Answer:
0.44
Step-by-step explanation:
11/25 = 0.44 = 44%
Answer:
11/25
Step-by-step explanation:
since there are 25 students, there will be 25 choices, and the 25 will be the denominator
and there are 11 guys so there will be 11 choices of guys and the 11 will go on top
Carla drove her truck 414 miles on 18 gallons of gasoline. How many miles did she drive per gallon?
Answer:
23 miles per gallon
Step-by-step explanation:
414 miles = 18 gallons
=> 18/18 gallons = 414/18 miles
=> 1 gallon = 23 miles
So, she drove 23 miles per gallon.
Factor the trinomial below. x^2 + 5x – 24 A. (x – 8)(x + 3) B. (x – 4)(x + 6) C. (x – 3)(x + 8) D. (x – 6)(x + 4)
Answer:
The answer is option CStep-by-step explanation:
x² + 5x - 24
To factorize first write 5x as a difference so that when subtracted will give you 5 and when multiplied will give you - 24
That's
x² + 8x - 3x - 24
Factorize x out
That's
x( x + 8) - 3(x + 8)
Factor x + 8 out
We have the final answer as
(x + 8)(x - 3)Hope this helps you
Answer:(x-3)(x+8)
Step-by-step explanation:
Assume that the following confidence interval for the difference in the mean length of male babies (sample 1) and female babies (sample 2) at birth was constructed using independent simple random samples:0.2 in2.7 in. What does the confidence interval suggest about the difference in length between male babies and female babies?
Answer:
The confidence interval consist of positive values, it implies that the mean length of male babies at birth is more than that of female babies.
Step-by-step explanation:
Consider the hypothesis for testing the difference in the mean length of male babies and female babies at birth:
H₀: There is no significant difference between the mean length of male babies and female babies at birth, i.e. μ₁ - μ₂ = 0.
Hₐ: There is a significant difference between the mean length of male babies and female babies at birth, i.e. μ₁ - μ₂ ≠ 0.
The decision rule based on the confidence interval is:
If the (1 - α)% confidence interval does not consist of the null value, i.e. 0 then the null hypothesis will be rejected.
The confidence interval for the difference in the mean length of male babies and female babies at birth is:
CI = (0.2 in, 2.7 in)
The confidence interval does not consist of the null value, i.e. 0.
Thus, the null hypothesis will be rejected.
Hence, concluding that there is a significant difference between the mean length of male babies and female babies at birth.
Since the confidence interval consist of positive values, it implies that the mean length of male babies at birth is more than that of female babies.
A player at a fair pays Rs. 100 to roll a dice. The player receives Rs. 50 if the number of dots facing up is equal to 5, Rs. 200 if the number is 6, but nothing otherwise. Find the expected value of the reward Y. What is the expected value of the gain? Find out the standard deviation of Y.
Answer:
The dice has 6 options:
if the outcome is 5, player wins 50
if the outcome is 6, player wins 200
if the outcome is another number, the player does not win anything.
Now, remember that the expected value can be written as:
E = ∑xₙpₙ
where xₙ is the event n, and pₙ is the probability of that event.
for a dice, the probabilty for each number is 1/6
The expected value is:
E = (1/6)*(0 + 0 + 0 + 0 + 50 + 200) = 41.66
The expected gain will be E - 100 (because the player pays 100 in order to play)
Then the expected gain is:
G = 41.66 - 100 = -58.33
The standard deviation can be written as:
s = √( ∑(x - x)^2/n)
where x is the mean, in this case the mean is:
(200 + 50 + 4*0)/6 = 41.66 and n = 6.
s = √( (1/6)*(4*(0 - 41.66)^2 + (50 - 41.66)^2 + (200 - 41.66)^2) ) = 73
So we have a lot of standard deviation on Y.
80% of ______ is 1,200?
Answer:
the unknown number is 1500
Step-by-step explanation:
let "a" be the unknown number we finding so from the above question we can deduce that
(80/100)*a=1200
80a=1200*100
80a=120000
a=120000/80
a=1500
If the bathtub holds a total of 46.2 gallons, how many minutes would it take to fill the entire bathtub? Write an equation in one variable to help you solve the problem. The variable represents the unknown time in minutes.
