Using the hypothesis test for one sample mean, There is NO SIGNIFICANT EVIDENCE to support the typist's claim
[tex]H_{0} = 45\\H_{1} < 45\\\\[/tex]
The test statistic :
T = (x - μ) ÷ (s/√(n))
T = (43 - 45) ÷ (15/√70)
T = - 2 ÷ 1.7928429
T = -1.12
At α = 0.05
Pvalue :
Degree of freedom, df = 70 - 1 = 69
Pvalue = 0.1333
Decision region :
Reject [tex]H_{0}[/tex] if Pvalue < α
0.1333 > 0.05
Since Pvalue > α We fail to reject the Null
Learn more on hypothesis testing: https://brainly.com/question/20262540
Sam can mow a lawn in 40 minutes. Melissa can mow the same lawn in 80 minutes. How long does it take for both Sam and Melissa to mow the lawn if they are working together?
Answer:
It will take them both 24 minutes to mow the lawn if they are working together.
Step-by-step explanation:
Given that Sam can mow a lawn in 40 minutes, and Melissa can mow the same lawn in 80 minutes, to determine how long does it take for both Sam and Melissa to mow the lawn if they are working together, the following calculation must be performed:
1/40 + 1/60 = 1 / X
3X + 2X = 120
X = 120/5
X = 24
Thus, it will take them both 24 minutes to mow the lawn if they are working together.
(-1/2^5)×2^3×(3/4^2) [EVALUATE]
Step-by-step explanation:
here's the answer to your question
What is the length of segment AC?
Answer:
10 units
Step-by-step explanation:
Point A (3,-1)
Point B (-5,5)
Distance between them,
√{(-5-3)²+(5-(-1))²}
= √{(-8)²+6²}
= √(64+36)
= √100
= 10 units
PLEASE HELP!! MIGHT GIVE BRAINLIEST!!!!!
Graph a line with x - intercept of -2 and has a slope of 3
Answer:
The answer must be between 20 and 5000 characters
Hello everyone can someone answer this question please
9514 1404 393
Answer:
(a) 2
Step-by-step explanation:
Each inch is 2.54 cm, so 5.08 cm is ...
x / (5.08 cm) = (1 in) / (2.54 cm)
x = (1 in)(5.08/2.54) = (1 in)(2)
x = 2 in
5.08 cm equals 2 inches.
Find the missing side. Round your answer to the nearest tenth
Answer:
x = 24.8
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
Sin theta = opp / hypotenuse
sin 75 = 24 /x
x sin 75 = 24
x = 24/ sin 75
x=24.84662
Rounding to the nearest tenth
x = 24.8
38)
A man completes a job in 5 days working 8 hours a day. How many days will he take to complete the same job working 2 hours overtime per day in addition?
Answer:
dbcjchdiskcnbcksksnnckdkxnn
This probability distribution shows the
typical grade distribution for a Geometry
course with 35 students.
Resou
Grade
A
B C D F
ајӘН
Frequency 5
10
15
3
Find the probability that a student earns a
grade of D or F.
p = [?]
Enter a decimal rounded to the nearest hundredth.
Eva nail
Answer:
14.29%
Step-by-step explanation:
Total observations that had grade D or F: 5
Total observations: 35
[tex]\frac{5}{35} =\frac{1}{7} =.1429[/tex]
Answer:
.14
without rounding it is .1492 , rounded to the nearest hundredth it is .14
A store has clearance items that have been marked down by 55%. They are having a sale advertising an additional 40% off Clarence items what percentage of the original price do you end up paying?
9514 1404 393
Answer:
27%
Step-by-step explanation:
The price multiplier for the first discount is (1 -55%) = 0.45.
The price multiplier for the second discount is (1 -40%) = 0.60.
Then the price multiplier for the two discounts together is ...
(0.45)(0.60) = 0.27
You end up paying 27% of the original price.
For the given piecewise function, evaluate for the specified value of x.
Answer:
g(-3) = 1
Step-by-step explanation:
The x-value -3 lies within the given interval x ≤ -3, and so the correct piecewise function is x + 4, not -4 or -1. Evaluating x + 4 at x = -3 yields 1.
Thus, g(-3) = 1
The required value of the function g(x) at x = -3 , g(-3) is +1.
Given that,
A function is given with their domain,
g(x) = x + 4 when x≤
g(x) = 4 when -3 < x < 3
g(x) = - 1 when x ≥ 3
Functions are the relationship between sets of values. e g y=f(x), for every value of x there is its exists in a set of y. x is the independent variable while Y is the dependent variable.
