Answer:
The wavelength is [tex]\lambda_2 = 534 *10^{-9} \ m[/tex]
Explanation:
From the question we are told that
The wavelength of the first light is [tex]\lambda _ 1 = 587 \ nm[/tex]
The order of the first light that is being considered is [tex]m_1 = 10[/tex]
The order of the second light that is being considered is [tex]m_2 = 11[/tex]
Generally the distance between the fringes for the first light is mathematically represented as
[tex]y_1 = \frac{ m_1 * \lambda_1 * D}{d}[/tex]
Here D is the distance from the screen
and d is the distance of separation of the slit.
For the second light the distance between the fringes is mathematically represented as
[tex]y_2 = \frac{ m_2 * \lambda_2 * D}{d}[/tex]
Now given that both of the light are passed through the same double slit
[tex]\frac{y_1}{y_2} = \frac{\frac{m_1 * \lambda_1 * D}{d} }{\frac{m_2 * \lambda_2 * D}{d} } = 1[/tex]
=> [tex]\frac{ m_1 * \lambda _1 }{ m_2 * \lambda_2} = 1[/tex]
=> [tex]\lambda_2 = \frac{m_1 * \lambda_1}{m_2}[/tex]
=> [tex]\lambda_2 = \frac{10 * 587 *10^{-9}}{11}[/tex]
=> [tex]\lambda_2 = 534 *10^{-9} \ m[/tex]
Describe how, using a positively-charged rod and two neutral metal spheres, we canmake one sphere positive without touching it to the rod. You might want to draw adiagram to help you.
Answer:
se the principle of induction.
place the two metallic spheres together, now we bring the positively charged bar closer to the first sphere.
The charge that was induced in the sphere is distributed as infirm as possible,
At this time I separate the spheres and move the bar away, by separating the spheres the excess positive
Explanation:
For this exercise we will use that the electric charge is not created, it is not destroyed and charges of the same sign repel.
Let's use the principle of induction. We place the two metallic spheres together, one in front of the other, now we bring the positively charged bar closer to the first sphere.
Here the positive charge of the bar repels the positive charge of the sphere, but as this is mocil it moves as far away as possible, until the negative charge that remains neutralizes the positive charge of the bar.
The charge that was induced in the sphere is distributed as infirm as possible, most of it in the furthest sphere, since the Coulomb force decreases.
At this time I separate the spheres and move the bar away, by separating the spheres the excess positive charge in the last sphere cannot be neutralized, therefore this sphere remains with a positive charge.
A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60
Answer:
-0.73mA
Explanation:
Using amphere's Law
ε =−dΦB/ dt
=−(2.6T)·(7.30·10−4 m2)/ 1.00 s
=−1.9 mV
Using ohms law
ε=V =IR
I = ε/ R =−1.9mV/ 2.60Ω =−0.73mA
The entropy of any substance at any temperature above absolute zero is called the: Select the correct answer below:
a. absolute entropy
b. Third Law entropy
c. standard entropy
d. free entropy
e. none of the above
Answer:
b. Third Law entropy
Explanation:
Third law entropy: In physics, the term "third law entropy" or "the third law of thermodynamics" states that the specific entropy of a particular system at "absolute zero" is considered as a "well-defined constant". It occurs because any system at "zero temperature" tends to exists or persists in its "ground state" in order for the entropy to be determined or described only by the "degeneracy" of the given ground state.
In the question above, the correct answer is option b.
Find the current through a person and identify the likely effect on her if she touches a 120 V AC source in the following circumstances. (Note that currents above 10 mA lead to involuntarily muscle contraction.)
