IM GIVING BRAINLIEST TO THE FIRST PERSON TO ANSWER!

Show ALL work please! <3

IM GIVING BRAINLIEST TO THE FIRST PERSON TO ANSWER! Show ALL Work Please! &lt;3

Answers

Answer 1

Answer:

B

Step-by-step explanation:

What work is there to show? you basically isolate x. add 2 to both sides. and you get x is greater than or equal to 5. So the answer is B.

x-2[tex]\geq[/tex]3

 +2 +2

x[tex]\geq[/tex]5


Related Questions

If the sample size is increased and the standard deviation and confidence level stay the same, then the margin of error will also be increased.

a. True
b. False

Answers

False!

The answer is: False.

Whomever stated the answer is "true" is wrong.

The angles of a quadrilateral are (3x + 2), (x-3), (2x+1), and 2(2x+5). Find x.

Answers

Answer:

3x+2+x-3+2x+1+2(2x+5)=360

10x+10=360

x=35

Given the number of trials and the probability of success, determine the probability indicated: a. n = 15, p = 0.4, find P(4 successes) b. n = 12, p = 0.2, find P(2 failures) c. n = 20, p = 0.05, find P(at least 3 successes)

Answers

Answer:

A)0.126775 B)0.000004325376 C) 0.07548

Step-by-step explanation:

Given the following :

A.) a. n = 15, p = 0.4, find P(4 successes)

a = number of trials p=probability of success

P(4 successes) = P(x = 4)

USING:

nCx * p^x * (1-p)^(n-x)

15C4 * 0.4^4 * (1-0.4)^(15-4)

1365 * 0.0256 * 0.00362797056

= 0.126775

B)

b. n = 12, p = 0.2, find P(2 failures),

P(2 failures) = P(12 - 2) = p(10 success)

USING:

nCx * p^x * (1-p)^(n-x)

12C10 * 0.2^10 * (1-0.2)^(12-10)

66 * 0.0000001024 * 0.64

= 0.000004325376

C) n = 20, p = 0.05, find P(at least 3 successes)

P(X≥ 3) = p(3) + p(4) + p(5) +.... p(20)

To avoid complicated calculations, we can use the online binomial probability distribution calculator :

P(X≥ 3) = 0.07548

-8 + (-15)
Evaluate this expression ​

Answers

Answer:

-23

Step-by-step explanation:

-8+(-15) means that you are subtracting 15 from -8. So you end up with -8-15=-23.

I need help on this question :(​

Answers

Answer: 40 degree

Explanation:

FT bisect angle EFD dividing it into 2 equal angles (EFT and DFT)

And EFD = 80

We get :
EFT = 80/2
EFT = 40

And EFT + DFT = EFD = 80 degree

Therefore EFT = 40 degrees

Which choice shows the product of 22 and 49 ?

Answers

Answer:

1078

Step-by-step explanation:

The product of 22 and 49 is 1078.

Answer:

1078 is the product

Step-by-step explanation:

HELP ASAP PLS :Find all the missing elements:

Answers

Answer:

a ≈ 1.59

b ≈ 6.69

Step-by-step explanation:

Law of Sines: [tex]\frac{a}{sinA} =\frac{b}{sinB} =\frac{c}{sinC}[/tex]

Step 1: Find c using Law of Sines

[tex]\frac{6}{sin58} =\frac{c}{sin13}[/tex]

[tex]c = sin13(\frac{6}{sin58})[/tex]

c = 1.59154

Step 2: Find a using Law of Sines

[tex]\frac{6}{sin58} =\frac{a}{sin109}[/tex]

[tex]a = sin109(\frac{6}{sin58} )[/tex]

a = 6.68961

How many ways are there to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants

Answers

Answer:

There are 6566 ways to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants.

