year, what is the total amount, in dollars, you will earn one the first 16 years that you work

Answers

Answer:

Total amount in dollars= $64614.00

Step-by-step explanation:

Initial starting salary is $40000.

Rate of increase is 3%

Number of years is 16 years

The salary is compounded yearly.

Amount A after 16 years is given as

A= p (1+r/n)^ (nt)

A=40000(1+0.03/16)^(16*16)

A= 40000(1.001875)^(256)

A=40000(1.61534824)

A= 64613.92959

Total amount in dollars= $64614.00

Answer: the answer is $806275

Step-by-step explanation:

A p e x

What is the solution of the system of equations?
y = -3x + 7
y = 2x - 8

Answers

Answer:

x = 3, y = -2

Step-by-step explanation:

Since y=y

then, -3x +7 = 2x-8

7+8 = 3x+2x

15 = 5x

x=3

substitute

y = 2(3) - 8

y = -2

Hope that helped!!! k

Answer:

y = -2

x = 3

Step-by-step explanation:

Solve using elimination

1. Rearrange the equations to make it easier to solve

y = -3x + 7 → 3x + y = 7

y = 2x - 8 → 2x - y = 8

2. Multiply the equations to have a matching coefficient

2(3x + y = 7) = 6x + 2y = 14

3(2x - y = 8) = 6x - 3y = 24

3. Subtract

 6x + 2y = 14

- 6x - 3y = 24

  0 + 5y = -10

4. Solve for y

5y = -10

y = -2

5. Substitute y in any equation to solve for x

-2 = -3x + 7

-3x = -9

x = 3

A. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 4; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols.
The red die shows 1 and the numbers add to 4.
How many elements does it contain?
B. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 3; B: the numbers add to 2; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols. HINT [See Example 5.]
The numbers do not add to 2.
How many elements does it contain?
C. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 2; C: at least one of the numbers is 3; and D: the numbers do not add to 11. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 11 or the red die shows a 1.
How many elements does it contain?
D. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 4; B: the numbers add to 5; C: at least one of the numbers is 1; and D: the numbers do not add to 9. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 5, or they add to 9, or at least one of them is 1.
How many elements does it contain?

Answers

Answer:

1. elements it contains =  (1,3)

2.  elements it contains = 35

3.  elements it contains = 8

4.  elements it contains = 17

Step-by-step explanation:

A. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 4; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols.

The red die shows 1 and the numbers add to 4.

How many elements does it contain?

B. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 3; B: the numbers add to 2; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols. HINT [See Example 5.]

The numbers do not add to 2.

How many elements does it contain?

C. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 2; C: at least one of the numbers is 3; and D: the numbers do not add to 11. Express the given event in symbols. HINT [See Example 5.]

Either the numbers add to 11 or the red die shows a 1.

How many elements does it contain?

D. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 4; B: the numbers add to 5; C: at least one of the numbers is 1; and D: the numbers do not add to 9. Express the given event in symbols. HINT [See Example 5.]

Either the numbers add to 5, or they add to 9, or at least one of them is 1.

How many elements does it contain?

NB. Attached is the solution to the problems stated above

Isreal spends the most time on social media with a total of 11.1.peru has a total of 8.3 how much more time does israel spend on social media

Answers

Answer:

2.8

Step-by-step explanation:

11.1-8.3=2.8

HOPE I HELPED

PLS MARK BRAINLIEST

DESPERATELY TRYING TO LEVEL UP

✌ -ZYLYNN JADE ARDENNE

JUST A RANDOM GIRL WANTING TO HELP PEOPLE!

                            PEACE!

pls help :Find the missing side or angle.
Round to the nearest tenth.

Answers

Answer:

C° = 71.6056

Step-by-step explanation:

Law of Cosines: c² = a² + b² - 2abcosC°

Step 1: Plug in known variables

29² = 30² + 15² - 2(30)(15)cosC°

Step 2: Evaluate

841 = 900 + 225 - 900cosC°

-59 = 225 - 900cosC°

-284 = -900cosC°

71/225 = cosC°

cos⁻¹(71/225) = C°

C° = 71.6056

And we have our answer!

Answer:

  79.0°

Step-by-step explanation:

The Law of Cosines is used for this purpose. It tells you ...

  a² = b² +c² -2bc·cos(A)

Solving for A gives ...

  cos(A) = (b² +c² -a²)/(2bc) = (15² +29²-30²)/(2(15)(29)) = 166/870

Using the inverse cosine function, we find the angle to be ...

  A = arccos(166/870) ≈ 79.00026°

  A ≈ 79.0°

If tanA = 3
evaluate
CosA + sinA\
casA - SinA​

Answers

Answer:

Hi, there!!!

I hope you mean to evaluate cosA+ sonA /cosA - sinA.

so, i hope the answer in pictures will help you.

Researchers recorded that a certain bacteria population declined from 120,000 to 200 in 36 hours. At this rate of decay, how many bacteria will there be in 31 hours? Round to the nearest whole number.

Answers

Answer: There will 486 bacteria in 31 hours.

Step-by-step explanation:

The population decay in bacteria is exponential.