(a) if she is standing on a rubber mat and offers a total resistance of 300kΩ
(b) if she is standing barefoot on wet grass and has a resistance of only 4000kΩ
Answer:
A) 0.4 mA
B) 0.03 mA
Explanation:
Given that
voltage source, V = 120 V
to solve this question, we would be using the very basic Ohms Law, that voltage is proportional to the current and the resistance passing through the circuit, if temperature is constant.
mathematically, Ohms Law, V = IR
V = Voltage
I = Current
R = Resistance
from question a, we were given 300kΩ, substituting this value of resistance in the equation, we have
120 = I * 300*10^3 Ω
making I the subject of the formula,
I = 120 / 300000
I = 0.0004 A
I = 0.4 mA
Question said, currents above 10 mA causes involuntary muscle contraction, this current is way below 10 mA, so nothing happens.
B, we have Resistance, R = 4000kΩ
Substituting like in part A, we have
120 = I * 4000*10^3 Ω
I = 120 / 4000000
I = 0.00003 A
I = 0.03 mA
This also means nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA
The current through a person will be:
a) 0.4 mA
b) 0.03 mA
Given:
Voltage, V = 120 V
Ohm's Law:It states that the voltage or potential difference between two points is directly proportional to the current or electricity passing through the resistance, and directly proportional to the resistance of the circuit.
Ohms Law, V = I*R
where,
V = Voltage
I = Current
R = Resistance
a)
Given: Resistance= 300kΩ
[tex]120 = I * 300*10^3 ohm\\\\I = 120 / 300000\\\\I = 0.0004 A[/tex]
Thus, current will be, I = 0.4 mA
b)
Given: R = 4000kΩ
[tex]120 = I * 4000*10^3 ohm\\\\I = 120 / 4000000\\\\I = 0.00003 A[/tex]
Thus, current will be, I = 0.03 mA
From calculations, we observe that nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA.
Find more information about Current here:
brainly.com/question/24858512
Tech A says parallel circuits are like links in a chain. Tech B says total current in a parallel circuit equals the sum of the current flowing in each branch of the circuit. Who is correct?
Answer: Only Tech B is correct.
Explanation:
First, tech A is wrong.
The circuits that can be compared with links in a chain are the series circuit, and it can be related to the links in a chain because if one of the elements breaks, the current can not flow furthermore (because the elements in the circuit are connected in series) while in a parallel circuit if one of the branches breaks, the current still can flow by other branches.
Also in a parallel circuit, the sum of the currents of each path is equal to the current that comes from the source, so Tech B is correct, the total current is equal to the sum of the currents flowing in each branch of the circuit.
Ratio of the speed of light in a vacuum to the speed of light in a medium Rule for how light is refracted at the boundary between two materials Process that occurs when the angle of incidence is greater than the critical angle
Answer:
TOTAL INTERNAL REFLECTION
Explanation:
Retraction is defined as the change in the direction of light rays as it moves from less dense medium to a denser medium.
For us to have a critical angle, the ray must be passing from the denser medium to the less dense medium. As the angle of refraction in the less dense medium is increasing, the angle of incidence in the less dense medium also increases. A point will reach when the refracted ray will be parallel to the interface i.e angle of refraction is 90°, the angle of incidence at this point is known as the critical angle. If the angle of refraction keeps increasing further, it will get to a point when the refracted ray becomes reflected into the denser medium. At this stage we say that the ray is internally reflected and this is the point when the angle of incidence is greater than the critical angle.
Hence it can be concluded that the process that occurs when the angle of incidence is greater than the critical angle is called TOTAL INTERNAL REFLECTION
A rectangular coil lies flat on a horizontal surface. A bar magnet is held above the center of the coil with its north pole pointing down. What is the direction of the induced current in the coil?
Answer:
There is no induced current on the coil.
Explanation:
Current is induced in a coil or a circuit, when there is a break of flux linkage. A break in flux linkage is caused by a changing magnetic field, and must be achieved by a relative motion between the coil and the magnet. Holding the magnet above the center of the coil will cause no changing magnetic filed since there is no relative motion between the coil and the magnet.
Please help!
Much appreciated!
