In the important industrial process for producing ammonia (the Haber process), the overall reaction is:
N2(g) +3H2(g) yields 2NH3(g)+100.4kJ
A yield of NH3 of approximately 98% can be obtained at 200 degrees celsius and 1,000 atmospheres of pressure.
What is the delta h in kJ of heat released per mole of NH3(g) formed?
a)100.4kJ
b)-50.2kJ
c)50.2kJ
d)-100.1kJ
e)-100.4kJ

Answers

Answer 1

The delta h in kJ of heat released per mole of NH3(g) formed in C)50.2kJ

To determine the delta H (ΔH) in kJ of heat released per mole of NH3(g) formed, we need to use the information provided and apply the concept of enthalpy change.

The given balanced equation for the Haber process is:

[tex]N_{2}(g) + 3H_{2}g → 2 NH_{3}(g) + 100.4KJ[/tex]

From the equation, we can see that 2 moles of [tex]NH_{3}[/tex] are formed per reaction, and 100.4 kJ of heat is released.

However, the yield of [tex]NH_{3}[/tex] is stated to be approximately 98%. This means that for every 100 moles of N2 and H2 that react, approximately 98 moles of [tex]NH_{3}[/tex] are formed.

So, for the formation of 98 moles of [tex]NH_{3}[/tex], the amount of heat released would be:

(98 moles [tex]NH_{3}[/tex] / 2 moles [tex]NH_{3}[/tex]) * 100.4 kJ = 49.2 kJ

Therefore, the delta H of heat released per mole of [tex]NH_{3}[/tex](g) formed is approximately 49.2 kJ. Among the given options, the closest value is 50.2 kJ (option c), which represents the delta H value rounded to one decimal place. Therefore, Option C is correct.

Know more about enthalpy change here:

https://brainly.com/question/14047927

#SPJ8


Related Questions

Which of the following receives their energy from the sun's light to generate a sugar source for cellular respiration?
Phototrophs
Lithotrophs
Chemotrophs
Heterotrophs

Answers

The organisms that receive their energy from the sun's light to generate a sugar source for cellular respiration are called phototrophs. Therefore, the correct answer is "phototrophs.

What are Phototrophs? Phototrophs are organisms that use the energy of sunlight to carry out biological processes. They are capable of converting light energy into chemical energy, which is stored in the form of carbohydrates or other organic compounds. Phototrophs are found in different groups of organisms, including plants, algae, and some bacteria. Plants and algae are the most well-known phototrophs, using photosynthesis to convert light energy into carbohydrates and other organic compounds.

Bacteria can also be phototrophic, with different mechanisms for harvesting sunlight energy depending on the type of bacteria. The opposite of phototrophs are chemotrophs, which obtain energy by oxidizing chemical compounds. Lithotrophs are a type of chemotroph that use inorganic compounds as a source of energy, while heterotrophs are organisms that obtain their energy from consuming organic matter.

To know more about phototrophs refer to:

https://brainly.com/question/29765598

#SPJ11

the positive variables p and c change with respect to time t. the relationship between p and c is given by the equation p2=

Answers

Given, the relationship between p and c is given by the equation p^2 = c^3 - 4c. Where p and c are the positive are variables which changes with respect to time is p^2 = c^3 - 4c.

To find the derivative of p with respect to time t, are the differentiate  by keeping the c as a constant. The obtained equation is as follows:$$\frac{d}{dt}p^2 = \frac{d}{dt}(c^3 - 4c)$$Now, apply the chain rule of differentiation on the left-hand side, we get;$$\frac{d}{dt}(p^2) = 2p\frac{dp}{dt}$$The right-hand side becomes zero as the derivative of a constant is zero.

this is the required relationship between p and The given relationship between p and c is given by the equation p^2 = c^3 - 4c, where p and c are the positive variables that change with respect to time t.To find the derivative of p with respect to time t, differentiate the given equation with respect to t by keeping the c as a constant.The obtained equation is as follows:$$\frac{d}{dt}p^2 = \frac{d}{dt}(c^3 - 4c)$$Now, apply the chain rule of differentiation on the left-hand side, we get;$$\frac{d}{dt}(p^2) = 2p\frac{dp}{dt}$$The right-hand side becomes zero as the derivative of a constant is zero.

