(a) The interval (-∞, ∞).
(b) The interval (-∞, ∞).
(c) The interval (-∞, ∞).
(d) The interval (-π/2, π/2) \ {0}.
(a) The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is the interval where the coefficient function, 3t, is continuous and bounded. Since 3t is a continuous and bounded function for all t in the interval (-∞, ∞), the given initial value problem is certain to have a unique twice-differentiable solution for all t in (-∞, ∞).
(b) The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is the interval where the coefficient functions, t(t - 4), 3t, and 4, are continuous and bounded. Since t(t - 4), 3t, and 4 are continuous and bounded functions for all t in the interval (-∞, ∞), the given initial value problem is certain to have a unique twice-differentiable solution for all t in (-∞, ∞).
(c) The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is the interval where the coefficient functions, cost and In|t|, are continuous and bounded. Since cost and In|t| are continuous and bounded functions for all t in the interval (-∞, ∞), the given initial value problem is certain to have a unique twice-differentiable solution for all t in (-∞, ∞).
(d) The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is the interval where the coefficient functions, x - 2, 1, and (x - 2)tanx, are continuous and bounded. Since x - 2, 1, and (x - 2)tanx are continuous and bounded functions for all x in the interval (-π/2, π/2) \ {0} , the given initial value problem is certain to have a unique twice-differentiable solution for all x in (-π/2, π/2) \ {0}.
Learn more about twice-differentiable solution here
brainly.com/question/30320300
#SPJ4
The given question is incomplete, the complete question is:
determine the longest interval in which the given initial value problem is certain to have a unique twice- differentiable solution. Do not attempt to find the solution. (a) ty" + 3y = 1, y(1) = 1, y'(1) = 2 (b) t(t – 4)y" + 3ty' + 4y = 2, y(3) = 0, y'(3) = -1 (c) y" + (cost)y' + 3( In |t|) y = 0, y(2) = 3, y'(2) = 1 (d) (x - 2)y"+y' +(x - 2)(tan x) y = 0, y(3) = 1, y'(3) = 2
What is the difference between the longest and
shortest pieces of scrap wood?
The difference in length between the two pieces of scrap wood is 7/8 inches.
What is the difference between the longest and shortest pieces of scrap wood?
To get the difference we just need to take the difference between the two lenghs.
Remember that we only have pieces of scraph wood if we have an "x" over the correspondent value in the line diagram.
By looking at it we can see that the longest pice measures 5 inches, while the shortest one (there are two of these) measure (4 + 1/8) inches.
The difference is:
5 - (4 + 1/8) = 7/8
The longest piece is 7/8 inches longer.
Learn more about differences at:
https://brainly.com/question/17695139
#SPJ1
find all real numbers k for which there exists a nonzero 2 dimensional vector bold v such that begin bmatrix 2
Given that x is a positive integer less than 100, how many solutions does the congruence x+13=55 (mod 34) have?
The congruence x + 13 ≡ 55 (mod 34) simplifies to x ≡ 12 (mod 34). There are three solutions for x less than 100 that satisfy this congruence.
The given congruence is x + 13 ≡ 55 (mod 34). Simplifying this, we get x ≡ 12 (mod 34).
We need to find the number of solutions for x that are less than 100 and satisfy this congruence.
The general solution for the congruence x ≡ 12 (mod 34) is x = 12 + 34k, where k is an integer.
The solutions that are less than 100 are obtained when k = 0, 1, or 2.
Thus, the number of solutions is 3.
Learn more about congruence here: brainly.com/question/7888063
#SPJ4
54.2 consider the competing species model, equaltion 54.1 sketch the phase plane and the trajectories of both population
To sketch the phase plane and trajectories of both populations in the competing species model, plot the population of one species on the x-axis and the population of the other species on the y-axis. Then, plot the isoclines and use them to determine the direction and stability of the population trajectories.
The competing species model is a system of two differential equations that describe the population dynamics of two species competing for the same resources. To sketch the phase plane and trajectories, plot the population of one species on the x-axis and the population of the other species on the y-axis. Then, plot the isoclines, which are curves that represent the values of one species' population at which the other species' population does not change.
The isoclines are found by setting each differential equation to zero and solving for one population in terms of the other. For example, the isocline for species 1 is found by setting dN1/dt = 0 and solving for N2. The resulting equation gives the values of N2 at which the population of species 1 does not change. Plotting these curves on the phase plane divides it into regions where the population of each species increases or decreases.
