Answer: D - 126.4g
Explanation:
% Yield = Actual Yield/Theoretical Yield
38% = Actual Yield/332.5
38/100 = Actual Yield/332.5
(.38)(332.5) = 126.35 g = 126.4 g Actual Yield
Answer:
is D. the correct answer
Explanation:
I'm not sure if it is. Please let me know if I'm mistaking.
Fill in the blanks with the words given below- [Atoms, homogeneous, metals, true, saturated, homogeneous, colloidal, compounds, lustrous] 1.An element which are sonorous are called................ 2.An element is made up of only one kind of .................... 3.Alloys are ............................. mixtures. 4.Elements chemically combines in fixed proportion to form ........................ 5. Metals are................................... and can be polished. 6. a solution in which no more solute can be dissolved is called a .................... solution. 7. Milk is a .............. solution but vinegar is a .................. solution. 8. A solution is a ................... mixture. pls help, could not get these answers
Answer:
1. metals
2. atom
3. homogeneous
4. compounds
5. lustrous
6. saturated
7. colloidal
8. homogeneous
Explanation:
When methane is burned with oxygen, the products are carbon dioxide and water. If you produce 9 grams of water and 11 grams of carbon dioxide from 16 grams of oxygen, how many
The given question is incomplete.
The complete question is:
When methane is burned with oxygen, the products are carbon dioxide and water. If you produce 9 grams of water and 11 grams of carbon dioxide from 16 grams of oxygen, how many grams of methane were needed for the reaction?
Answer: 4 grams of methane were needed for the reaction
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
{tex]CH_4+2O_2\rightarrow CO_2+H_2O[/tex]
Given: mass of oxygen = 16 g
Mass of carbon dioxide = 11 g
Mass of water = 9 g
Mass of products = Mass of carbon dioxide + mass of water = 11 g +9 g = 20 g
Mass or reactant = mass of methane + mass of oxygen = mass of methane + 16 g
As mass of reactants = mass of products
mass of methane + 16 g= 20 g
mass of methane = 4 g
Thus 4 grams of methane were needed for the reaction
Which of the following contains a nonpolar covalent bond?
O A. Co
B. NaCl
O C. 02
O D. HE
Answer:
The answer is o2
Explanation:
I took the test
What is the energy of a photon of electromagnetic radiation with a wavelength of 963.5 nm? (c = 3.00 × 108 m/s, h = 6.63 × 10–34 J · s
Answer:
[tex]E=2.06\times 10^{-19}\ J[/tex]
Explanation:
Given that,
The wavelength of electromagnetic radiation is 963.5 nm.
We need to find the energy of a photon with this wavelength.
The formula used to find the energy of a photon is given by :
[tex]E=\dfrac{hc}{\lambda}\\\\E=\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{963.5\times 10^{-9}}\\\\E=2.06\times 10^{-19}\ J[/tex]
So, the energy of a photon is [tex]2.06\times 10^{-19}\ J[/tex].
Heterocyclic aromatic compounds undergo electrophilic aromatic substitution in a similar fashion to that undergone by benzene with the formation of a resonance-stabilized intermediate. Draw all of the resonance contributors expected when the above compound undergoes bromination
Answer:
See explanation
Explanation:
When we talk about electrophilic substitution, we are talking about a substitution reaction in which the attacking agent is an electrophile. The electrophile attacks an electron rich area of a compound during the reaction.
The five membered furan ring is aromatic just as benzene. This aromatic structure is maintained during electrophilic substitution reaction. The attack of the electrophile generates a resonance stabilized intermediate whose canonical structures have been shown in the image attached.
Write a balanced chemical equation for the base hydrolysis of methyl butanoate with NaOH. (Use either molecular formulas or condensed structural formulas, but be consistent in your equation.)
Explanation:
C5H10O2 + NaOH = C2H5COONa + C2H5OH
your result are : sodium propanoate and ethanol
A balanced chemical equation represents atoms and their numbers with their charge. The balanced equation for base hydrolysis is C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH.
What is hydrolysis?Base hydrolysis is the splitting of the ester linkage by the basic molecule. As the result the acidic ester portion makes the salt, and also alcohol is produced as the by-product.
The base hydrolysis of methyl butanoate is shown as,
C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH
Here, sodium propanoate and ethanol are produced by the splitting of methyl butanoate in the presence of the base (NaOH).
Therefore, C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH is balanced reaction.