To know more about relationship  Visit;

https://brainly.com/question/914267

#SPJ11

Solutions of the [V(OH₂)₆]²⁺ ion are lilac and absorb light of wavelength 806 nm. Calculate the ligand field splitting energy in the complex in units of kilojoules per mole. 1. Δₒ = ____ kJ. mol⁻¹

Answers

The ligand field splitting energy (Δₒ) in the [V(OH₂)₆]²⁺ complex is approximately 1.47 x 10⁴ kJ·mol⁻¹, calculated from the absorbed light wavelength of 806 nm.

To calculate the ligand field splitting energy (Δₒ) in the complex [V(OH₂)₆]²⁺, we need to convert the given wavelength of absorbed light (806 nm) into energy.

The energy of a photon can be calculated using the equation:

[tex]\[E = \frac{hc}{\lambda}\][/tex]

Where:

E is the energy of the photon,

h is Planck's constant (6.626 x 10⁻³⁴ J·s),

c is the speed of light (2.998 x 10⁸ m/s),

and λ is the wavelength of light.

Converting the given wavelength to meters:

806 nm = 806 x 10⁻⁹ m

Calculating the energy:

[tex][E = \frac{6.626 \times 10^{-34} \text{ J s} \times 2.998 \times 10^8 \text{ m/s}}{806 \times 10^{-9} \text{ m}}][/tex]

E ≈ 2.445 x 10⁻¹⁹ J

Now, we can convert the energy from joules to kilojoules and use the Avogadro's constant (6.022 x 10²³ mol⁻¹) to express the ligand field splitting energy in units of kilojoules per mole.

[tex][\Delta_0 = \frac{2.445 \times 10^{-19} \text{ J}}{1000 \text{ J/kJ}} \times 6.022 \times 10^{23} \text{ mol}^{-1}][/tex]

Δₒ ≈ 1.47 x 10⁴ kJ·mol⁻¹

Therefore, the ligand field splitting energy (Δₒ) in the [V(OH₂)₆]²⁺ complex is approximately 1.47 x 10⁴ kJ·mol⁻¹.

To know more about the ligand field splitting energy refer here :

https://brainly.com/question/32296525#

#SPJ11

What would be the molecular formula for a polymer made from eight glucose (C6H12O6) molecules linked together by dehydration reactions?
Answer choices:
C48H80O40
or
C48H82O41

Answers

The molecular formula of a polymer made from eight glucose (C6H12O6) molecules linked together by dehydration reactions is C48H80O40.

Correct answer is , C48H80O40 .

To determine the molecular formula of the polymer formed from 8 glucose (C6H12O6) molecules linked together by dehydration reactions, we can simply add the molecular formula of 8 glucose molecules:8 (C6H12O6)The number of carbon, hydrogen, and oxygen atoms in the 8 glucose molecules is: 8 x 6C, 8 x 12H, and 8 x 6O respectively.After linking the glucose molecules together, a water molecule is removed, which implies the loss of 1 oxygen atom and 2 hydrogen atoms for each glucose molecule added.

The number of water molecules eliminated is seven (7) because 8 - 1 = 7 and the number of oxygen and hydrogen atoms removed is: (7 x 1O) + (7 x 2H) = 21O + 14H, respectively. Therefore, the molecular formula of the polymer formed from 8 glucose molecules linked together by dehydration reactions is:8 (C6H12O6) - 7 (H2O) = C48H80O40.

To know more about reactions visit:

https://brainly.com/question/30464598

#SPJ11

diethylenetriamine (dien) is capable of serving as a tridentate ligand.

Answers

Diethylenetriamine (dien) is a tridentate ligand which is capable of serving as a bridging ligand as well as a chelating ligand.

The content loaded diethylenetriamine (dien) is capable of serving as a tridentate ligand that coordinates to a metal center. This molecule features six nitrogen donor atoms that can be involved in coordinating to a metal ion. The coordination of diethylenetriamine with metal ions is possible due to its high affinity for metal ions.Diethylenetriamine forms a stable coordination complex with metal ions as it provides a tridentate linkage, which is ideal for the formation of stable metal complexes.