Step-by-step explanation:

Given:

There are 5 types of croissants:

plain croissants

cherry croissants

chocolate croissants

almond croissant

apple croissants

broccoli croissants

To find:

to choose 22 croissants with:

at least one plain croissant

at least two cherry croissants

at least three chocolate croissants

at least one almond croissant

at least two apple croissants

no more than three broccoli croissants

Solution:

First we select

At least one plain croissant to lets say we first select 1 plain croissant, 2 cherry croissants, 3 chocolate croissants, 1 almond croissant, 2 apple croissants

So

1 + 2 + 3 + 1 + 2  = 9

Total croissants = 22  

So 9 croissants are already selected and 13 remaining croissants are still needed to be selected as 22-9 = 13, without selecting more than three broccoli croissants.

n = 5

r = 13

C(n + r - 1, r)

= C(5 + 13 - 1, 13)

= C(17,13)

[tex]=\frac{17! }{13!(17-13)!}[/tex]

= 355687428096000 / 6227020800 ( 24 )

= 355687428096000 / 149448499200

= 2380

C(17,13) = 2380

C(n + r - 1, r)

= C(5 + 12 - 1, 12)

= C(16,12)

[tex]=\frac{16! }{12!(16-12)!}[/tex]

= 20922789888000 / 479001600 ( 24 )

= 20922789888000  / 11496038400

= 1820

C(16,12) = 1820

C(n + r - 1, r)

= C(5 + 11 - 1, 11)

= C(15,11)

[tex]=\frac{15! }{11!(15-11)!}[/tex]

= 1307674368000 / 39916800 (24)

= 1307674368000 / 958003200

= 1307674368000 / 958003200

= 1365

C(15,11) = 1365

C(n + r - 1, r)

= C(5 + 10 - 1, 10)

= C(14,10)

[tex]=\frac{14! }{10!(14-10)!}[/tex]

= 87178291200 / 3628800 ( 24 )

= 87178291200 / 87091200

= 1001

C(14,10) = 1001

Adding them:

2380 + 1820 + 1365 + 1001 = 6566 ways

Let E and F be two events of an experiment with sample space S. Suppose P(E) = 0.6, P(F) = 0.3, and P(E ∩ F) = 0.1. Compute the values below.

(a) P(E ∪ F) =



(b) P(Ec) =



(c) P(Fc ) =



(d) P(Ec ∩ F) =

Answers

Answer:

(a) P(E∪F)= 0.8

(b) P(Ec)= 0.4

(c) P(Fc)= 0.7

(d) P(Ec∩F)= 0.8

Step-by-step explanation:

(a) It is called a union of two events A and B, and A ∪ B (read as "A union B") is designated to the event formed by all the elements of A and all of B. The event A∪B occurs when they do A or B or both.

If the events are not mutually exclusive, the union of A and B is the sum of the probabilities of the events together, from which the probability of the intersection of the events will be subtracted:

P(A∪B) = P(A) + P(B) - P(A∩B)

In this case:

P(E∪F)= P(E) + P(F) - P(E∩F)

Being P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.1

P(E∪F)= 0.6 + 0.3 - 0.1

P(E∪F)= 0.8

(b)  The complement of an event A is defined as the set that contains all the elements of the sample space that do not belong to A.  The Complementary Rule establishes that the sum of the probabilities of an event and its complement must be equal to 1. So, if P (A) is the probability that an event A occurs, then the probability that A does NOT occur is  P (Ac) = 1- P (A)

In this case: P(Ec)= 1 - P(E)

Then: P(Ec)= 1 - 0.6

P(Ec)= 0.4

(c) In this case: P(Fc)= 1 - P(F)

Then: P(Fc)= 1 - 0.3

P(Fc)= 0.7

(d)  The intersection of two events A and B, designated as A ∩ B (read as "A intersection B") is the event formed by the elements that belong simultaneously to A and B. The event A ∩ B occurs when A and B do at once.