Learn more about hydrolysis here:
https://brainly.com/question/22078321
#SPJ2
Calculate the molarity of a solution containing 29g of glucose (C 6 H 12 O 6 ) dissolved in 24.0g of water. Assume the density of water is 1.00g/mL.
Answer:
whats the ph ofpoh=9.78
Explanation:
Write the equation for the reaction described: A solid metal oxide, , and hydrogen are the products of the reaction between metal and steam. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.)
Answer:
Pb + 2H2O --> PbO2 + 2H2
Explanation:
Products:
Solid metal; PbO2
Hydrogen; H
Reactants:
Metal; Pb
Steam; H2O
Reactants --> Products
Pb + H2O --> PbO2 + H2
Upon balancing we have;
Pb + 2H2O --> PbO2 + 2H2
A sample of ice absorbs 15.6kJ of heat as it undergoes a reversible phase transition to form liquid water at 0∘C. What is the entropy change for this process in units of JK? Report your answer to three significant figures. Use −273.15∘C for absolute zero.
Answer:
Entropy change of ice changing to water at 0°C is equal to 57.1 J/K
Explanation:
When a substance undergoes a phase change, it occurs at constant temperature.
The entropy change Δs, is given by the formula below;
Δs = q/T
where q is the quantity of heat absorbed or evolved in Joules and T is temperature in Kelvin at which the phase change occur
From the given data, T = 0°C = 273.15 K, q = 15.6 KJ = 15600 J
Δs = 15600 J / 273.15 K
Δs = 57.111 J/K
Therefore, entropy change of ice changing to water at 0°C is equal to 57.1 J/K
The entropy change of ice changing to water will be "57.1 J/K".
Entropy changeThe shift in what seems like a thermodynamic system's condition of confusion is caused by the transformation of heat as well as enthalpy towards activity. Entropy seems to be greater mostly in a network with a high quantity or measure of chaos.
According to the question,
Temperature, T = 0°C or,
= 273.15 K
Heat, q = 15.6 KJ or,
= 15600 J
We know the formula,
Entropy change, Δs = [tex]\frac{q}{T}[/tex]
By substituting the values, we get
= [tex]\frac{15600}{273.15}[/tex]
= 57.11 J/K
Thus the above answer is correct.
Find out more information about Entropy change here:
https://brainly.com/question/6364271
How has the work of chemists affected the environment over the years?
Answer:
Chemistry is one of the causes for global warming, and in some cases it can even cause certain illnesses.
Answer:
Chemists have both hurt the environment and helped the environment by their actions.
Explanation:
<3
Determine which set of properties correctly describes copper (Cu)?
A. Giant structure, conducts electricity, high melting point, soluble in water, malleable
B. Malleable, brittle, soluble in oil or gasoline, high melting point, simple structure
C. Ionic lattice, conducts electricity, soluble in oil or gasoline, low melting point, ductile
D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice
Answer:
D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice
Explanation:
Copper is a metal with an atomic number of 29. This metal is soft and reddish in color which explains why it is very malleable(beaten to form various shapes without breaking).
All metals are good conductors of electricity including copper which is also a metal. Metals generally are insoluble in water. Copper also has a high melting point which is a characteristic of metals due to their giant structure and metallic lattice which makes it difficult to be broken down.
An aqueous solution of potassium bromide, KBr, contains 4.34 grams of potassium bromide and 17.4 grams of water. The percentage by mass of potassium bromide in the solution is 20 %.
Answer:
True
Explanation:
The percentage by mass of a substance in a solution can be calculated by dividing the mass of the substance dissolved in the solution by the total mass of the solution. This can be expressed mathematically as:
Percentage by mass = mass of substance in solution/mass of solution x 100
In this case;
mass of KBr = 4.34 grams
mass of water = 17.4 grams
mass of solution = mass of KBr + mass of water = 4.34 + 17.4 = 21.74
Percentage by mass of KBr = 4.34/21.74 x 100
= 19.96 %
19.96 is approximately 20%.
Hence, the statement is true.
What is the final volume V2 in milliliters when 0.551 L of a 50.0 % (m/v) solution is diluted to 23.5 % (m/v)?
Answer:
[tex]V_2=1.17L[/tex]
Explanation:
Hello,
In this case, for dilution processes, we must remember that the amount of solute remains the same, therefore, we can write:
[tex]V_1C_1=V_2C_2[/tex]
Whereas V accounts for volume and C for concentration that in this case is %(m/v). In such a way, the final volume V2 turns out:
[tex]V_2=\frac{V_1C_1}{C_2}= \frac{0.551L*50.0\%}{23.5\%}\\ \\V_2=1.17L[/tex]
Best regards.