Answer:
your question answer is 22°
From a static hot air balloon, a 10kg projectile is launched at a speed of 10m / s upwards. If the balloon has a mass of 90kg. What is the final velocity of the latter? Select one:
a. 0.57m / s down
b. 2.56m / s down
c. 1.11m / s down
d. 2.03m / s down
e. 3.15m / s down
Answer:
c. 1.11 m/s down
Explanation:
Momentum is conserved.
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Assuming the balloon and projectile are originally at rest:
(90 kg) (0 m/s) + (10 kg) (0 m/s) = (90 kg) v + (10 kg) (10 m/s)
0 kg m/s = (90 kg) v + 100 kg m/s
v = -1.11 m/s
A spring with spring constant 15 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 6.0 cm and released. If the ball makes 30 oscillations in 20 s, what are its (a) mass and (b) maximum speed?
Answer:
a
[tex]m = 0.169 \ kg[/tex]
b
[tex]|v_{max} |= 0.5653 \ m/s[/tex]
Explanation:
From the question we are told that
The spring constant is [tex]k = 14 \ N/m[/tex]
The maximum extension of the spring is [tex]A = 6.0 \ cm = 0.06 \ m[/tex]
The number of oscillation is [tex]n = 30[/tex]
The time taken is [tex]t = 20 \ s[/tex]
Generally the the angular speed of this oscillations is mathematically represented as
[tex]w = \frac{2 \pi}{T}[/tex]
where T is the period which is mathematically represented as
[tex]T = \frac{t}{n}[/tex]
substituting values
[tex]T = \frac{20}{30 }[/tex]
[tex]T = 0.667 \ s[/tex]
Thus
[tex]w = \frac{2 * 3.142 }{ 0.667}[/tex]
[tex]w = 9.421 \ rad/s[/tex]
this angular speed can also be represented mathematically as
[tex]w = \sqrt{\frac{k}{m} }[/tex]
=> [tex]m =\frac{k }{w^2}[/tex]
substituting values
[tex]m =\frac{ 15 }{(9.421)^2}[/tex]
[tex]m = 0.169 \ kg[/tex]
In SHM (simple harmonic motion )the equation for velocity is mathematically represented as
[tex]v = - Awsin (wt)[/tex]
The velocity is maximum when [tex]wt = \(90^o) \ or \ 1.5708\ rad[/tex]
[tex]v_{max} = - A* w[/tex]
=> [tex]|v_{max} |= A* w[/tex]
=> [tex]|v_{max} |= 0.06 * 9.421[/tex]
=> [tex]|v_{max} |= 0.5653 \ m/s[/tex]
W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively. Any energy not mentioned in the transformation is assumed to remain constant; if work is not mentioned, it is assumed to be zero.
1. Give a specific example of a system with the energy transformation shown.
W→ΔEth
2. Give a specific example of a system with the energy transformation shown.
a. Rolling a ball up a hill.
b. Moving a block of wood across a horizontal rough surface at constant speed.
c. A block sliding on level ground, to which a cord you are holding on to is attached .
d. Dropping a ball from a height.
Answer:
1) a block going down a slope
2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c) W = ΔK, d) ΔU = ΔK
Explanation:
In this exercise you are asked to give an example of various types of systems
1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.
2)
a) rolling a ball uphill
In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact
W = ΔU + ΔK + ΔE
b) in this system work is transformed into internal energy
W = ΔE
c) There is no friction here, therefore the work is transformed into kinetic energy
W = ΔK
d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy
ΔU = ΔK
A 1.25-kg ball begins rolling from rest with constant angular acceleration down a hill. If it takes 3.60 s for it to make the first complete revolution, how long will it take to make the next complete revolution?