The direction and stability of the population trajectories can be determined by analyzing the slope of the vector field, which represents the rate of change of the population at each point in the phase plane. Trajectories move in the direction of the vector field, and their stability depends on the curvature of the isoclines. If the isoclines intersect at a single point, it is a stable equilibrium where both populations coexist. If they intersect at multiple points, the stable equilibrium depends on the initial conditions of the populations. If they do not intersect, one species will eventually drive the other to extinction.
To know more on competing species model
https://brainly.com/question/15100592
#SPJ4
--The question is incomplete, answering to the question below--
"Consider the competing species model, how to sketch the phase plane and the trajectories of both population"
Tom’s yearly salary is $78000
Calculate Tom’s fortnightly income. (Use 26
fortnights in a year.)
Fortnightly income =
$
Tom's fortnightly income is $3000.
What is average?In mathematics, an average is a measure that represents the central or typical value of a set of numbers. There are several types of averages commonly used, including the mean, median, and mode.
To calculate Tom's fortnightly income, we need to divide his yearly salary by the number of fortnights in a year:
Fortnightly income = Yearly salary / Number of fortnights in a year
Fortnightly income = $78000 / 26 = $3000
Therefore, Tom's fortnightly income is $3000.
To know more about average and given link below -brainly.com/question/24057012
#SPJ4
question - Calculate the Tom's fortnightly income and yearly salary by the number of fortnights in a year .
Consider the function h(x) = a(−2x + 1)^5 − b, where a does not=0 and b does not=0 are constants.
A. Find h′(x) and h"(x).
B. Show that h is monotonic (that is, that either h always increases or remains constant or h always decreases or remains constant).
C. Show that the x-coordinate(s) of the location(s) of the critical points are independent of a and b.
Answer:
A. To find the derivative of h(x), we can use the chain rule:
h(x) = a(-2x + 1)^5 - b
h'(x) = a * 5(-2x + 1)^4 * (-2) = -10a(-2x + 1)^4
To find the second derivative, we can again use the chain rule:
h''(x) = -10a * 4(-2x + 1)^3 * (-2) = 80a(-2x + 1)^3
B. To show that h is monotonic, we need to show that h'(x) is either always positive or always negative. Since h'(x) is a multiple of (-2x + 1)^4, which is always non-negative, h'(x) is always either positive or negative depending on the sign of a. If a > 0, then h'(x) is always negative, which means that h(x) is decreasing. If a < 0, then h'(x) is always positive, which means that h(x) is increasing.
C. To find the critical points, we need to find where h'(x) = 0:
h'(x) = -10a(-2x + 1)^4 = 0
-2x + 1 = 0
x = 1/2
Thus, the critical point is at x = 1/2. This value is independent of a and b, as neither a nor b appear in the calculation of the critical point.
Write a quadratic inequality represented by the graph.
Using the concept of parabola, the quadratic inequality represented by the graph can be written as:
y = x² -2x +2.
Define parabola?An equation of a curve that has a point on it that is equally spaced from a fixed point and a fixed line is referred to as a parabola.
The parabola's fixed point is referred to as the focus, and its fixed line is referred to as the directrix.
The general equation for a parabola is given as:
y = a(x-h) ² + k
Now here we have:
(x,y) = (2,5)
(h,k) = (1,1)
Putting these values in the equation,
5 = a (2-1) ² + 1
a = 5-1
=4
Substituting the values:
y = (x-1) + 1
y = x² -2x +2
Therefore, the quadratic inequality can be written as: y = x² -2x +2.
To know more about parabola, visit:
https://brainly.com/question/4074088
#SPJ1
PLEASE HELP!!!!!!!!!
△DEF is similar to △YZX
A) which side corresponds to ED? (this one is already answered)
B) write a proportion that you could use to find XZ
C) what is XZ?
Step-by-step explanation:
B) 20:23
C) 6,0375
hope this helps
At a community college, a survey was taken to determine where students study on campus. Of the 250 students surveyed, it was determined that
170 studied in the library
135 studied in the cafeteria
76 studied in both the library and the cafeteria
How many studied in library or cafeteria (including both)?
Answer:
Step-by-step explanation:
To find the number of students who studied in the library or cafeteria (including both), we need to add the number of students who studied in the library and the number of students who studied in the cafeteria, but we need to subtract the number of students who studied in both the library and cafeteria to avoid counting them twice.
So, the number of students who studied in library or cafeteria is:
170 + 135 - 76 = 229
Therefore, 229 students studied in the library or cafeteria (including both).