When this ligand coordinates with metal ions, the uncoordinated amine groups of the diethylenetriamine molecule participate in acid-base reactions with the solvent. Furthermore, diethylenetriamine can coordinate with metal ions in a number of ways to form different metal complexes.

To know more about Diethylenetriamine visit:

https://brainly.com/question/31392154

#SPJ11

assume that t-buoh is a limiting reagent. when 4.4 moles of t-buoh are used as starting material, how many moles of t-buoh will be obtained theoretically?

Answers

The number of moles of t-buOH obtained theoretically is 2.2 moles (assuming t-buOH is the limiting reagent).

t-buOH is a limiting reagent and 4.4 moles of t-buOH are used as starting material. Therefore, we can determine the number of moles of t-buOH theoretically produced as follows:Limits reagent -The limiting reagent is the reactant in a chemical reaction that gets used up completely during the reaction and restricts the amount of product formed. In contrast, an excess reagent is the reactant that doesn't get used up entirely during the reaction.

Reagent -A substance that is used to detect, examine, measure, or produce other substances is known as a reagent. A chemical reaction is catalyzed by many reagents. They can be used for analysis, organic synthesis, or testing.

Limiting reagent calculation -

To calculate the limiting reagent, the number of moles of each substance present in the reaction mixture must be calculated first. Then, for each substance, the number of moles required to react completely with the other substances present is calculated. The limiting reagent is the substance with the smallest number of moles required to react completely with the other substances present.The balanced equation for the given reaction is:

2 t-buOH → t-buO-t-bu + t-buH

The molar ratio of t-buOH to t-buO-t-bu is 2:1, and therefore the moles of t-buOH reacted is 4.4 moles. The maximum theoretical yield of t-buO-t-bu is calculated by using the mole-mole ratio:

2 moles t-buOH → 1 mole t-buO-t-bu4.4 moles t-buOH → 2.2 moles t-buO-t-bu

Thus, the number of moles of t-buOH obtained theoretically is 2.2 moles (assuming t-buOH is the limiting reagent).

Learn more about limiting reagent at: https://brainly.com/question/26905271

#SPJ11

1- consider the tube stabbed with the sterile inoculating needle
a- is this positive or negative control
b- what information is provided by the sterile stabbed tube?
2- why is it important to carefully insert and remove the needle along the same tab line ?
3- consider the TTC indicator.
a- why is it essential that reduced TTC be insoluble?
b- why is there less concern about the solubility of the oxidized form of TTC?

Answers

Given bellow are the answers to the above questions related to sterile inoculating needle:

1- Consider the tube stabbed with the sterile inoculating needle:

a) It is a negative control.

b) The sterile stabbed tube provides information about any contamination that may have been picked up in the process of transferring the inoculum to the test tube.

2- It is important to carefully insert and remove the needle along the same tab line to avoid dragging microorganisms up and down the needle track, which can result in cross-contamination and a false positive result.

3- Consider the TTC indicator.

a) It is essential that reduced TTC be insoluble because the insoluble form is the only form that can be detected. Insoluble TTC forms a visible red precipitate that indicates bacterial growth.

b) There is less concern about the solubility of the oxidized form of TTC because it does not provide an accurate indication of bacterial growth. The oxidized form is soluble in water, and its color is indistinguishable from the color of the medium.

To know more about inoculating visit:

https://brainly.com/question/32615538

#SPJ11

what volume of water has the same mass as 4.0m34.0m3 of ethyl alcohol?

Answers

To determine the volume of water that has the same mass as 4.0 [tex]m^3[/tex] of ethyl alcohol, we need to consider the density of both substances. Ethyl alcohol has a density of 0.789 g/[tex]cm^3[/tex], while water has a density of 1 g/[tex]cm^3[/tex]. The equivalent volume of water is approximately 3,156,000 [tex]cm^3[/tex]

The density of a substance represents its mass per unit volume. In this case, we have the volume of ethyl alcohol, which is 4.0 [tex]m^3[/tex]. However, to compare it with water, we need to convert the volume from cubic meters ([tex]m^3[/tex]) to cubic centimetres ([tex]cm^3[/tex]), as density is typically expressed in g/[tex]cm^3[/tex].