As mentioned, the complementary rule states that the sum of the probabilities of an event and its complement must equal 1. Then:

P(Ec intersection F) + P(E intersection F) = P(F)

P(Ec intersection F) + 0.1 = 0.3

P(Ec intersection F)= 0.2

Being:

P(Ec∪F)= P(Ec) + P(F) - P(Ec∩F)

you get:

P(Ec∩F)= P(Ec) + P(F) - P(Ec∪F)

So:

P(Ec∩F)= 0.4 + 0.3 - 0.2

P(Ec∩F)= 0.8

Transform the given parametric equations into rectangular form. Then identify the conic. x= -3cos(t) y= 4sin(t)

Answers

Answer:

Solution : Option D

Step-by-step explanation:

The first thing we want to do here is isolate the cos(t) and sin(t) for both the equations --- ( 1 )

x = - 3cos(t) ⇒ x / - 3 = cos(t)

y = 4sin(t) ⇒ y / 4 = sin(t)

Let's square both equations now. Remember that cos²t + sin²t = 1. Therefore, we can now add both equations after squaring them --- ( 2 )

( x / - 3 )² = cos²(t)

+ ( y / 4 )² = sin²(t)

_____________

x² / 9 + y² / 16 = 1

Remember that addition indicates that the conic will be an ellipse. Therefore your solution is option d.

Look at the figure below. which ratio represents tan 0?
A -5/4, B -4/5, C -3/4, D 3/5.

Answers

The correct answer is D) 3/5

The required value of the tanФ is given as -3/4. C option is correct.

What is simplification?

The process in mathematics to operate and interpret the function to make the function or expression simple or more understandable is called simplifying and the process is called simplification.

What are trigonometric equations?

These are the equation that contains trigonometric operators such as sin, cos.. etc. In algebraic operations.

here,
Tan(180 - Ф) = -tanФ = perpendicular / base

From figure,  perpendicular= 12 and  base = 16
-tanФ = 12 / 16
tanФ = -3/4

Thus, the required value of the tanФ is given as -3/4. C option is correct.

Learn more about trigonometry equations here:

brainly.com/question/22624805

#SPJ5


When you enter the Texas Turnpike, they give you a ticket showing the time and place of your entry. When you exit, you turn in this ticket and they use it to figure your toll. Because they know the distance between toll stations, they can also use it to check your average speed against the turnpike limit of 65 mph. On your trip, heavy snow limits your speed to 40 mph for the first 120 mi. At what average speed can you drive for the remaining 300 mi without having your ticket prove that you broke the speed limit?

Answers

Answer:

87 mph

Step-by-step explanation:

Total distance needed is 120 mi + 300 mi and that is 420 mi.

Driving at 65 mph means that it would take

420 / 65 hours to reach his destination.

6.46 hours .

at the first phase, he drove at 40 mph for 120 mi, this means that it took him

120 / 40 hours to complete the journey.

3 hours.

the total time needed for the whole journey is 6.46 hours, and he already spent 3 hours in the first phase. To keep up with the 6.46 hours required, in the second phase, he has to drive at a speed of

6.46 - 3 hours = 3.46 hours.

300 mi / 3.46 hours => 86.71 mph approximately 87 mph

Therefore, he needs to drive at not more than 87 mph to keep up with the journey while not breaking his speed limit

Are we adding all 4 sides ?

Answers

Answer:

Yes

Step-by-step explanation:

you would do 2(5x-10) + 2(8x+4)= 26x-12

Answer:

26x - 12

Step-by-step explanation:

The perimeter is the sum of all the exterior sides of a figure.

Here, we have a parallelogram, and its sides are 5x - 10, 8x + 4, 5x - 10, and 8x + 4. Adding these, we get:

(5x - 10) + (8x + 4) + (5x - 10) + (8x + 4) = 26x - 12

Thus, the answer is 26x - 12. Note that since the problem doesn't give a value for x, this cannot be simplified further.

~ an aesthetics lover

The area of a rectangular garden if 6045 ft2. If the length of the garden is 93 feet, what is its width?

Answers

Answer:

65 ft

Step-by-step explanation:

The area of a rectangle is

A = lw

6045 = 93*w

Divide each side by 93

6045/93 = 93w/93

65 =w

Answer:

[tex]\huge \boxed{\mathrm{65 \ feet}}[/tex]

Step-by-step explanation:

The area of a rectangle formula is given as,

[tex]\mathrm{area = length \times width}[/tex]

The area and length are given.