Answer:
The time taken is [tex]\Delta t = 1.5 \ s[/tex]
Explanation:
From the question we are told that
The mass of the ball is [tex]m = 1.25 \ kg[/tex]
The time taken to make the first complete revolution is t= 3.60 s
The displacement of the first complete revolution is [tex]\theta = 1 rev = 2 \pi \ radian[/tex]
Generally the displacement for one complete revolution is mathematically represented as
[tex]\theta = w_i t + \frac{1}{2} * \alpha * t^2[/tex]
Now given that the stone started from rest [tex]w_i = 0 \ rad / s[/tex]
[tex]2 \pi =0 + 0.5* \alpha *(3.60)^2[/tex]
[tex]\alpha = 0.9698 \ s[/tex]
Now the displacement for two complete revolution is
[tex]\theta_2 = 2 * 2\pi[/tex]
[tex]\theta_2 = 4\pi[/tex]
Generally the displacement for two complete revolution is mathematically represented as
[tex]4 \pi = 0 + 0.5 * 0.9698 * t^2[/tex]
=> [tex]t^2 = 25.9187[/tex]
=> [tex]t= 5.1 \ s[/tex]
So
The time taken to complete the next oscillation is mathematically evaluated as
[tex]\Delta t = t_2 - t[/tex]
substituting values
[tex]\Delta t = 5.1 - 3.60[/tex]
[tex]\Delta t = 1.5 \ s[/tex]
The time for the ball to complete the next revolution is 1.5 s.
The given parameters;
mass of the ball, m = 1.25 kgtime of motion, t = 3.6 sone complete revolution, θ = 2πThe constant angular acceleration of the ball is calculated as follows;
[tex]\theta = \omega t \ + \ \frac{1}{2} \alpha t^2\\\\2\pi = 0 \ + \ 0.5(3.6)^2 \alpha\\\\2\pi = 6.48 \alpha \\\\\alpha = \frac{2 \pi }{6.48} \\\\\alpha = 0.97 \ rad/s^2[/tex]
The time to complete the next revolution is calculated as follows;
[tex]4\pi = 0 + \frac{1}{2} (0.97)t^2\\\\8\pi = 0.97t^2\\\\t^2 = \frac{8\pi }{0.97} \\\\t^2 = 25.91\\\\t = \sqrt{ 25.91} \\\\t = 5.1 \ s[/tex]
[tex]\Delta t = 5.1 \ s \ - \ 3.6 \ s \\\\\Delta t = 1.5 \ s[/tex]
Thus, the time for the ball to complete the next revolution is 1.5 s.
Learn more here:https://brainly.com/question/20738528
Categorize each ray tracing statement as relating to ray 1, ray 2, or ray 3.
A. Drawn from the top of the object so that it passes through the center of the lens at the optical axis.
B. Drawn from the top of the object so that it passes through the focal point on the same side of the lens as the object.
C. Drawn parallel to the optical axis from the top of the object.
D. Ray bends parallel to the optical axis.
E. Ray bends so that it passes through the focal point on the opposite side of the lens as the object.
F. Ray does not bend.
Answer:
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Explanation:
In this exercise you are asked to relate each with the answers
In general, in the optics diagram,
* Ray 1 is a horizontal ray that after stopping by the optical system goes to the focal point
* Ray 2 is a ray that passes through the intercept point between the optical axis and the system and does not deviate
* Ray 3 is a ray that passes through the focal length and after passing the optical system, it comes out horizontally.
With these statements, let's review the answers
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Calculate the electromotive force produced by each of the battery combinations shown in the figure, if the emf of each is 1.5 V.
Answer:
A) 1.5 V
B) 4.5 V
Explanation:
A) Batteries in parallel have the same voltage as an individual battery.
V = 1.5 V
B) Batteries in series have a voltage equal to the sum of the individual batteries.