Given that ethyl alcohol has a density of 0.789 g/[tex]cm^3[/tex], we can multiply this density by the volume of ethyl alcohol in [tex]cm^3[/tex] to find its mass. Multiplying 0.789 g/[tex]cm^3[/tex] by 4.0 [tex]m^3[/tex] (which is equivalent to 4,000,000 [tex]cm^3[/tex]) gives us a mass of 3,156,000 grams.

Now, to determine the volume of water that has the same mass, we divide the mass (3,156,000 grams) by the density of water (1 g/[tex]cm^3[/tex]). This calculation yields a volume of 3,156,000 [tex]cm^3[/tex], which is equivalent to 3,156[tex]m^3[/tex].

In conclusion, 4.0 [tex]m^3[/tex] of ethyl alcohol has the same mass as 3,156 [tex]m^3[/tex] of water.

Learn more about ethyl alcohol here:

https://brainly.com/question/28000547

#SPJ11

Determine the velocity of a marble (m = 8.66 g) with a wavelength of 3.46 × 10-33m.
a.45.2 m/s
b.11.3 m/s
c.22.1 m/s
d.38.8 m/s
e.52.9 m/s

Answers

The velocity of the marble with a wavelength of 3.46 × 10^-33 m is approximately 22.1 m/s.

So, the correct answer is C.

The velocity of a marble with a wavelength of 3.46 × 10^-33 m can be calculated using the de Broglie equation.

The equation states that the wavelength (λ) of a particle is inversely proportional to its momentum (p).

Therefore, p = h/λ

where h is the Planck's constant. The velocity (v) of the particle is then given by v = p/m

where m is the mass of the particle.Using the given values:

Mass of marble, m = 8.66 g = 0.00866 kg

Wavelength of marble, λ = 3.46 × 10^-33 m

Planck's constant, h = 6.626 × 10^-34 J·s

Momentum of marble, p = h/λ = (6.626 × 10^-34 J·s)/(3.46 × 10^-33 m) = 0.191 kg·m/s

Velocity of marble, v = p/m = (0.191 kg·m/s)/(0.00866 kg) ≈ 22.1 m/s

Option (c) is the correct answer.

Learn more about wavelength at:

https://brainly.com/question/22984946

#SPJ11

Converting the velocity from m/s to the required unit of m/s, we get

:v = 2.642 × 10^-29 m/s × (1 m/1.0 × 10^0 nm) = 2.642 × 10^-20 m/s

Finally, rounding off to 3 significant figures, we get:v = 38.8 m/sHence, the velocity of the marble is 38.8 m/s.

The correct answer is d. 38.8 m/s. Here is the explanation:We are given:mass of the marble, m = 8.66 g Wavelength of the marble, λ = 3.46 × 10^-33mWe are to determine the velocity of the marble, v, using the de Broglie wavelength equation:λ = h/mv whereh is the Planck's constant = 6.626 × 10^-34 J.s Substituting the given values,

we get:3.46 × 10^-33 = (6.626 × 10^-34)/(8.66 × 10^-3)v

Solving for v, we get:

v = (3.46 × 6.626)/(8.66) = 2.642 × 10^-32 m/s

Dividing by

10^-3, we get:v = 2.642 × 10^-29 m/s

Now, converting the velocity from m/s to the required unit of m/s, we get

:v = 2.642 × 10^-29 m/s × (1 m/1.0 × 10^0 nm) = 2.642 × 10^-20 m/s

Finally, rounding off to 3 significant figures, we get:v = 38.8 m/sHence, the velocity of the marble is 38.8 m/s.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

what is the value of q when the solution contains 2.00×10−3m ca2 and 3.00×10−2m so42−

Answers

The value of Q can be calculated using the concentrations of [tex]Ca^{2+}[/tex]and [tex]SO_{4} ^{2-}[/tex] in the solution. In this case, the concentrations are 2.00×[tex]10^{-3}[/tex]M for [tex]Ca^{2+}[/tex] and 3.00×[tex]10^{-2}[/tex] M for [tex]SO_{4}^{2-}[/tex].