Here, Function has been given with their respective limit in which the function is defined,
For the value of g(-3) the value of x = -3 lies in the limit x ≤ -3
So for this limit, we have a function,
g(x) = x + 4
g(-3) = - 3 + 4
g(-3) = +1
The required value of the function g(x) at x = -3 , g(-3) is +1.
learn more about function here:
brainly.com/question/21145944
#SPJ5
Find all the zeros of f(x).
f(x) = 2x3 + 7x2 - 28x + 12
Arrange your answers from smallest to largest. If
there is a double root, list it twice.
Plz help!
Answer:
The zeroes are -6, 1/2 and 2.
Step-by-step explanation:
f(x) = 2x3 + 7x2 - 28x + 12 = 0
From the first and last coefficient 2 and 12, one guess for a zero is x = 2.
So substituting x = 2:
f(2) = 16+ 28 - 56 + 12 = 0
So x = 2 is a zero and x - 2 is a factor of f(x)
Performing long division:
x - 2)2x3 + 7x2 - 28x + 12( 2x2 + 11x - 6 <------- Quotient
2x3 - 4x2
11x2 - 28x
11x2 - 22x
- 6x + 12
-6x + 12
.............
Now we solve
2x2 + 11x - 6 = 0
(2x - 1)(x + 6) = 0
2x - 1 = 0 or x + 6 = 0, so:
x = 1/2, x = -6.
Answer: -6, 1/2, 2.
Step-by-step explanation:
{(x) = 2x3 + 7x2 - 28x + 12 = 0
From the first and last coefficient 2 and 12, one
guess for a zero is x=2.
So substituting x=2:
{(2) = 16+ 28 - 56 + 12 = 0
So x = 2 is a zero and x - 2 is a factor of f(x)
Performing long division:
X - 2)2x3 + 7x2 - 28x + 12(2x2 + 11x - 6 <
Quotient
Question 5 of 25
Find the common ratio for this geometric sequence.
0.7, 2.1, 6.3, 18.9,...
O A. 1.4
O B. 3
O C.-3
D. 0.33
SUBMIT
Answer:
3
Step-by-step explanation:
common ratio
2.1/0.7=3
6.3/2.1=3
18.9/6.3=3
therefore common ratio is equal to 3
1. Define the following: Odds ratio Relative risk 2. Describe how to calculate the Odds ratio and provde the formula. 3. Describe how to calculate the Relative Risk and provide the formula.
Answer and Explanation:
Odds ratio is the odds that an outcome would happen given a level of exposure in comparison to the occurrence of that outcome without exposure. Odds ratio is calculated by dividing odds of event occurring with exposure(the first group) by odds of event(usually disease) occurring without exposure. Odds is different from probability(denoted p/1-p). While probability is the number of favorable events divided by total number of events, odds is number of favorable events/number of unfavorable events.
Relative risk, also measuring relationship between exposure and outcome, is the ratio of the probability that an outcome would occur without exposure and probability that an outcome would occur with exposure.
What is the value of the expression below?
e^In 4
O A. 12
B. 3
C. 4.
D. 8
SUBMI
Answer:
C. 4
Step-by-step explanation:
ln(4) = the power of e to get 4.
and then we put e to the power of that answer, so the result must be 4.
Does anyone know how to take the fuzzy stuff off
Answer:
???
Step-by-step explanation:
What is the range for the following set of numbers?57, -5, 11, 39, 56, 82, -2, 11, 64, 18, 37, 15, 68
so
82-(-2)
=84
then ur answer is 84
he solutions to the inequality y > −3x + 2 are shaded on the graph. Which point is a solution? (0, 2) (2, 0) (1, −2) (−2, 1)
Answer:
The Answer Is Point B (2,0)
Step-by-step explanation:
what is the image of ( 4, -8 ) after a dilation by a scale factor of 1/4 centered at the origin ?
what we know?:
* scale factor of 1/4
* the point (4, -8)
all we have to do is put 4/4 (because we are dilating by 1/4)
4/4= 1
same for the other one: -8/4= -2
FINAL ANSWER: (1, -2)
write the greatest and least number by using the following digits with out repeating any of the digits. 2,5,1,6,3,0,8,7
Answer:
87653210=highest
01235678=least
Answer:
Least number: 10235678
Greatest number: 87653210
state the hundred thousands place for 7,832,906,215
Answer:
Step-by-step explanation:
6 is the thousands place
0 (right next to it) is the 10 thousands place
9 is the hundred thousands place. There is only 1 nine present so the answer is unique.