[tex]6045=93 \times w[/tex]

Solve for w.

Divide both sides by 93.

[tex]65=w[/tex]

The width of the rectangular garden is 65 feet.

Solve 2x+2y=6 and 3x-2y=11

Answers

Answer:

x = 17/5

y = -2/5

Step-by-step explanation:

2x + 2y = 6

3x - 2y = 11

sum both equations results

5x + 0 = 17

x = 17/5

2x + 2y = 6

2*17/5 + 2y = 6

34/5 + 2y = 6

2y = 6 - 34/5

2y = 30/5 - 34/5

2y = -4/5

y = (-4/5)/2

y = -2/5

verify:

3x - 2y = 11

3*17/5 - 2*-2/5 = 11

51/5 + 4/5 = 55/5

51 + 4 = 55

can anyone show me this in verbal form?

Answers

Answer:

2 * (x + 2) = 50

Step-by-step explanation:

Let's call the unknown number x. "A number and 2" means that we need to add the numbers, therefore it would be x + 2. "Twice" means 2 times a quantity so "twice a number and 2" would be 2 * (x + 2). "Is" denotes that we need to use the "=" sign and because 50 comes after "is", we know that 50 goes on the right side of the "=" so the final answer is 2 * (x + 2) = 50.

A highway department executive claims that the number of fatal accidents which occur in her state does not vary from month to month. The results of a study of 140 fatal accidents were recorded. Is there enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month? Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fatal Accidents 8 15 9 8 13 6 17 15 10 9 18 12

Answers

Answer:

There is enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month, as the Variance is 14 and the Standard Deviation = 4 approximately.

There is a high degree of variability in the mean of the population as explained by the Variance and the Standard Deviation.

Step-by-step explanation:

Month       No. of              Mean       Squared

           Fatal Accidents  Deviation   Difference

Jan          8                       -4                  16

Feb        15                        3                   9

Mar         9                       -3                   9

Apr         8                       -4                  16

May       13                        1                    1

Jun         6                      -6                 36

Jul         17                       5                 25

Aug       15                       3                   9

Sep       10                      -2                   4

Oct        9                       -3                   9

Nov    18                          6                 36

Dec    12                          0                   0

Total 140                                         170

Mean = 140/12 = 12    Mean of squared deviation (Variance) = 170/12 = 14.16667

Standard deviation = square root of variance = 3.76386 = 4

The fatal accidents' Variance is a measure of how spread out the fatal accident data set is. It is calculated as the average squared deviation of the number of each month's accident from the mean of the fatal accident data set.  It also shows how variable the data varies from the mean of approximately 12.

The fatal accidents' Standard Deviation is the square root of the variance, and a useful measure of variability when the distribution is normal or approximately normal.

Find the surface area of the regular pyramid shown in the accompanying diagram. If necessary, express your answer in simplest radical form.

Answers

Answer:

The area of the pyramid is 360 unit²

Step-by-step explanation:

Given

Base Edge, a = 10

Height, h = 12

Required

Determine the surface area

The surface area of a regular pyramid is calculated as thus;

[tex]A = a^2 + 2a\sqrt{\frac{a^2}{4} + h^2}[/tex]

Substitute values for a and h

[tex]A = 10^2 + 2 * 10 * \sqrt{\frac{10^2}{4} + 12^2}[/tex]

Evaluate all squares

[tex]A = 100 + 2 * 10 * \sqrt{\frac{100}{4} + 144}[/tex]

[tex]A = 100 + 2 * 10 * \sqrt{25 + 144}[/tex]

[tex]A = 100 + 2 * 10 * \sqrt{169}[/tex]

Take positive square root of 169

[tex]A = 100 + 2 * 10 * 13[/tex]

[tex]A = 100 + 260[/tex]

[tex]A = 360[/tex]

Hence, the area of the pyramid is 360 unit²

Answer:

B.) 360 units2

Step-by-step explanation:

I got it correct on founders education

Find the value of the expression: −mb −m^2 for m=3.48 and b=96.52

Answers

Answer:

The value of the expression when [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex] is 323.779.