In order to determine the value of Q, we need to write the expression for the reaction involved. Given the concentrations of [tex]Ca^{2+}[/tex] and [tex]SO_{4}^{2-}[/tex] in the solution, the reaction can be represented as:

[tex]Ca^{2+}[/tex] + [tex]SO_{4}^{2-}[/tex] → [tex]CaSO_{4}[/tex]

The expression for Q is obtained by multiplying the concentrations of the products raised to their stoichiometric coefficients, divided by the concentrations of the reactants raised to their stoichiometric coefficients. In this case, since the stoichiometric coefficients of both [tex]Ca^{2+}[/tex] and [tex]SO_{4}^{2-}[/tex]are 1, the expression for Q simplifies to:

Q = [[tex]Ca^{2+}[/tex]] * [[tex]SO_{4}^{2-}[/tex]]

Substituting the given concentrations, we have:

Q = (2.00×[tex]10^{-3}[/tex] M) * (3.00×[tex]10^{-2}[/tex] M) = 6.00×[tex]10^{-5}[/tex] [tex]M^{2}[/tex]

Therefore, the value of Q when the solution contains 2.00×[tex]10^{-3}[/tex] M [tex]Ca^{2+}[/tex] and 3.00×[tex]10^{-2}[/tex] M [tex]SO_{4}^{-2}[/tex] is 6.00×[tex]10^{-5}[/tex] [tex]M^{2}[/tex].

Learn more about solution here :

https://brainly.com/question/1580914

#SPJ11

The value of q is [tex]6.00*10^(^-^5^) M^2[/tex] is determined using the equation Q = [[tex]Ca^2^+[/tex]][[tex]SO_4^2^-[/tex]], where [[tex]Ca^2^+[/tex]] represents the concentration of [tex]Ca^2^+[/tex]+ ions and [[tex]SO_4^2^-[/tex]] represents the concentration of [tex]SO_4^2^-[/tex] ions in the solution.

To find the value of q, we need to use the concept of the solubility product constant (Ksp), which is the equilibrium constant for the dissolution of a sparingly soluble compound. In this case, the compound in question is [tex]CaSO_4[/tex], which dissociates into [tex]Ca^2^+[/tex] and [tex]SO_4^2^-[/tex] ions in water.

The solubility product constant expression for [tex]CaSO_4[/tex] can be written as:

Ksp = [[tex]Ca^2^+[/tex]][[tex]SO_4^2^-[/tex]]

Given that the concentration of [tex]Ca^2^+[/tex] ions is [tex]2.00*10^(^-^3^)[/tex] M and the concentration of [tex]SO_4^2^-[/tex]ions is [tex]3.00*10^(^-^2^)[/tex] M, we can substitute these values into the Ksp expression.

[tex]Ksp = (2.00*10^(^-^3^))(3.00*10^(^-^2^)) = 6.00*10^(^-^5^)[/tex]

Therefore, the value of q, which represents the reaction quotient, is [tex]6.00*10^(^-^5^)[/tex].

Learn more about equilibrium constant here:

https://brainly.com/question/28559466

#SPJ11

Use the drop-down menus to complete the corresponding cells in the table to the right.
particle with two protons and two neutrons
high-energy photon
intermediate
highest
thin carboard

Answers

Particle with two protons and two neutrons: Helium-4 nucleus

High-energy photon: Gamma ray

Intermediate: Meson

Highest: Cosmic ray

Thin cardboard: Insulator

What are the corresponding particles for two protons and two neutrons, high-energy photons, intermediate, highest, and thin cardboard?

A particle with two protons and two neutrons is known as a helium-4 nucleus. It is the nucleus of a helium atom and is commonly represented as ^4He. This configuration gives helium stability and is often involved in nuclear reactions.

A high-energy photon is referred to as a gamma ray. Gamma rays have the highest energy in the electromagnetic spectrum and are produced by nuclear reactions, radioactive decay, or high-energy particle interactions. They have applications in medicine, industry, and scientific research.An intermediate particle is a meson. Mesons are subatomic particles made up of a quark and an antiquark. They have a shorter lifespan compared to other particles and are involved in the strong nuclear force.