Answer:
2.8
Step-by-step explanation:
Hey there!
Well to find the amount of minutes needed to fill a 46.2 gallon bathtub we’ll divide.
46.2 / 16.5
= 2.8
2.58 minutes
Hope this helps :)
I NEED HELP WITH THESE 4 ASAP
Answer:
I'm confused by this. What do they mean by prove?
Step-by-step explanation:
Transform the given parametric equations into rectangular form. Then identify the conic.
Answer:
Solution : Option B
Step-by-Step Explanation:
We have the following system of equations at hand here.
{ x = 5 cot(t), y = - 3csc(t) + 4 }
Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,
x = 5 cot(t) ⇒ x - 5 = cot(t),
y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)
Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations as well. --- Step #2
( y - 4 / - 3 )² = (csc(t))²
- ( x - 5 / 1 )² = (cot(t))²
___________________
(y - 4)² / 9 - x² / 25 = 1
And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.
5. During a national debate on changes to health care, a cable news service performs an opinion poll of 500 small business owners. It shows that 65% of small-business owners do not approve of health care changes. Develop a 95% confidence interval for the proportion opposing health care changes. Use 4 decimal places.
Answer:
The 95% confidence interval for the proportion opposing health care changes is (0.6082, 0.6918).
Step-by-step explanation:
The (1 - α)% confidence interval for the population proportion is:
[tex]CI=\hat p\pm z_{\alpha/2}\cdot\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
The information provided is:
[tex]\hat p=0.65\\n=500\\\text{Confidence level}=95\%[/tex]
The critical value of z for 95% confidence level is:
[tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]
*Use a z-table.
Compute the 95% confidence interval for the proportion opposing health care changes as follows:
[tex]CI=\hat p\pm z_{\alpha/2}\cdot\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
[tex]=0.65\pm 1.96\sqrt{\frac{0.65(1-0.65)}{500}}\\\\=0.65\pm 0.04181\\\\=(0.60819, 0.69181)\\\\\approx (0.6082, 0.6918)[/tex]
Thus, the 95% confidence interval for the proportion opposing health care changes is (0.6082, 0.6918).
can someone help me please
Answer:
[tex] {x}^{4} = 2880[/tex]
Step-by-step explanation:
[tex] {y}^{2} = 20 \: (eq . \: 1)[/tex]
[tex] {x}^{2} = {(2 \sqrt{3y)} }^{2} = 12y [/tex]
Putting value of eq. 1 in the following:
[tex] {x}^{4 } = {(12y)}^{2} = 144{y}^{2} = 144 \times 20 = 2880[/tex]
which of the following is equal to 5^-3?
Answer:
5⁻³ = 1/5³ = 1/125
Answer: 1/125
Step-by-step explanation:
5 STARS IF CORRECT! Can you translate a phrase or sentence into symbols? Explain the answer.
Answer:
See below.
Step-by-step explanation:
It depends on the sentence or phrase. If the sentence includes an operation of numbers or something related to comparing numbers, then maybe it can be translated into symbols. If the sentence or phrase has nothing to do with quantities, or operations or comparison of quantities, then probably it can't.
Examples:
1) The boy went for a walk.
There's nothing to translate into symbols in this case.
2) I had $10 in my bank account, then I deposited n dollars. Now I have $30 in my account.
In this case, I can translate the sentence into an equation.
10 + n = 30
x+9=13352643-2x answer get brainliest
Answer:
4450878
Step-by-step explanation:
Give an example of when and why one would use a continuity correction factor?
Answer:
An example of when a continuity correction factor can be used is in finding the number of tails in 50 tosses of a coin within a given range .
and continuity correction factor is used when a continuous probability distribution is used on a discrete probability distribution
Step-by-step explanation:
An example of when a continuity correction factor can be used is in finding the number of tails in 50 tosses of a coin within a given range .
continuity correction factor is used when a continuous probability distribution is used on a discrete probability distribution, continuity correction factor creates an adjustment on a discrete distribution while using a continuous distribution
Which of the following is the solution set of the given equation? (x - 3) - 2(x + 6) = -5 a) {-4} b) {8} c) {-10}
Answer:
x = -10
Step-by-step explanation:
(x - 3) - 2(x + 6) = -5
Distribute
x-3 -2x-12 = -5
Combine like terms
-x -15 = -5
Add 15 to each side
-x-15+15 = -5+15
-x=10
Multiply each side by -1
x= -10
Answer:
c
Step-by-step explanation:
Manuel says that he can solve the equation 3n = 21 by multiplying both sides by ⅓. Explain why this is correct.