Step-by-step explanation:

Let be [tex]f(m, b) = m\cdot b - m^{2}[/tex], if [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex], the value of the expression:

[tex]f(3.48,96.52) = (3.48)\cdot (96.52)-3.48^{2}[/tex]

[tex]f(3.48,96.52) = 323.779[/tex]

The value of the expression when [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex] is 323.779.


An apartment building is infested with 6.2 X 10 ratsOn average, each of these rats
produces 5.5 X 10' offspring each year. Assuming no rats leave or die, how many additional
rats will live in this building one year from now? Write your answer in standard form.

Answers

Answer: 3.41x10^3

Step-by-step explanation:

At the beginning of the year, we have:

R = 6.2x10 rats.

And we know that, in one year, each rat produces:

O = 5.5x10 offsprins.

Then each one of the 6.2x10 initial rats will produce 5.5x10 offsprings in one year, then after one year we have a total of:

(6.2x10)*(5.5x10) = (6.2*5.5)x(10*10) = 34.1x10^2

and we can write:

34.1 = 3.41x10

then: 34.1x10^2 = 3.41x10^3

So after one year, the average number of rats is:  3.41x10^3

The table shows the probability distribution of student ages in a high school
with 1500 students. What is the expected value for the age of a randomly
chosen student?
Age
13
14
15
16
17
18
Probability 0.01 0.23 0.26 0.28 0.20 0.02

Answers

Answer:

Exoected age is 15.49 years

Step-by-step explanation:

Expected age

= E(x)

= sum (p(i)*i)

= 13*0.01+14*0.23+15*0.26+16*0.28+17*0.20+18*0.02

= 15.49

Ava placed the point of her pencil on the origin of a regular coordinate plane. She marked a point after moving her pencil 4 units to the left and 7 units up. Which ordered pair identifies where Ava marked her point?

Answers

[tex] \Large{ \boxed{ \bold{ \color{lightgreen}{Solution:}}}}[/tex]

So, Let's solve this question by using cartesian plane.

Here, Origin is shown by (0, 0)Ava moves 4 units left from origin. On the left side of origin, negative x axis begins. So, she reached (-4, 0) now.Then, from that point she moved 7 units upwards. On the upper side, there is positive y axis. So, Finally she will reach point (-4, 7).(-4, 7) is the coordinate of point which is 4 units left from y axis and 7 units up from x axis.It lies on the second quadrant.

Well, What is cartesian plane?

A - A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. 

━━━━━━━━━━━━━━━━━━━━

Find the length of GV¯¯¯¯¯¯¯¯ A. 43.92 B. 33.1 C. 41.45 D. 68.87

Answers

Answer:

The answer is option A

Step-by-step explanation:

Since the figure above is a right angled triangle we can use trigonometric ratios to find GV

To find GV we use cosine

cos∅ = adjacent / hypotenuse

From the question

GV is the adjacent

GC is the hypotenuse

So we have

[tex] \cos(37) = \frac{GV}{GC} [/tex]

GC = 55°

GV[tex] \cos(37) = \frac{GV}{55} [/tex]

GV = 55 cos 37

GV = 43.92495

We have the final answer as

GV = 43.92

Hope this helps you

Could anyone help me with this question please? Thank you.

Answers

Answer:

  C)  549 km²

Step-by-step explanation:

The area of the regular pentagon is given by ...

  A = (1/2)Pa

where P represents the perimeter, and 'a' represents the apothem (6.2 km). Of course, the perimeter is 5 times the side length.

The lateral area is the product of the perimeter and the height:

  LA = Ph

Using these formulas, and recognizing the total area includes two (2) pentagons, we have ...

  total area = (LA) +2(A) = Ph +2(1/2)Pa = P(h +a)

  = (45 km)(6 km +6.2 km) = 549 km^2

There are 30 colored marbles inside a bag. Six marbles are yellow, 9 are red, 7 are white, and 8 are blue. One is drawn at random. Which color is most likely to be chosen? A. white B. red C. blue D. yellow Include ALL work please!