V = 1.5 V + 1.5 V + 1.5 V
V = 4.5 V
Two parallel metal plates, each of area A, are separatedby a distance 3d. Both are connected to ground and each plate carries no charge. A third plate carrying charge Qis inserted between the two plates, located a distance dfrom the upper plate. As a result, negative charge is induced on each of the two original plates. a) In terms of Q, find the amount of charge on the upper plate, Q1, and the lower plate, Q2. (Hint: it must be true that Q
Answer:
Upper plate Q/3
Lower plate 2Q/3
Explanation:
See attached file
An array of solar panels produces 9.35 A of direct current at a potential difference of 195 V. The current flows into an inverter that produces a 60 Hz alternating current with Vmax = 166V and Imax = 19.5A.
A) What rms power is produced by the inverter?
B) Use the rms values to find the power efficiency Pout/Pin of the inverter.
Answer:
(A). 1620 watt.
(B).0.8885.
Explanation:
So, we are given the following data or parameters or information which is going to assist or help us in solving this particular Question or problem. So, we have;
Current = 9.35A, direct current at a potential difference of 195 V, frequency of the inverter = 60 Hz alternating current, alternating current with Vmax = 166V and Imax = 19.5A.
(A). The rms power is produced by the inverter = (19.5 /2 ) × 166 = 1620 watt(approximately).
(B). the rms values to find the power efficiency Pout/Pin of the inverter.
P(in) = 195 × 9.35 = 1823.3 watt.
Thus, the rms values to find the power efficiency Pout/Pin of the inverter = 1620/1823.3 = 0.88852324146441793 = 0.8885.
A 10kg block with an initial velocity of 10 m/s slides 1o m across a horizontal surface and comes to rest. it takes the block 2 seconds to stop. The stopping force acting on the block is about
Answer:
-50N
Explanation:
F=ma=m(Vf-Vi)/t
m=10kgVf=0m/sVi=10m/st=2sF=(10)(-10)/(2)=-50N
So the force acting on the block is -50N, where the negative sign simply tells us that the force is opposite to the direction of movement.
A spring is hung from the ceiling. When a block is attached to its end, it stretches 2.5 cm before reaching its new equilibrium length. The block is then pulled down slightly and released. What is the frequency of oscillation?
Answer:
0.99Hz
Explanation:
Using F= -mx ( spring force)
At equilibrium the gravitational force will be balanced by the spring force so mg= kx
K= mg/ 0.25 N/m
But
Frequency f= 1/2pi √g/0.25
Frequency is 0.99Hz
The block is pulled down slightly and released so, Frequency of oscillation is 3.15 Hz
Frequency of oscillation based problem:What information do we have?
Length starched = 2.5 cm
F = Kx
We know that
F = mg
So,
mg = Kx
K/m = g/x
[tex]f=\frac{1}{2\pi}\sqrt{\frac{g}{x} }\\f=\frac{1}{2\pi}\sqrt{\frac{9.8}{0.025} }[/tex]
Frequency of oscillation = 3.15 Hz
Find out more information about 'Oscillation'.
https://brainly.com/question/16016711?referrer=searchResults
You have a lightweight spring whose unstretched length is 4.0 cm. First, you attach one end of the spring to the ceiling and hang a 1.8 g mass from it. This stretches the spring to a length of 5.1 cm . You then attach two small plastic beads to the opposite ends of the spring, lay the spring on a frictionless table, and give each plastic bead the same charge. This stretches the spring to a length of 4.3 cm .
Requried:
What is the magnitude of the charge (in nC) on each bead?
Answer:
2.2nC
Explanation:
Call the amount by which the spring’s unstretched length L,
the amount it stretches while hanging x1
and the amount it stretches while on the table x2.
Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,
we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,
applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,
where ke is the Coulomb constant. Combining these,
we get q = √(mgx2(L+x2)²/x1ke =2.2nC
5. The speed of a transverse wave on a string is 170 m/s when the string tension is 120 ????. To what value must the tension be changed to raise the wave speed to 180 m/s?