What is the mass number of an element
Answer:
A (Atomic mass number or Nucleon number)
Explanation:
The mass number is the total number of protons and nucleons in an atomic nucleus.
Hope this helps.
Please mark Brainliest...
What is the ph of 0.36M HNO3 ?
Answer:
0.44
Explanation:
We know that the pH of any acid solution is given by the negative logarithm of its hydrogen ion concentration. Hence, if I can obtain the hydrogen ion concentration of any acid, I can obtain its pH.
For the acid, HNO3, [H^+] = [NO3^-]= 0.36 M
pH= -log [H^+]
pH= - log[0.36]
pH= 0.44
In a reversible reaction, the endothermic reaction absorbs ____________ the exothermic reaction releases. A. less energy than B. None of these, endothermic reactions release energy C. the same amount of energy as D. more energy than
Answer: C. the same amount of energy as
Explanation:
A reversible reaction is a chemical reaction where the reactants form products that, in turn, react together to give the reactants back.
Reversible reactions will reach an equilibrium point where the concentrations of the reactants and products will no longer change.
[tex]A+B\rightleftharpoons C+D[/tex]
Thus if forward reaction is exothermic i.e. the heat is released , the backward reaction will be endothermic i.e. the heat is absorbed and in same amount.
The amount of energy released will be equal and opposite in sign to the energy absorbed in that reaction.
Answer:
C.) the same amount of energy as
Explanation:
I got it correct on founders edtell
If one pound is the same as 454 grams, then convert the mass of 78 grams to pounds.
Answer:
0.17 lb
Explanation:
78 g * (1 lb/454 g)=0.17 lb
If you want additional help with chemistry or another subject for FREE, check out growthinyouth.org.
g Which ONE of the following pairs of organic compounds are NOT pairs of isomers? A) butanol ( CH3-CH2-CH2-CH2-OH ) and diethyl ether ( CH3–CH2–O–CH2–CH3 ) B) isopentane ( (CH3)2-CH-CH2-CH3 ) and neopentane ( (CH3)4C ) C) ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ) D) acrylic acid ( CH2=CH-COOH ) and propanedial ( OHC–CH2–CHO ) E) trimethylamine ( (CH3)3N ) and propylamine ( CH3-CH2-CH2-NH2 )
Answer:
ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 )
Explanation:
Isomers are compounds that have the same molecular formula but different structural formulas. Hence any pair of compounds that can be represented by exactly the same molecular formula are isomers of each other.
If we look at the pair of compounds; ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ), one compound has molecular formula, C2H7ON while the other has a molecular formula, C2H5ON, hence they are not isomers of each other.
15. Calculate the critical angle of glass and water combination. Show your calculation. 16. What is the critical angle for the interface between Mystery A and glass
Answer:
15. Critical angle of glass and water combination, θ = 62.45°
16. Critical angle for the interface between Mystery A and glass, θ = 37.93°
Note; The question is incomplete. The complete question is as follows:
Medium Air Water Glass Mystery A Mystery B Table-2 Speed (m/s) 1.00 C 0.75 c 0.67 0.41 c 0.71 c n 1.00 1.33 1.50 Index of Refraction n of a given medium is defined as the ratio of speed of light in vacuum, c to the speed of light in a medium, v. n = c/v
Table-4: Incident Angle (degrees) Reflected Angle Refracted angle (degrees) (degrees) % Intensity of reflected ray 0 10 20 30 40 50 N/A N/A N/A 30 40 50 0 11.3 22.7 34.2 46.3 59.5 N/A N/A N/A 0.67 1.22 3.08 % Intensity of refracted ray 100 100 100 99.33 98.78 96.92
When rays travel from a denser medium to a less dense medium, we can define a critical angle of incidence θ such that refracted angle θ₂ = 90°. Applying Snell's law: Critical angle θ = sin-1(n₂/n₁).
When the angle of incidence is greater than the critical angle, 100% of the light intensity is reflected. This is called total internal reflection because all the light is reflected.