Answers

Answer:

red

Step-by-step explanation:

Since the bag contains more red marbles than any other color, you are most likely to pick a red marble

Identifying the Property of Equality

Quick

Check

Identify the correct property of equality to solve each equation.

3+x= 27

X/6 = 5

Answers

Answer:

a) Compatibility of Equality with Addition, b) Compatibility of Equality with Multiplication

Step-by-step explanation:

a) This expression can be solved by using the Compatibility of Equality with Addition, that is:

1) [tex]3+x = 27[/tex] Given

2) [tex]x+3 = 27[/tex] Commutative property

3) [tex](x + 3)+(-3) = 27 +(-3)[/tex] Compatibility of Equality with Addition

4) [tex]x + [3+(-3)] = 27+(-3)[/tex] Associative property

5) [tex]x + 0 = 27-3[/tex] Existence of Additive Inverse/Definition of subtraction

6) [tex]x=24[/tex] Modulative property/Subtraction/Result.

b) This expression can be solved by using the Compatibility of Equality with Multiplication, that is:

1) [tex]\frac{x}{6} = 5[/tex] Given

2) [tex](6)^{-1}\cdot x = 5[/tex] Definition of division

3) [tex]6\cdot [(6)^{-1}\cdot x] = 5 \cdot 6[/tex] Compatibility of Equality with Multiplication

4) [tex][6\cdot (6)^{-1}]\cdot x = 30[/tex] Associative property

5) [tex]1\cdot x = 30[/tex] Existence of multiplicative inverse

6) [tex]x = 30[/tex] Modulative property/Result

Answer:

3 + x = 27

✔ subtraction property of equality with 3

x over 6  = 5

✔ multiplication property of equality with 6

Solve for W.
W/9 = g​

Answers

Answer:

W = 9 * g

Step-by-step explanation:

W/9 = g

W = 9 * g

The expression W/9 = g can be written as W = 9g after cross multiplication.

What is an expression?

It is defined as the combination of constants and variables with mathematical operators.

We have an expression:

W/9 = g

To solve for W

Make subject as W:

W = 9g

By cross multiplication.

Thus, the expression W/9 = g can be written as W = 9g after cross multiplication.

Learn more about the expression here:

brainly.com/question/14083225

#SPJ2

Chen is bringing fruit and veggies to serve at an afternoon meeting. He spends a total of $28.70 on 5 pints of cut veggies and 7 pints of cut fruit. The food cost is modeled by the equation 5 v plus 7 f equals 28.70, where v represents the cost of one pint of cut veggies and f represents the cost of one pint of cut fruit. If the cost of each pint of fruit is $2.85, what is the approximate price of a pint of veggies?

Answers

Answer:

(7 x 2.85) + 5v = 28.70. 19.95 + 5v = 28.70. 5v = 28.70 - 19.95. 5v = 8.75. v = 8.75/5. v = 1.75. A pint of veggies costs $1.75.

In a random sample of 205 people, 149 said that they watched educational television. Find the 95% confidence interval of the true proportion of people who watched educational television. Round intermediate answers to at least five decimal places.

Answers

Answer: Given a sample of 200, we are 90% confident that the true proportion of people who watched educational TV is between 72.1% and 81.9%.

Step-by-step explanation:

[tex]\frac{154}{200} =0.77[/tex]

[tex]1-0.77=0.23[/tex]

[tex]\sqrt{\frac{(0.77)(0.23)}{200} }[/tex]=0.049

0.77±0.049< 0.819, 0.721

Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.
a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)

Answers

Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:

[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]

[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]

For angle θ:

If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];

Calculating:

a) (4,2,-4)

[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6

[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]

[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]

For θ, choose 1st option:

[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]

[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]

b) (0,8,15)

[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17

[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]

[tex]\theta = tan^{-1}\frac{y}{x}[/tex]

The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]

c) (√2,1,1)

[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2

[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]

[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]