Step-by-step explanation:
はい、両側を削除して、3を掛けて7にします
Step-by-step explanation:
Given:
3n = 21
if we multiply both sides by 1/3, we will get:
3n = 21
3n x (1/3)= 21 x (1/3)
3n/3 = 21/3
n = 21/3
n = 7
Hence we can indeed solve for n by multiplying both sides by (1/3)
Question: 2. Musah Stands At The Centre Of A Rectangular Field. He First Takes 50 Steps North, Then 25 Steps West And Finally 50 Steps On A Bearing Of 3150 Sketch Musah's Movement Mark 41 Ii. How Far West Is Musah's Final Point From The Centre? [Mark 41 Iv. How Far North Is Musah's Final Point From The Centre? Mark 41 Describe How You Would Guide A JHS Student
Answer:
60.36 steps West from centre
85.36 steps North from centre
Step-by-step explanation:
Refer to attached
Musah start point and movement is captured in the picture.
1. He moves 50 steps to North, 2. Then 25 steps to West, 3. Then 50 steps on a bearing of 315°. We now North is measured 0°or 360°, so bearing of 315° is same as North-West 45°.
Note. According to Pythagorean theorem, 45° right triangle with hypotenuse of a has legs equal to a/√2.
How far West Is Musah's final point from the centre?
25 + 50/√2 ≈ 60.36 stepsHow far North Is Musah's final point from the centre?
50 + 50/√2 ≈ 85.36 stepsYour’re in charge of evening entertainment for an important client group You use the company credit card to take their four representatives out to dinner. Two people order the steak entree for 32.50 Two people order the grilled tuna for 28.90 and you order the lasagna for 24.95 When the bill comes you tip 20% what is the amount of tip you leave
Answer:
total amount paid = 32.5 + 28.9 + 24.95 = 86.35
20% of the total amount paid = 0.2 * 86.35 = 17.27
you tip 17.25$
The general manager, marketing director, and 3 other employees of CompanyAare hosting a visitby the vice president and 2 other employees of CompanyB. The eight people line up in a randomorder to take a photo. Every way of lining up the people is equally likely.Required:a. What is the probability that the bride is next to the groom?b. What is the probability that the maid of honor is in the leftmost position?c. Determine whether the two events are independent. Prove your answer by showing that one of the conditions for independence is either true or false.
Answer:
Following are the answer to this question:
Step-by-step explanation:
Let, In the Bth place there are 8 values.
In point a:
There is no case, where it generally manages its next groom is = 7 and it will be arranged in the 2, that can be arranged in 2! ways. So, the total number of ways are: [tex]\to 7 \times 2= 14\\\\ \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,8),(8,7),(7,6)\}\\[/tex][tex]\therefore[/tex] required probability:
[tex]= \frac{14}{8!}\\\\= \frac{14}{8\times7 \times6 \times 5 \times 4 \times 3\times 2 \times 1 }\\\\= \frac{1}{8\times6 \times5 \times 4 \times 3}\\\\= \frac{1}{8\times6 \times5 \times 4 \times 3}\\\\=\frac{1}{2880}\\\\=0.00034[/tex]
In point b:
Calculating the leftmost position:
[tex]\to \frac{7!}{8!}\\\\\to \frac{7!}{8 \times 7!}\\\\\to \frac{1}{8}\\\\\to 0.125[/tex]
In point c:
This option is false because
[tex]\to P(A \cap B) \neq P(A) \times P(B)\\\\\to \frac{12}{8!} \neq \frac{14}{8!}\times \frac{1}{8}\\\\\to \frac{12}{8!} \neq \frac{7}{8!}\times \frac{1}{4}\\\\[/tex]
solve the equation for 3x=24 for x
Answer:
8
Step-by-step explanation:
3x = 24
Divide both sides by 3
3x/3 = 24/3
x = 8
The solution for x in the equation, 3x = 24 is 8.