15. Calculate the critical angle of glass and water combination. Show your calculation.
16. What is the critical angle for the interface between Mystery A and glass?
Explanation:
15. Applying Snell's law; Critical angle θ = sin-1(n₂/n₁).
where n₂,refractive index of water = 1.33, n₁, refractive index of glass = 1.50 since glass is denser than water
θ = sin-1(1.33/1.50)
θ = 62.45°
Critical angle of glass and water combination, θ = 62.45°
16. Refractive index of mystery A , n = c/v
where v = 0.41 c
therefore, n = c / 0.41 c = 2.44
Critical angle for the interface between Mystery A and glass, θ = sin-1(n₂/n₁).
where n₂,refractive index of glass = 1.50, n₁, refractive index of mystery A = 2.44 since mystery A is denser than glass as seen from its refractive index
θ = sin-1(1.50/2.44)
θ = 37.93°
Critical angle for the interface between Mystery A and glass, θ = 37.93°
Testbank Question 47 Consider the molecular orbital model of benzene. In the ground state how many molecular orbitals are filled with electrons?
Answer:
There are fifteen molecular orbitals in benzene filled with electrons.
Explanation:
Benzene is an aromatic compound. Let us consider the number of bonding molecular orbitals that should be present in the molecule;
There are 6 C-C σ bonds, these will occupy six bonding molecular orbitals filled with electrons.
There are 6 C-H σ bonds, these will occupy another six molecular orbitals filled with electrons
The are 3 C=C π bonds., these will occupy three bonding molecular pi orbitals.
All these bring the total number of bonding molecular orbitals filled with electrons to fifteen bonding molecular orbitals.
The half-life of radium-226 is 1620 years. What percentage of a given amount of the radium will remain after 900 years
Answer:
68%
Explanation:
Since we need a percentage we can use any number we want for our initial value.
5(1/2)^900/1620 = 3.40
(3.40 / 5)*100 = 68%
To make sure lets use a different initial amount
1(1/2)^900/1620 = 0.68
(0.68/1) * 100 = 68%
To solve this question, we'll assume the initial amount of radium-226 to be 1.
Now, we shall proceed to obtaining the percentage of radium-226 that will after 900 years. This can be obtained as illustrated below:
Step 1Determination of the number of half-lives that has elapsed.
Half-life (t½) = 1620 years
Time (t) = 900 years
Number of half-lives (n) =?[tex]n = \frac{t}{t_{1/2}}\\\\n = \frac{900}{1620}\\\\n = \frac{5}{9}[/tex]
Step 2:Determination of the amount remaining
Initial amount (N₀) = 1
Number of half-lives (n) = 5/9
Amount remaining (N) =?[tex]N = \frac{N_{0} }{2^{n}}\\\\N = \frac{1}{2^{5/9}}[/tex]
N = 0.68Step 3Determination of the percentage remaining.
Initial amount (N₀) = 1
Amount remaining (N) = 0.68
Percentage remaining =?Percentage remaining = N/N₀ × 100
Percentage remaining = 0.68/1 × 100
Percentage remaining = 68%Therefore, the percentage amount of radium-226 that remains after 900 years is 68%
Learn more: https://brainly.com/question/10406952
In which of the following compounds does the carbonyl stretch in the IR spectrum occur at the lowest wavenumber?
a. Cyclohexanone
b. Ethyl Acetate
c. λ- butyrolactone
d. Pentanamide
e. Propanoyl Chloride
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the vibration of the bonds by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is a specific energy that generates a specific vibration. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the lower the wavenumber we will have less energy. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have heteroatoms (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of resonance structures which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the cyclohexanone.
See figure 1
I hope it helps!
What is the balanced equation for the reaction of aqueous cesium sulfate and aqueous barium perchlorate?
Answer:
The balanced chemical reaction is given as:
[tex]Cs_2SO_4(aq)+Ba(ClO_4)_2(aq)\rightarrow BaSO_4(s)+2CsClO_4(aq)[/tex]
Explanation:
When aqueous cesium sulfate and aqueous barium perchlorate are mixed together it gives white precipitate barium sulfate and aqueous solution od cesium perchlorate.
The balanced chemical reaction is given as:
[tex]Cs_2SO_4(aq)+Ba(ClO_4)_2(aq)\rightarrow BaSO_4(s)+2CsClO_4(aq)[/tex]
According to reaction, 1 mole of cesium sulfate reacts with 1 mole of barium perchlorate to give 1 mole of a white precipitate of barium sulfate and 2 moles of cesium perchlorate.