• The difference between a polynomial or rational equation and polynomial or rational inequality
Answer:
An equation has an equal sign between two expressions, while an inequality has a ≤ or ≥ sign.
!!! HELP ASAP !!! I almost got the problem but the problem was the rounding. I believe I rounded right but it is still incorrect. Can someone please help me on the rounding portion of the question? Thank you for your help!!!
Given limit f(x) = 4 as x approaches 0. What is limit 1/4[f(x)]^4 as x approaches 0?
Answer:
[tex]\displaystyle 64[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Limit Rule [Variable Direct Substitution Exponential]: [tex]\displaystyle \lim_{x \to c} x^n = c^n[/tex]
Limit Property [Multiplied Constant]: [tex]\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \lim_{x \to 0} f(x) = 4[/tex]
Step 2: Solve
Rewrite [Limit Property - Multiplied Constant]: [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4[/tex]Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]: [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)[/tex]Simplify: [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e
Answer: C. 64
Step-by-step explanation:
Edge 100%
Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. P(X > 3), n = 5, p = 0.2
Answer:
0.0064
0.00032
Step-by-step explanation:
Given the details:
P(X > 3), n = 5, p = 0.2
The binomial distribution is related using the formula:
P(x = x) = nCx * p^x * q^(n-x)
q = 1 - p = 1 - 0.2 = 0.8
P(X > 3) = p(x = 4) + p(x = 5)
P(x = 4) = 5C4 * 0.2^4 * 0.8^1 = 5 * 0.2^4 * 0.8^1 = 0.0064
P(x = 5) = 5C5 * 0.2^5 * 0.8^0 = 1 * 0.2^5 * 0.8^0 = 0.00032
Hey!!! Plz help the question is below in a image
Answer:
desculpa não consigo responder pq esta td inglês ou espanhol prá mim se vc me dizer como posso fazer para voltar a ser português possa te ajudar em algo
Answer:
2.72 [tex]cm^2[/tex]
Step-by-step explanation:
You first find the area of the whole rectangle.
Then you have to find the area of the circle. The area of a circle is [tex]2\pi r[/tex].
The radius is 1 so it will be 2[tex]\pi[/tex].
[tex]\pi[/tex] equals 3.14 so you have to do 3.14*2 that equals 6.28.
Finally subtract 9-6.28=2.72
Write the equation of each line in slope intercept form. Slope is -6, and (1,-2) is on the line
Does this graph represent a function?
Answer:
I think it's a function
Step-by-step explanation:
as you can see in the picture curve drawn in a graph represents a function, if every vertical line intersects the curve in at most one point. So I think its a function.
Answer:
yes
Step-by-step explanation:
it's a cubic function having maximum and minimum turning points
it has a point of inflation, y - intercept and x-intercept
Kezang was 5 times as old as his son 10 years ago. After 8 years, Kezang will be twice as
old as his son. What are their present age
Find the area of a rectangle whose length is 14cm and breadth is 6cm
Answer:
Ellos dan las pistas de algunos problemas se pueden resolver de forma automática, los valores numéricos tienen ninguna importancia en los distintos ejemplos.
Traza 1
Uno de los lados de un rectángulo es 20 cm de largo; un segundo lado del rectángulo es de 0,85 m de largo. Calcular el perímetro y el área del rectángulo.
Traza 2
Calcular el área de un rectángulo cuyas dimensiones son 85 cm de largo y 20 cm respectivamente.
Traza 3
La base de un rectángulo es 20 cm de largo; la área es de 300 cm². Calcular la altura del rectángulo.
Traza 4
La altura de un rectángulo es 15 cm de largo; la área es de 300 cm². Calcula la base del rectángulo.
Traza 5
Un rectángulo tiene la altura que es de 3/8 de la base; la suma de las longitudes de los dos segmentos es 44 cm. Determinar el área del rectángulo y el perímetro.
Traza 6
La base de un rectángulo es de 0,40 m de largo; La altura del rectángulo es 30 cm. Calcular la diagonal.
Traza 7
Un tamaño de un rectángulo es un medio del lado de un cuadrado que tiene el perímetro de 20 cm. Sabiendo que los dos polígonos tienen el mismo perímetro, calcula la medida del tamaño del rectángulo.
Traza 8
La diagonal de un rectángulo es de 50 cm; la base es de 3/4 de la altura. Calcular el perímetro y el área del rectángulo.