What is the answer for the equation?To solve the equation 3x = 24 for x, we need to isolate x on one side of the equation. Here's how we can do that:
Start with the equation 3x = 24.
Divide both sides of the equation by 3 to isolate x. This gives us (3x)/3 = 24/3.
Simplify the equation: x = 8.
Therefore, the solution to the equation 3x = 24 is x = 8.
This means that if we substitute x with 8 in the original equation, we get 3(8) = 24, which is true.
Read more about equation here: https://brainly.com/question/29174899
#SPJ6
Solve for x in the diagram below.
30°
80°
2.cº
T =
Hello, there!!!!
Given that,
80°,3x° and 2x°are three angles on a st.line.
we have,
2x°+3x°+80°= 180° {The total sum of angles on a st. line is 180°}.
or, 5x°= 180°-80°
or, 5x°=100°
or, x= 100°/5
Therefore the value of x is 20°.
Hope it helps...
if the perimeter of Milo's rectangular backyard Is 16 feet. which of the following could be the dimensions of the yard? circle all that apply. explain your choice
Answer:
the answer is a and d
Step-by-step explanation:
6 + 6 + 2 +2 = 16
3 + 3 + 5 + 5 = 16
to find perimeter, double each factor and add :)
Avanety of two types of snack packs are delivered to a store. The box plots compare the number of calories in each
snack pack of crackers to the number of calories in each snack pack of trail mix.
Number of Calories in Each Snack Pack
Crackers
Trail Mix
65
70
75
80
85
90
95
100 105 110 115
Which statement is true about the box plots?
The interquartile range of the trail mix data is greater than the range of the cracker data.
The value 70 is an outlier in the trail mix data
The upper quartile of the trail mix data is equal to the maximum value of the cracker data
O The number of calories in the packs of trail mix have a greater variation than the number of calories in the packs
of crackers
Answer:
The number of calories in the packs of trail mix have a greater variation than the number of calories in the packs
of crackers
Step-by-step explanation:
IQR of trail mix data = 105 - 90 = 15
The range of cracker data = 100 - 70 = 30.
Therefore, the first option is NOT TRUE.
To check if option 2 is correct, calculate the lower limit to see if 70 is below the lower limit. If 70 is below the lower limit, then it is an outlier in the trail mix data.
Thus, Lower Limit = [tex]Q_1 - 1.5(IQR)[/tex]
Q1 = 90,
IQR = 105 - 90 = 15
Lower Limit = [tex]90 - 1.5(15)[/tex]
Lower Limit = [tex]90 - 22.5 = 67.5[/tex]
70 is not less than the lower limit, therefore, 70 is not an outlier for the trail mix data. The second option is NOT TRUE.
The upper quartile of the trail mix data = 105.
The maximum value of the cracker data = 100.
Therefore, the third option is NOT TRUE.
Range can be used to determine how much variable there is in a data represented on a box plot. The greater the range value, the greater the variation.
Range of trail mix data = 115 - 70 = 45
Range of cracker data = 100 - 70 = 30.
The range value for the number of calories in trail mix is greater than that for cracker, therefore, the number of calories in the packs of trail mix have a greater variation than the number of calories in the packs
of crackers.
The fourth option is TRUE.
Answer: D. The number of calories in the packs of trail mix have a greater variation than the number of calories in the packs of crackers.
Find the sum (x^3+5x^2+3x-7)+(8x-6^2+6)
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
Answer:
x^3 - x^2 + 11x - 1
-x^3 - 8x^2 + 5x + 7
Step-by-step explanation:
Find the sum
(x^3+5x^2+3x-7)+(8x-6x^2+6)
=x^3+5x^2+3x-7+8x-6x^+6
Collect like terms
=x^3 +5x^2-6x^2+3x+8x-7+6
Add the like terms
= x^3 - x^2 + 11x - 1
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
(7x-3x^2+2)-(x^3+5x^2+2x-5)
= 7x-3x^2+2-x^3-5x^2-2x+5
Collect like terms
= -x^3-3x^2-5x^2+7x-2x+2+5
Add the like terms
= -x^3 - 8x^2 + 5x + 7
Fill in the blanks and explain the pattern.