Exponential function : [tex]y=Ab^x[/tex], where A = initial population, b multiplication decay factor, t= time:

As per given:

Initial population: [tex]A=120,000[/tex]

After 36 hours, population = [tex]120000(b^{36})=200[/tex]

Divide both sides by 120,000 we get

[tex]b^{36}= 0.00167[/tex]

Taking natural log on both sides , we get

[tex]36\ln b=\ln 0.00167\\\\\Rightarrow\ b=e^{\left(\frac{\ln0.00167}{36}\right)}=0.83724629\approx0.8372[/tex]

At x= 31,

[tex]y=120000(0.8372)^{31}=120000\times0.00405234\approx486[/tex]

Hence, there will 486 bacteria in 31 hours.

Other Questions
A planar electromagnetic wave is propagating in the x direction. At a certain point P and at a given instant, the magnitude of the electric field of the wave is 0.082 V/m . What is the magnetic vector of the wave at point P at that instant? A) (0.27 nT)k B) (-0.27 nT)k C) (0.27 nT D) (6.8 nT)k E) (-6.8 nT)) The Downtown Parking Authority of Tampa, Florida, reported the following information for a sample of 229 customers on the number of hours cars are parked and the amount they are charged. Number of Hours Frequency Amount Charged 1 16 $ 3 2 34 6 3 51 12 4 39 16 5 34 21 6 16 24 7 9 27 8 30 29 229 a. Convert the information on the number of hours parked to a probability distribution. (Round your answers to 3 decimal places.) Hours Probability 1 2 3 4 5 6 7 8 a-2. Is this a discrete or a continuous probability distribution? b-1. Find the mean and the standard deviation of the number of hours parked. (Do not round intermediate calculations. Round your final answers to 3 decimal places.) b-2. How long is a typical customer parked? (Do not round intermediate calculations. Round your final answers to 3 decimal places.) c. Find the mean and the standard deviation of the amount charged. (Do not round intermediate calculations. Round your final answers to 3 decimal places.) Read the beginning of a narrative about pioneers in the American West: Maisie winced as her brother sang Oh! Susanna yet again. This trip was going to be endless if he didnt find a new songand soon. Samuel! Please! Enough with the Oh! Susanna. I can hardly hear myself think. O, Susanna! Samuel sang even louder. What element of effective narratives is this introduction missing? A. plot B. setting C. conflict D. characters is the square root of 2 between 1.4 and 1,5 Rearrange these sentences into the correct order1. tu / ciel / yeux / dans / m'as / Je / plus / tes / ne / le / regarde / applis / depuis que / pris / mes.2. je / avec / l'orthographe / parle / te / plus / Je / fais / gaffe / depuis que / mes / doigts.3. tu / n'as / plus / depuis que / de / Je / perdu / suis / batterie.Page 1 sur 2 What does an AED do to restart the heart? Simon Corporation manufactures hydraulic valves. The product life of a valve is 4 years. Target average profit margin for Simon 20.00% The company does not expect the manufacturing cost to vary over the next 4 years. Estimated sales volume and the unit selling price of the valve for the next 4 years is given below: Year Sales volume (units) Unit selling price Year 1 40,000 $80.00 Year 2 50,000 $75.00 Year 3 35,000 $50.00 Year 4 25,000 $45.00 What is the allowable unit cost of a hydraulic valve using the target costing model Simplify: 9h-12h=54-23 A. 3h=-77B.3h= 31C.-3h= -31D.-3h= 31 Browse this website documenting the Haymarket Square Riot of 1886. Once you have finished reading some of the materials, write a short reflective essay (2-3 paragraphs) about whether it was fair for the eight men to be put on trial for the riot. Be sure to include your opinion, using specific examples from the lesson and from the web resource. ________ and currency risks are to key country success factors as land costs and ________ are to key region success factors. Labor costs; exchange rates Exchange rates; environmental impact Location of markets; climate Land costs; air and rail systems Cultural issues; zoning restrictions please this urgent!! A fish in an aquarium with flat sides looks out at a hungry cat. To the fish, does the distance to the cat appear to be less than the actual distance, the same as the actual distance, or more than the actual distance? Explain. Plz Help. What conclusion is supported by this image? An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many faces does it have, how many vertices and how many edges? a triangular pyramid ... how many faces does it have, how many vertices and how many edges? Justin and Lauren are equal partners in the PJenn Partnership. The partners formed the partnership seven years ago by contributing cash. Prior to any distributions, the partners have the following bases in their partnership interests:Partner Outside BasisJustin $22,000 Lauren 22,000 On December 31 of the current year, the partnership makes a pro rata operating distribution of: Partner DistributionJustin Cash $25,000Lauren Cash $18000Property 9,000 (FMV)($2,000 to partnership)Requried:a. What is the amount and character of Justin's recognized gain or loss? b. What is Justin's remaining basis in his partnership interest? c. What is the amount and character of Lauren's recognized gain or loss? d. What is Lauren's basis in the distributed assets? e. What is Lauren's remaining basis in her partnership interest? Pllzzz help Ill mark brainliest Combine like terms to simplify the expression: 2/5k - 3/5 +1/10k In response to the financial crisis, the Fed and the U.S. Treasury took all of the following policy actions except _______.a. lowering tax rates on commercial bank profitsb. The Troubled Asset Relief Program how to delete audio from powerpoint Eli is driving on a long road trip. He currently has 12 gallons of gas in his car. Eachhour that he drives, his car uses up 1.75 gallons of gas. How much gas would be in thetank after driving for 4 hours? How much gas would be left after t hours?Gas left after 4 hours:Gas left after t hours: 1ISubmit Answerattempt out of