Which expressions are equivalent to 8(3/4y -2)+6(-1/2+4)+1
Answer: 6y + 6
Step-by-step explanation:
To simplify the expression 8(3/4y -2) + 6(-1/2+4) + 1, we can follow the order of operations (PEMDAS):
First, we simplify the expression within parentheses, working from the inside out:
6(-1/2+4) = 6(7/2) = 21
Next, we distribute the coefficient of 8 to the terms within the first set of parentheses:
8(3/4y -2) = 6y - 16
Finally, we combine the simplified terms:
8(3/4y -2) + 6(-1/2+4) + 1 = 6y - 16 + 21 + 1 = 6y + 6
Therefore, the expression 8(3/4y -2) + 6(-1/2+4) + 1 is equivalent to 6y + 6.
Find the measures of angles 1 through 5 in the figure shown !
Answer:
55 degrees angles on a rights angle triangle. 1 and 3 they are equal cause they are vertical opp angles 55 degrees
Decide if the function is an exponential growth function or exponential decay function, and describe its end behavior using
limits.
Y=(1/6) ^-x
Answer:
The given function is an exponential growth function, not an exponential decay function because as the exponent x increases, the value of y also increases instead of decreasing.
To describe its end behavior using limits, we need to find the limit of the function as x approaches infinity and as x approaches negative infinity.
As x approaches infinity, the exponent -x approaches negative infinity, and the base (1/6) is raised to increasingly larger negative powers, causing the function to approach zero. So, the limit as x approaches infinity is 0.
As x approaches negative infinity, the exponent -x approaches infinity, and the base (1/6) is raised to increasingly larger positive powers, causing the function to approach infinity. So, the limit as x approaches negative infinity is infinity.
Therefore, the end behavior of the function is that it approaches zero as x approaches infinity and approaches infinity as x approaches negative infinity.
A type of wood has a density of 250 kg/m3. How many kilograms is 75,000 cm3 of the wood? Give your answer as a decimal.
WILL GIVE BRAINLIEST NEED ANSWERS FAST!!!
Find the missing length indicated
Step-by-step explanation:
4)
based on similar triangles and the common ratio for all pairs of corresponding sides we know
LE/LM = LD/LK = DE/EM
because E and D are the midpoints of the longer sides, all of these ratios are 1/2.
1/2 = DE/8
8/2 = 4 = DE
5)
same principle as for 4)
BQ/BA = BR/BC = QR/AC
again, Q and R are the midpoints, so all these ratios are 1/2.
1/2 = QR/10
QR = 10/2 = 5
a rectangular prism with a volume of 20 in^3 is dialited with a scale facotr of 2. what is the volume of the new figure?
The volume of the new rectangular prism is 160 in³ after it has been dilated with a scale factor of 2.
In this case, the scale factor is 2, which means that the dimensions of the original figure will be multiplied by 2 to get the dimensions of the new figure.
Volume of rectangular prism = length x width x height
20 = l x w x h
Next, we need to find the new dimensions of the rectangular prism after it has been dilated by a scale factor of 2. We can do this by multiplying each dimension of the original rectangular prism by 2.
New length = 2 x l
New width = 2 x w
New height = 2 x h
Now we can find the volume of the new rectangular prism by using the same formula as before, but with the new dimensions:
Volume of new rectangular prism = (2 x l) x (2 x w) x (2 x h)
Simplifying this expression, we get:
Volume of new rectangular prism = 8 x (l x w x h)
We know that l x w x h is equal to the volume of the original rectangular prism, which is 20 in³. So we can substitute this value into the expression to get:
Volume of new rectangular prism = 8 x 20 in³
Volume of new rectangular prism = 160 in³
To know more about volume here
https://brainly.com/question/11168779
#SPJ4
factorise completely[tex]3x²-12xy
Answer:
3x(x - 4y)
Step-by-step explanation:
3x² - 12xy ← factor out 3x from each term
= 3x(x- 4y)
I will mark you brainiest!
If the triangles above are reflections of each other, then ∠D ≅ to:
A) ∠F.
B) ∠E.
C) ∠C.
D) ∠A.
E) ∠B.
Answer:
D I believe
Step-by-step explanation:
A baseball team has home games on Thursday and Sunday. The two games together earn $4064.50 for the team. Thursday's game generates $400.50 less than Sunday's game. How much money
was taken in at each game?
The Sunday game brought in $2232.50, while the Thursday game brought in $1832.00.