1, 4, 9, 16, 25,__,__,__,__,100
Fill in the blanks and explain the pattern.
1/2, 1/6, 1/18, 1/54,__,__,__
Answer:
1. 36, 49, 64, 81
The pattern is going up by squares.
2. 1/162, 1/486, 1/1458
The pattern is 1/3n.
Step-by-step explanation:
1. Before the blank spaces started we were at 5^2, or 25. Now, we have to find 6^2, 7^2, 8^2, and 9^2. That would be 36, 49, 64, and 81. It goes up by squares.
2. As the pattern continues, each number in the sequence is multiplied by 1/3 create the next number in the sequence.
A dice is rolled twice. What is the probability of rolling a 3 followed by a 2?
The two rolls of the number cube are independent events because
the result of 1 roll does not affect the result of the other roll.
To find the probability of two independent events, we first find
the probability of each event, then we multiply the probabilities.
We can find the probability of an event using the following ratio:
number of favorable outcomes/total number of outcomes
Since there is only one way to roll a 3 and there are six
possible outcomes, 1, 2, 3, 4, 5, and 6, the probability of rolling a 3 is 1/6.
Since there is also only one way to roll a 2 and there are
six possible outcomes, the probability of rolling a 2 would be 1/6.
Now we multiply the probabilities.
1/6 x 1/6 is 1/36.
So the probability of rolling a 3 and a 2 is 1/36.
Answer:
1/36
Step-by-step explanation:
Probability of rolling 3 in a dice = 1/6.
Probability of rolling 2 = 1/6
Since, 2 should be followed after 3; we multiply 1/6 and 1/6
1/6 x 1/6 = 1/36.
How many fluid ounces are there in 4pints?
Answer: 64 fluid ounces
Step-by-step explanation:
1 pint=16 fl oz
16*4=64
Write the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients. 1/(x-1)(x 9)
Answer:
[tex]\frac{A}{(x-1)} + \frac{B}{(x-9)}[/tex]
Step-by-step explanation:
Given the expression [tex]\dfrac{1}{(x-1)(x-9)}[/tex], we are to write the expression as a partial fraction. Writing as a partial fraction means rewriting the expression a s a sum of two or more expression.
Before we will do this we will need to check the nature of the function at the denominator whether it is linear, quadratic or a repeated function. According to the question, the denominator at the denominator is a linear function and since it is a linear function, we can separate both linear function without restriction as shown;
[tex]\dfrac{1}{(x-1)(x-9)} = \frac{A}{(x-1)} + \frac{B}{(x-9)}[/tex] where A and B are the unknown constant which are numerical values.
The distance between two cities on a map is 4 centimeters. If the scale is 0.5 cm:1 km, how many kilometers apart are the actual cities?
Answer:
8 km
Step-by-step explanation:
1 km
4 cm x -------- = 8 km
0.5 cm
The actual cities are 8 km apart from each other at the scale 0.5 cm = 1 km.
What is ratio?Ratio basically compares quantities, that means it shows the value of one quantity with respect to the other quantity.
If a and b are two values, their ratio will be a:b,
Given that,
The distance between two cities on a map = 4 centimeters.
Also, the scale
0.5 cm = 1 km
To find actual distance between cities, use ratio properly,
0.5 cm = 1 km
1 cm = 2 km
4 cm = 8 km
The distance between the actual cities is 8 km.
To learn more about Ratio on :
https://brainly.com/question/13419413
#SPJ2
Monique makes $11 per hour delivering pizzas. Monique works Monday
through Friday, and on average she earns $20 a day in tips. If Monique
made no less than $450 for one week, find an inequality for the number
of hours she worked
Answer:
x > 39 hours
Step-by-step explanation:
Let x be the number of hours she worked.
11x - is how much she would get paid for working for x hours
11x + 20 > 450
11x > 430
x > 39 hours
Hope that helped!!! k