Answer:
The tension on string when the speed was raised is 134.53 N
Explanation:
Given;
Tension on the string, T = 120 N
initial speed of the transverse wave, v₁ = 170 m/s
final speed of the transverse wave, v₂ = 180 m/s
The speed of the wave is given as;
[tex]v = \sqrt{\frac{T}{\mu} }[/tex]
where;
μ is mass per unit length
[tex]v^2 = \frac{T}{\mu} \\\\\mu = \frac{T}{v^2} \\\\\frac{T_1}{v_1^2} = \frac{T_2}{v_2^2}[/tex]
The final tension T₂ will be calculated as;
[tex]T_2 = \frac{T_1 v_2^2}{v_1^2} \\\\T_2 = \frac{120*180^2}{170^2} \\\\T_2 = 134.53 \ N[/tex]
Therefore, the tension on string when the speed was raised is 134.53 N
The two metallic strips that constitute some thermostats must differ in:_______
A. length
B. thickness
C. mass
D. rate at which they conduct heat
E. coefficient of linear expansion
Answer:
E. Coefficient of linear expansion
Which is produced around a wire when an electrical current is in the wire? magnetic field solenoid electron flow electromagnet
Answer:
A. magnetic field
Explanation:
The magnetic field is produced around a wire when an electrical current is in the wire because of the magnetic effect of the electric current therefore the correct answer is option A .
What is a magnetic field ?A magnetic field could be understood as an area around a magnet, magnetic material, or an electric charge in which magnetic force is exerted.
As given in the problem statement we have to find out what is produced around a wire when an electrical current is in the wire.
The magnetic field is produced as a result when an electrical current is passed through the conducting wire .
Option A is the appropriate response because a wire's magnetic field is created when an electrical current flows through it due to the magnetic influence of the electric current .
Learn more about the magnetic fields here, refer to the link given below;
brainly.com/question/23096032
#SPJ6
Atoms are the particles that all matter is made from. When two or more kinds of atoms combine, they form _______. A. pure elements B. molecules C. metals D. the periodic table
Answer:
Atoms are the particles that all matter is made from. When two or more kinds of atoms combine, they form pure elements
The answer is option A
Answer:
its molecues
Explanation:
how does a system naturally change over time
Answer:
The movement of energy and matter in a system differs from one system to another. On the other hand, in open system both the matter and energy move into and out of the system. Therefore, matter and energy in a system naturally change over time will decrease in entropy.
Explanation:
Answer:
Decrease in entropy
Explanation:
Various systems which exist in nature possess energy and matter that move through these system continuously. The movement of energy and matter in a system differs from one system to another.
In a closed system for example, only energy flows in and out of the system while matter does not enter or leave the system.
On the other hand, in open system both the matter and energy move into and out of the system.
In a velocity selector having electric field E and magnetic field B, the velocity selected for positively charged particles is v= E/B. The formula is the same for a negatively charged particles.
a. True
b. False
Answer:
True or False
Explanation:
Because.....
easy 50% chance you are right
What is the wavelength of electromagnetic radiation which has a frequency of 3.818 x 10^14 Hz?
Answer:
7.86×10⁻⁷ m
Explanation:
Using,
v = λf.................. Equation 1
Where v = velocity of electromagnetic wave, λ = wave length, f = frequency.
make λ the subject of the equation
λ = v/f............... Equation 2
Note: All electromagnetic wave have the same speed which is 3×10⁸ m/s.