An atom of 120In has a mass of 119.907890 amu. Calculate the mass defect (deficit) in amu/atom. Use the masses: mass of 1H atom
Answer:
a
Explanation:
answer is a on edg
Solid cesium bromide has the same kind of crystal structure as CsCl which is pictured below: If the edge length of the unit cell is 428.7 pm, what is the density of CsBr in g/cm3.
Answer:
[tex]\mathbf {density \ d =4.4845 \ g/cm^3}[/tex]
Explanation:
Let recall the crystal structure of CsBr obtains a BCC structure. In a BCC structure, there exist only two atom per cell.
The density d of CsBr in g/cm³ can be calculated by using the formula:
[tex]\mathtt{ density \ d = \dfrac{z \times molar\ mass \ (M)}{ edge \ length \ (a) \ \times avogadro's \ number \ (N)}}[/tex]
where;
z = 1 mole of CsBr
edge length = 428.7 pm = (4.287 × 10⁻⁸)³ cm
molar mass of CsBr = 212.81 g/mol
avogadro's number = 6.023 × 10²³
[tex]\mathtt{ density \ d = \dfrac{1 \times 212.81}{(4.287 \times 10^{-8})^3 \times 6.023 \times 10^{23}}}[/tex]
[tex]\mathtt{ density \ d = \dfrac{ 212.81}{47.4540533}}[/tex]
[tex]\mathbf {density \ d =4.4845 \ g/cm^3}[/tex]
When titrating a strong acid with a strong base, after the equivalence point is reached, the pH will be determined exclusively by: Select the correct answer below:
A) hydronium concentration
B) hydroxide concentration
C) conjugate base concentration
D) conjugate acid concentration
Answer:
B) hydroxide concentration
Explanation:
Hello,
In this case, since we are talking about strong both base and acid, since the base is the titrant and the acid the analyte, once the equivalence point has been reached, some additional base could be added before the experimenter realizes about it, therefore, since the titrant is a strong base, it completely dissociates in hydroxide ions and metallic ions which allows us to compute the pOH of the solution by known the hydroxide ions concentration.
After that, due to the fact that the pH is related with the pOH as shown below:
pH=14-pOH
We can directly compute the pH.
Best regards.
Which of the following provides a characteristic of
MgO(s) with a correct explanation?
Choose 1 answer:
А
It is hard because its ions are held together by strong
electrostatic attractions.
B
It is malleable because its atoms can easily move past
one another without disrupting the bonding.
It is a poor conductor of electricity because its
electrons are tightly held within covalent bonds and
lone pairs.
It has a high melting point because its molecules
interact through strong intermolecular forces.
Answer:
А It is hard because its ions are held together by strong electrostatic attractions.
B It is malleable because its atoms can easily move past one another without disrupting the bonding.
Explanation:
These are correct explanations of the properties of magnesium.
C is wrong. Mg is a good conductor of electricity and it has metallic bonds.
D is wrong. Mg has no molecules. It has no intermolecular forces.
Calculate the amount of heat that must be absorbed by 10.0 g of ice at –20°C to convert it to liquid water at 60.0°C. Given: specific heat (ice) = 2.1 J/g·°C; specific heat (water) = 4.18 J/g·°C; ΔH fus = 6.0 kJ/mol.
Answer:
The amount of heat to absorb is 6,261 J
Explanation:
Calorimetry is in charge of measuring the amount of heat generated or lost in certain physical or chemical processes.
The total energy required is the sum of the energy to heat the ice from -20 ° C to ice of 0 ° C, melting the ice of 0 ° C in 0 ° C water and finally heating the water to 60 ° C.
So:
Heat required to raise the temperature of ice from -20 °C to 0 °CBeing the sensible heat of a body the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous), the expression is used:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation (ΔT=Tfinal - Tinitial).
In this case, m= 10 g, specific heat of the ice= 2.1 [tex]\frac{J}{g*C}[/tex] and ΔT=0 C - (-20 C)= 20 C
Replacing: Q= 10 g*2.1 [tex]\frac{J}{g*C}[/tex] *20 C and solving: Q=420 J
Heat required to convert 0 °C ice to 0 °C waterThe heat Q necessary to melt a substance depends on its mass m and on the called latent heat of fusion of each substance:
Q= m* ΔHfusion
In this case, being 1 mol of water= 18 grams: Q= 10 g*[tex]6.0 \frac{kJ}{mol} *\frac{1 mol of water}{18 g}[/tex]= 3.333 kJ= 3,333 J (being kJ=1,000 J)
Heat required to raise the temperature of water from 0 °C to 60 °CIn this case the expression used in the first step is used, but being: m= 10 g, specific heat of the water= 4.18 [tex]\frac{J}{g*C}[/tex] and ΔT=60 C - (0 C)= 60 C
Replacing: Q= 10 g*4.18 [tex]\frac{J}{g*C}[/tex] *60 C and solving: Q=2,508 J
Finally, Qtotal= 420 J + 3,333 J + 2,508 J
Qtotal= 6,261 J
The amount of heat to absorb is 6,261 J
The amount of heat to absorb is 6,261 J.