What does this gain and loss mean?A company's income, costs, and profit are compiled in a profit and loss (P&L) statement, a financial report. It provides information to investors and other interested parties about a company's operations and financial viability.
The issue informs us that the combined revenue from the two games was $4064.50.
S + (S - 400.50) = 4064.50
Simplifying the left side, we get:
2S - 400.50 = 4064.50
Adding 400.50 to both sides, we get:
2S = 4465
Dividing both sides by 2, we get:
S = 2232.50
So the Sunday game generated $2232.50, and the Thursday game generated $2232.50 - $400.50 = $1832.00.
To know more about brought visit:-
https://brainly.com/question/28646782
#SPJ1
Elizabeth works as a server in coffee shop, where she can earn a tip (extra money) from each customer she serves. The histogram below shows the distribution of her 60 tip amounts for one day of work. 25 g 20 15 10 6 0 0 l0 15 20 Tip Amounts (dollars a. Write a few sentences to describe the distribution of tip amounts for the day shown. b. One of the tip amounts was S8. If the S8 tip had been S18, what effect would the increase have had on the following statistics? Justify your answers. i. The mean: ii. The median:
a. Histogram shows tip amounts ranging between $6 and $25, skewed to the right with a longer tail of higher tips.
b. Increasing the $8 tip to $18 would increase the mean since total tip amount increases by $10 spread out over 60 customers. Median won't be affected since changing one value does not alter the middle value.
a. The histogram shows that Elizabeth received a range of tip amounts, with the majority of tips falling between $6 and $25. The distribution is skewed to the right, with a longer tail of higher tip amounts.
b. i. The mean would increase because the total tip amount would increase by $10, and this increase would be spread out over the 60 customers.
ii. The median would not be affected because it is the middle value when the data is ordered, and changing one value does not change the middle value.
Learn more about histogram here: brainly.com/question/30354484
#SPJ4
WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!!!!!
The point on the parabola y=x^2 that is closest to the point (1,0) is (_______,_______). The distance between the two points is ________.
you can use Newtons's Method or Bisection to help but you don't have to.
Answer:Approximately
(0.58975,0.34781)
Step-by-step explanation:
If (x,y) is a point on the parabola, then the distance between (x,y) and (1,0) is:
√(x−1)2+(y−0)2=√x4+x2−2x+1
To minimize this, we want to minimize
f(x)=x4+x2−2x+1
The minimum will occur at a zero of:
f'(x)=4x3+2x−2=2(2x3+x−1)
graph{2x^3+x-1 [-10, 10, -5, 5]}
Using Cardano's method, find
x=3√14+√8736+3√14−√8736≅0.58975
y=x2≅0.34781
If the area of one side of this cube is 25 cm^2
2
, what is the area of the whole surface of the cube?
cm^2
2
Answer:
150 cm2
Step-by-step explanation:
Given side of cube's area = 25. Since Side's a square,
Edge^2 = 5^2 = 5 cm
Total surface area: 6*a² = 6*5*5 = 150 cm2
Suppose the current cost of gasoline is $2.93 per gallon. Find the current price index number, using the 1975 price of 56.7 cents as the reference value.
Answer:
Step-by-step explanation:
To find the current price index number using the 1975 price of 56.7 cents as the reference value, we can use the formula:
Price Index = (Current Price / Base Price) x 100
Where "Current Price" is the current cost of gasoline, and "Base Price" is the 1975 price of 56.7 cents.
Substituting the values given in the problem, we get:
Price Index = ($2.93 / $0.567) x 100
Price Index = 516.899
Therefore, the current price index number, using the 1975 price of 56.7 cents as the reference value, is 516.899.
Find the generating functions and the associated sequences of: (x+4) ^ 4
Using binomial theorem, the generating function is G(x) = x^4 + 16x^3 + 96x^2 + 256x + 256 while the associated sequence of (x+4)^4 is {1, 16, 96, 256, 256}.
What is the generating functions and associated sequences of the functionTo find the generating function of (x+4)^4, we expand it using the binomial theorem:
[tex](x+4)^4 = C(4,0)x^4 + C(4,1)x^3(4) + C(4,2)x^2(4^2) + C(4,3)x(4^3) + C(4,4)(4^4)[/tex]
where C(n,k) denotes the binomial coefficient "n choose k".