Traza 9
La diagonal de un rectángulo mide 50 cm; ella es 5/3 de altura. Calcular el perímetro y el área del rectángulo.
Traza 10
Una mesa rectangular tiene lados de 180 cm y 90 cm respectivamente. Cuál es el perímetro y el área de un mantel que cuelga de 20 cm alrededor de la mesa?
Traza 11
Calcular el área de un rectángulo que tiene la altura 10 cm de largo, sabiendo que la medida de la base es el doble de la altura.
Traza 12
La diferencia entre el tamaño de un rectángulo es 12 cm y una es el triple de la otra. Calcular el área del rectángulo
Traza 13
La suma entre el tamaño de un rectángulo es 12 cm y una es el triple de la otra. Calcular el área del rectángulo
Traza 14
La suma de la base y la altura de un rectángulo es 50 cm; la base es superior a la altura de 4 cm. Calcular el área del rectángulo.
Traza 15
El semi-perímetro de un rectángulo es 32 cm y una dimensión es de 3/5 de la otra. Calcular el área del rectángulo.
Traza 16
El semi-perímetro de un rectángulo es 30 cm y una dimensión es igual a los sus 2/5. Calcular el área del rectángulo.
Traza 17
Un rectángulo tiene una base de 20 cm y una altura igual a 2/5 de la base. Calcular el perímetro y el área del rectángulo.
Traza 18
Un rectángulo tiene el área de 600 cm² y la base es 20 cm de largo. Cuál es su perímetro ?
Traza 19
Un rectángulo tiene un perímetro de 100 cm y la base es 30 cm de largo. Calcula su área.
Traza 20
Un rectángulo tiene un perímetro de 120 cm. Sabiendo que un tamaño es tres veces la otra, calcula el área del rectángulo.
Traza 21
La diferencia entre el tamaño de un rectángulo es 10 dm. Sabiendo que el perímetro es 100 dm, calcula el área del rectángulo.
Traza 22
Un rectángulo tiene un perímetro de 100 cm. Calcula su área sabiendo que la medida de la base es superior a la de la altura de 10 cm.
Traza 23
En el perímetro de un rectángulo es de 100 cm y la altura es de 20 cm de largo. Calcular el perímetro de un rectángulo equivalente a el mismo y que tiene su base de 40 cm de largo.
Traza 24
Un rectángulo es formado por dos cuadrados congruentes que tienen cada uno el perímetro de 24 cm. Calcular el perímetro y el área del rectángulo.
Traza 25
Un rectángulo es formado por tres cuadrados congruentes con cada lado 20 cm de largo. Calcular el perímetro y el área del rectángulo.
Traza 26
Un rectángulo es formado por dos cuadrados congruentes. Sabiendo que el perímetro del rectángulo es de 180 cm, calcular su área.
Traza 27
Un rectángulo y un cuadrado tienen el mismo perímetro. El lado de un cuadrado de 45 cm y las dimensiones del rectángulo son una 1/2 de la otra. Calcular el área del rectángulo.
Traza 28
Dos rectángulos son equivalentes. Sabiendo que las dimensiones de el primero miden respectivamente 30 cm y 20 cm, y que la base del segundo rectángulo es 40 cm de largo, calcula la diferencia entre los dos perímetros.
Traza 29
Calcular el perímetro de la figura y el área de la parte interior con la obtención de las medidas a partir del dibujo:
Traza 30
Calcular el perímetro de la figura y el área de la parte interior con la obtención de las medidas a partir del dibujo:
Traza 31
Un constructor ha comprado un terreno que tiene la planta mostrada en el dibujo y las dimensiones en metros se indican en la figura. Calcula el área y el perímetro de la tierra.
Traza 32
Una parcela de tierra tiene una forma rectangular con unas dimensiones de 50 m y de 30 m de largo. En el interior se ha construido una casa que ocupa una superficie rectangular de longitud 20 m y de 8 m de ancho. Calcular el área de la tierra permanecida libre.
Traza 33
Step-by-step explanation:
Answer:
A= 84cm
Step-by-step explanation:
length x width= area
plug in the given information.
14cm x 6cm = A
A=84
with a length of 14cm and a width of 6cm multiply them for an area of 84cm.
If 400 patrons visit the park in March and 550 patrons visit in April, the total number of patrons who
visited the park over the two months falls into all of the following categories except
O real numbers
O rational numbers
o irrational numbers