Calculation for heat:Heat required to raise the temperature of ice from -20 °C to 0 °C.
The formula for specific heat is used to calculate the amount of heat
Q = c * m * ΔT
Where,
Q =heat exchanged by a body,
m= mass of the body
c= specific heat
ΔT= change in temperature
Given:
m= 10 g,
specific heat of the ice= 2.1
ΔT=0 C - (-20 C)= 20 C
On substituting the values:
Q= 10 g*2.1 *20 C
Q=420 J
Heat required to convert 0 °C ice to 0 °C water.
The heat Q necessary to melt a substance depends on its mass m and on the called latent heat of fusion of each substance:
Q= m* ΔHfusion
Heat required to raise the temperature of water from 0 °C to 60 °C
m= 10 g,
Specific heat of the water= 4.18
ΔT=60 C - (0 C)= 60 C
On substituting:
Q= 10 g*4.18 *60 C
Q=2,508 J
Thus, Qtotal= 420 J + 3,333 J + 2,508 J
Qtotal= 6,261 J
The amount of heat to absorb is 6,261 J
Find more information about Specific heat here:
brainly.com/question/13439286
An actacide tablet containing Mg(OH)2 (MM = 58.3g / (mol)) is titrated with a 0.100 M solution of HNO3. The end point is determined by using an indicator. Based on 20.00mL HNO3 being used to reach the endpoint, what was the mass of the Mg * (OH) in the antacid tablet? * 0.0583 g 0.583 5.83 g 58.3 g
Answer:
0.0583g
Explanation:
The equation of the reaction is;
2HNO3(aq) + Mg(OH)2(aq) -------> Mg(NO3)2(aq) + 2H2O(l)
From the question, number of moles of HNO3 reacted= concentration × volume
Concentration of HNO3= 0.100 M
Volume of HNO3 = 20.00mL
Number of moles of HNO3= 0.100 × 20/1000
Number of moles of HNO3 = 2×10^-3 moles
From the reaction equation;
2 moles of HNO3 reacts with 1 mole of Mg(OH)2
2×10^-3 moles reacts with 2×10^-3 moles ×1/2 = 1 ×10^-3 moles of Mg(OH)2
But
n= m/M
Where;
n= number of moles of Mg(OH)2
m= mass of Mg(OH)2
M= molar mass of Mg(OH)2
m= n×M
m= 1×10^-3 moles × 58.3 gmol-1
m = 0.0583g
Consider these metal ion/metal standard reduction potentials Cd2+(aq)|Cd(s) Zn2+(aq)|Zn(s) Ni2+(aq)|Ni(s) Cu2+(aq)|Cu(s) Ag+(aq)|Ag(s) -0.40 V -0.76 V ‑0.25 V +0.34 V +0.80 V Based on the data above, which species is the best reducing agent?
Answer:
The best reducing agent is Zn(s)
Explanation:
A reducing agent must to be able to reduce another compound, by oxidizing itself. Consequently, the oxidation potential must be high. The oxidation potential of a compound is the reduction potential of the same compound with the opposite charge. Given the reduction potentials, the best reducing agent will be the compound with the most negative reduction potential. Among the following reduction potentials:
Cd₂⁺(aq)|Cd(s) ⇒ -0.40 V
Zn²⁺(aq)|Zn(s) ⇒ -0.76 V
Ni²⁺(aq)|Ni(s) ⇒‑0.25 V
Cu²⁺(aq)|Cu(s) ⇒ +0.34 V
Ag⁺(aq)|Ag(s) ⇒ +0.80 V
The most negative is Zn²⁺(aq)|Zn(s) ⇒ -0.76 V
From this, the most reducing agent is Zn. Zn(s) is oxidized to Zn²⁺ ions with the highest oxidation potential (0.76 V).