Simplifying the terms, we get:
[tex](x+4)^4 = x^4 + 16x^3 + 96x^2 + 256x + 256[/tex]
Therefore, the generating function of (x+4)^4 is:
[tex]G(x) = x^4 + 16x^3 + 96x^2 + 256x + 256[/tex]
The associated sequence can be read off by finding the coefficients of each power of x:
The coefficient of x^k is the k-th term of the sequence.In this case, the sequence is given by the coefficients of G(x):a₀ = 256a₁ = 256a₂ = 96a₃ = 16a₄ = 1To find the generating function of (x+4)^4, we expand it using the binomial theorem:
(x+4)^4 = C(4,0)x^4 + C(4,1)x^3(4) + C(4,2)x^2(4^2) + C(4,3)x(4^3) + C(4,4)(4^4)
where C(n,k) denotes the binomial coefficient "n choose k".
Simplifying the terms, we get:
(x+4)^4 = x^4 + 16x^3 + 96x^2 + 256x + 256
Therefore, the generating function of (x+4)^4 is:
G(x) = x^4 + 16x^3 + 96x^2 + 256x + 256
The associated sequence can be read off by finding the coefficients of each power of x:
The coefficient of x^k is the k-th term of the sequence.
In this case, the sequence is given by the coefficients of G(x):
a₀ = 256
a₁ = 256
a₂ = 96
a₃ = 16
a₄ = 1
Therefore, the associated sequence of (x+4)^4 is {1, 16, 96, 256, 256}.
Learn more on binomial theorem here;
https://brainly.com/question/24756209
#SPJ1
PLS HELP FAST 20 POINTS + BRAINLIEST
Answer:
£22
Step-by-step explanation:
50% of 88=88/100 ×50=44
44÷2=25%=22
75% of £88 is deducted, so that 88-66=£22
Don't forget my BrainliestFind the 66th derivative of the function f(x) = 4 sin (x)…..
In response to the stated question, we may state that As a result, the 66th derivative of f(x) = 4 sin(x) is 4 sin(x) (x).
what is derivative?In mathematics, the derivative of a function with real variables measures how sensitively the function's value varies in reaction to changes in its parameters. Derivatives are the fundamental tools of calculus. Differentiation (the rate of change of a function with respect to a variable in mathematics) (in mathematics, the rate of change of a function with respect to a variable). The use of derivatives is essential in the solution of calculus and differential equation problems. The definition of "derivative" or "taking a derivative" in calculus is finding the "slope" of a certain function. Because it is frequently the slope of a straight line, it should be enclosed in quotation marks. Derivatives are rate of change metrics that apply to almost any function.
Using the chain rule and the derivative of the sine function repeatedly yields the 66th derivative of the function [tex]f(x) = 4 sin (x).[/tex]
The derivative of sin(x) is cos(x), and the derivative of cos(x) is -sin(x), and this pattern repeats itself every two derivatives.
As a result, the first derivative of f(x) is:
[tex]f'(x) = 4 cos (x)[/tex]
The second derivative is as follows:
[tex]f"(x) = -4 sin (x)[/tex]
The third derivative is as follows:
[tex]f"'(x) = -4 cos (x)[/tex]
The fourth derivative is as follows:
[tex]f""(x) = 4 sin (x)[/tex]
And so forth.
[tex]f^{(66)(x)} = 4 sin (x)[/tex]
Because the pattern repeats every four derivatives, the 66th derivative is the same as the second, sixth, tenth, fourteenth, and so on.
As a result, the 66th derivative of f(x) = 4 sin(x) is 4 sin(x) (x).
To know more about derivatives visit:
https://brainly.com/question/25324584
#SPJ1
|x+6|<3 absolute value inequality, write an equivalent compound inequality.
An equivalent cοmpοund inequality is -9 < x < -3.
What is an absοlute value inequality?An inequality with an absοlute value algebraic expressiοn and variables is knοwn as an absοlute value inequality. An expressiοn using absοlute functiοns and inequality signs is knοwn as an absοlute value inequality.
Here, we have
Given: |x+6|<3 is an absοlute value inequality.
Apply absοlute rule
if |u|<a, a>0 then -a<u<a
-3 < x+6 <3
x+6 > -3 and x+6 <3
x> -9 and x< -3
-9 < x < -3
Hence, an equivalent cοmpοund inequality is -9 < x < -3.
To learn more about the absolute value inequality
https://brainly.com/question/30230997
#SPJ1
find an ordered pair (x, y) that is a solution to the equation. -x+6y=7
Step-by-step explanation:
(-1, 1) is a solution.
because
-(-1) + 6×1 = 7
1 + 6 = 7
7 = 7
correct.
every ordered pair of x and y values that make the equation true is a solution.