Given: f = 3.818×10¹⁴ Hz
Constant: v = 3×10⁸ m/s
Substitute these values into equation 2
λ = 3×10⁸/3.818×10¹⁴
λ = 7.86×10⁻⁷ m
Hence the wavelength of the electromagnetic radiation is 7.86×10⁻⁷ m
The wavelength of this electromagnetic radiation is equal to [tex]7.86 \times 10^{-7} \;meters[/tex]
Given the following data:
Frequency = [tex]3.818\times 10^{14}\;Hz[/tex]Scientific data:
Velocity of an electromagnetic radiation = [tex]3 \times 10^8\;m/s[/tex]
To determine the wavelength of this electromagnetic radiation:
Mathematically, the wavelength of an electromagnetic radiation is calculated by using the formula;
[tex]Wavelength = \frac{Speed }{frequency}[/tex]
Substituting the given parameters into the formula, we have;
[tex]Wavelength = \frac{3 \times 10^8}{3.818\times 10^{14}}[/tex]
Wavelength = [tex]7.86 \times 10^{-7} \;meters[/tex]
Read more wavelength on here: https://brainly.com/question/6352445
A spherical balloon has a radius of 6.95m and is filled with helium. The density of helium is 0.179 kg/m3, and the density of air is 1.29 kg/m3. The skin and structure of the balloon has a mass of 960kg . Neglect the buoyant force on the cargo volume itself. Determine the largest mass of cargo the balloon can lift.
Answer:
602.27 kg
Explanation:
The computation of the largest mass of cargo the balloon can lift is shown below:-
Volume of helium inside the ballon= (4 ÷ 3) × π × r^3
= (4 ÷ 3) × 3.14 × 6.953
= 1406.19 m3
Mass the balloon can carry = volume × (density of air-density of helium)
= 1406.19 × (1.29-0.179)
= 1562.27 kg
Mass of cargo it can carry = Mass it can carry - Mass of structure
= 1562.27 - 960
= 602.27 kg
A particle moves along line segments from the origin to the points (2, 0, 0), (2, 3, 1), (0, 3, 1), and back to the origin under the influence of the force field F(x, y, z).
Required:
Find the work done.
Answer:
the net work is zero
Explanation:
Work is defined by the expression
W = F. ds
Bold type indicates vectors
In this problem, the friction force does not decrease, therefore it will be zero.
Consequently for work on a closed path it is zero.
The work in going from the initial point (0, 0, 0) to the end of each segment is positive and when it returns from the point of origin the angle is 180º, therefore the work is negative, consequently the net work is zero
An electron moving at 3.94 103 m/s in a 1.23 T magnetic field experiences a magnetic force of 1.40 10-16 N. What angle does the velocity of the electron make with the magnetic field? There are two answers between 0° and 180°. (Enter your answers from smallest to largest.)
Answer:
10.4⁰ and 169.6⁰Explanation:
The force experienced by the moving electron in the magnetic field is expressed as F = qvBsinθ where;
q is the charge on the electron
v is the velocity of the electron
B is the magnetic field strength
θ is the angle that the velocity of the electron make with the magnetic field.
Given parameters
F = 1.40*10⁻¹⁶ N
q = 1.6*10⁻¹⁹C
v = 3.94*10³m/s
B = 1.23T
Required
Angle that the velocity of the electron make with the magnetic field
Substituting the given parameters into the formula:
1.40*10⁻¹⁶ = 1.6*10⁻¹⁹ * 3.94*10³ * 1.23 * sinθ
1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁹⁺³sinθ
1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁶sinθ
sinθ = 1.40*10⁻¹⁶/7.75392 * 10⁻¹⁶
sinθ = 1.40/7.75392
sinθ = 0.1806
θ = sin⁻¹0.1806
θ₁ = 10.4⁰
Since sinθ is positive in the 1st and 2nd quadrant, θ₂ = 180-θ₁
θ₂ = 180-10.4
θ₂ = 169.6⁰
Hence, the angle that the velocity of the electron make with the magnetic field are 10.4⁰ and 169.6⁰
If R = 20 Ω, what is the equivalent resistance between points A and B in the figure?
Answer:
c. 70 Ω
Explanation:
The R and R resistors are in parallel. The 2R and 2R resistors are in parallel. The 4R and 4R resistors are in parallel. Each parallel combination is in series with each other. Therefore, the equivalent resistance is:
Req = 1/(1/R + 1/R) + 1/(1/2R + 1/2R) + 1/(1/4R + 1/4R)
Req = R/2 + 2R/2 + 4R/2
Req = 3.5R
Req = 70Ω