[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]

d) (−2√3,−2,3)

[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5

[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]

Since x < 0, use 2nd option:

[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]

[tex]\theta = \pi + \frac{\pi}{6}[/tex]

[tex]\theta = \frac{7\pi}{6}[/tex]

Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:

[tex]r=\sqrt{x^{2}+y^{2}}[/tex]

Angle θ is the same as spherical coordinate;

z = z

Calculating:

a) (4,2,-4)

[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]

[tex]\theta = tan^{-1}\frac{1}{2}[/tex]

z = -4

b) (0, 8, 15)

[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8

[tex]\theta = \frac{\pi}{2}[/tex]

z = 15

c) (√2,1,1)

[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]

[tex]\theta = \frac{\pi}{3}[/tex]

z = 1

d) (−2√3,−2,3)

[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4

[tex]\theta = \frac{7\pi}{6}[/tex]

z = 3

Other Questions
The garden is a place of rejuvenation and transformation in The Secret Garden. Do you believe Neverland has the same qualities in Peter Pan? Explain why or why not. What are some of the main characteristics of skeletal muscle cells that make them distinct from the other two types of muscle cells Why are these characteristics important for understanding the function of skeletal muscle? why does a desert cooler better on a hot dry day The following accounts are from last year's books of Sharp Manufacturing: Raw Materials Bal 0 (b) 154,800 (a) 166,000 11,200 Work In Process Bal 0 (f) 513,200 (b) 132,400 (c) 168,800 (e) 212,000 0 Finished Goods Bal 0 (g) 464,000 (f) 513,200 49,200 Manufacturing Overhead (b) 22,400 (e) 212,000 (c) 26,400 (d) 156,800 6,400 Cost of Goods Sold (g) 464,000 Sharp uses job-order costing and applies manufacturing overhead to jobs based on direct labor costs. What is the amount of direct materials used for the year Question 2(Multiple Choice Worth 1 points) (06.03 MC) Choose the correct simplification of the expression (5xy5)2(y3)4 A.25x2y22 B.10x2y22 C.25x3y14 D.10x3y14 Question 3(Multiple Choice Worth 1 points) (06.05 MC) Aurora is selling tickets to a carnival. The function f(x) = 0.5x represents the amount of money Aurora earns per ticket, where x is the number of tickets she sells. The function g(x) = 8x represents the number of tickets Aurora sells per hour, where x is the number of hours she works. Find f(g(x)), and explain what it represents. The new Hopewell Highway runs from Shenzhen to ---------------.* 4 points Bangkok Bejing Guangzhou Shanghai 8 m minus 6 less or equal than 10 When the nuclide bismuth-210 undergoes alpha decay: The name of the product nuclide is_____. The symbol for the product nuclide is_____Fill in the nuclide symbol for the missing particle in the following nuclear equation. _____ rightarrow 4He+ 234Th2 90Write a balanced nuclear equation for the following: The nuclide radium-226 undergoes alpha emission. Find the distance between the two points (-4,4) and (1,0) the telephone numbers in a telephone book is Categoricalor Quantitative? Which is produced around a wire when an electrical current is in the wire? magnetic field solenoid electron flow electromagnet What legal and political idea is contained in this edict from Hammurabis Code? A. limits of power B. protection from unreasonable search C. presumption of innocence D. right to present evidence Solve the equation using the multiplication property of equality and the reciprocal of 14 .14 ( r 52 ) = 18 Which equation represents a population of 300 animals that decreases at an annual rate of 23%? A. p=300(1.23)t B. p=300(1.77)t C. p=300(0.77)t D. p=300(0.23)t A blue print for a house has a scale of 1:10. A wall in the blueprint is 8in. What is the length of the actual wall?6.67. inches 80 feet969 feet6.67 feet In terms of the natural laws that act on cars and drivers, what role do safety belts play? BRAINLIST AND A THANK YOU AND 5 stars WILL BE REWARDED PLS ANSER ................................................... Find the doubling time of an investment earning 3% interest if interest is compounded continuously? Find the area of the following rectilinear figure.