(5, 2) would be another solution. and so on.
Ciara throws four fair six-sided dice. The faces of each dice are labelled with the numbers 1, 2, 3, 4, 5, 6 Work out the probability that at least one of the dice lands on an even number.
The likelihood that one or more of the dice will land on an even number is 1296.
How does probability work?The likelihood of an event is quantified by its probability, which is a number. It is stated as a number between 0 and 1, or in percentage form, as a range between 0% and 100%. The likelihood of an event increasing with probability of occurrence.
According to the given information:Four 6-sided dice are rolled what is the probability that at least two dice show least 2 die the same.
For 2 of the same: 5×5×642) =900
For 3 of the same: 5×643) =120
For 4 of the same: 644) =6
Combined: 900+120+6=1026
Total possibilities: 64=1296
To know more about probability visit:
https://brainly.com/question/30034780
#SPJ1
The probability that at least one of the dice lands on an even number is 15/16 or approximately 0.938.
What is probability?
Probability is a measure of the likelihood of an event occurring. It is a number between 0 and 1, where 0 means the event is impossible and 1 means the event is certain to happen. The probability of an event can be calculated by dividing the number of favorable outcomes by the total number of possible outcomes.
We can solve this problem by finding the probability that all four dice land on odd numbers and then subtracting this probability from 1 to get the probability that at least one of the dice lands on an even number.
The probability that one dice lands on an odd number is 3/6 = 1/2, and the probability that all four dice land on odd numbers is:
(1/2) × (1/2) × (1/2) × (1/2) = 1/16
Therefore, the probability that at least one of the dice lands on an even number is:
1 - 1/16 = 15/16
So the probability that at least one of the dice lands on an even number is 15/16 or approximately 0.938.
To learn more about probability from the given link:
https://brainly.com/question/30034780
#SPJ1
2 cities are 210 miles apart. If the distance on the map is 3 1/4 inches, find the scale of the map
The scale of the map = 682.5.
How would you define distance in one sentence?We kept a safe distance and followed them. She perceives a separation between her and her brother that wasn't there before. Although they were previously close friends, there was now a great deal of gap between them.
We must calculate the ratio of the distance shown on the map to the real distance between the cities in order to ascertain the scale of the map.
We are aware that there are 210 miles separating the two cities. Let x represent the precise location of this distance on the map. From that, we may establish the ratio:
Actual distance / Map Distance = 210 / x
The distance on the map is indicated as 3 1/4 inches, which is also known as 13/4 inches. When we enter this into the percentage, we obtain:
Actual distance divided by (13/4) = 210 / x
We can cross-multiply and simplify to find x's value:
Actual distance: 682.5 = x * 210 x = 3.25 when 210 * (13/4) Equals x.
Consequently, 3.25 inches on the map represent the actual distance between the cities. We can write: To determine the map's scale:
Actual distance divided by 1 inch on the chart equals 210 miles.
When we replace the values we discovered earlier, we obtain:
1 / 210 = 3.25 / scale
If we solve for the scale, we obtain:
scale = 682.5.
To know more about Distance visit:
brainly.com/question/15256256
#SPJ1
The breadth of a rectangular playground is 5m shorter than its length. If its perimeter is 130m,find ids length and breadth.
Answer:
Length is 35 m and breadth is 30 mStep-by-step explanation:
Given,
The breadth of a rectangular playground is 5m shorter than its length.Perimeter is 130 mLet length be x and breadth (x - 5).
Perimeter of rectangle is calculated by :
[tex] \: \: \boxed{ \pmb{ \sf{Perimeter_{(rectangle)} = 2(l + b)}}} \\ [/tex]
On substituting the values we get :
[tex]\dashrightarrow \: \: 130 = 2(x + x - 5) \\ [/tex]
[tex]\dashrightarrow \: \: 130 = 2(2x - 5) \\ [/tex]
[tex]\dashrightarrow \: \dfrac{130}{2} = (2x - 5) \\ [/tex]
[tex]\dashrightarrow \: \: 65 = 2x - 5 \\ [/tex]
[tex]\dashrightarrow \: \: 65 + 5 = 2x \\ [/tex]
[tex]\dashrightarrow \: \: 70 = 2x \\ [/tex]
[tex]\dashrightarrow \: \: \frac{70}{2} = x \\ [/tex]
[tex]\dashrightarrow \: \: 35 = x \\ [/tex]
Hence,
Length = x = 35 m.Breadth = x -5 = (35 -5) = 30 m