The term "highest" refers to cosmic rays, which are high-energy particles that originate from space and travel at nearly the speed of light. Cosmic rays include protons, electrons, and atomic nuclei. They are constantly bombarding the Earth from various sources and play a role in astrophysics and particle physics research.Thin cardboard is an insulator. In the context of electrical conductivity, materials can be categorized as conductors, insulators, or semiconductors. Thin cardboard falls into the insulator category, meaning it does not allow the easy flow of electric charge.

Learn more about protons

brainly.com/question/29248303

#SPJ11

5. how much of an 800-gram sample of potassium-40 will remain after 3.9 × 10^9 years of radioactive decay?

Answers

Potassium-40 has a half-life of 1.28 x 10^9 years. The amount remaining of a substance undergoing radioactive decay can be determined using the formalin = N0 (1/2)^(t/t1/2)where:N0 is the initial amount is the elapsed timet1/2 is the half-life of the substances is the amount remaining after time pugging in the values:Given:N0 = 800 g t = 3.9 x 10^9 yearst1/2 = 1.28 x 10^9 years

Formula = N0 (1/2)^(t/t1/2)Substitute the values = 800 g (1/2)^(3.9 x 10^9 / 1.28 x 10^9) = 800 g (1/2)^3 = 800 g (0.125) = 100 g (to the nearest 10 g)Thus, 100 g of the 800-gram sample of potassium-40 will remain after 3.9 × 10^9 years of radioactive decay. Where: N(t) is the amount of the radioactive substance at time t N0 is the initial amount of the radioactive substance λ is the decay constant (related to the half-life) t is the time elapsed For potassium-40 (K-40), the half-life is approximately 1.25 billion years, or 1.25 × 10^9 years.

Read more about radioactive here;https://brainly.com/question/1236735

#SPJ11

the second-order rate constant for the decomposition of clo is 6.33×109 m–1s–1 at a particular temperature. determine the half-life of clo when its initial concentration is 1.61×10-8 m .

Answers

Given, The second-order rate constant for the decomposition of ClO is k = 6.33 x 109 M–1s–1Initial concentration of ClO is [ClO]₀ = 1.61 x 10⁻⁸ M.

To find the half-life of ClO, we can use the second-order integrated rate equation which is given by:1/ [A]t = 1/ [A]₀ + kt/2Where k is the rate constant and [A]₀ is the initial concentration of the reactant.Arranging the equation in terms of t gives: t1/2 = 1/k[A].

If we substitute the given values in the equation, we get:t1/2 = 1 Therefore, the half-life of ClO when its initial concentration is 1.61 x 10⁻⁸ M is 4.29 x 10⁻⁴ s.

To know more about decomposition visit :

https://brainly.com/question/14843689

#SPJ11

an atom's configuration based on its number of electrons ends at 3p2. another atom has eight more electrons. starting at 3p, what would be the remaining configuration?

Answers

The remaining electron configuration of the atom, starting from 3p, would be [tex]3p^6 4s^2[/tex].

The electron configuration of an atom describes how electrons are distributed among its various energy levels and orbitals. The given atom has an electron configuration ending at [tex]3p^2[/tex], indicating that it has two electrons in the 3p orbital. To determine the remaining electron configuration when eight more electrons are added, we start from 3p and distribute the additional electrons according to the Aufbau principle and Hund's rule.

The Aufbau principle states that electrons fill orbitals in order of increasing energy. Since the 3p orbital is filled with two electrons, we move on to the next available orbital, which is 4s. Hund's rule states that electrons occupy orbitals of the same energy level singly before pairing up. Therefore, the eight additional electrons would first fill the 4s orbital with two electrons, resulting in  [tex]3p^6 4s^2[/tex]. This configuration satisfies the electron requirement of the given atom with eight extra electrons.

To learn more about configuration refer:

https://brainly.com/question/26084288

#SPJ11

assuming complete dissociation, what is the ph of a 3.67 mg/l ba(oh)2 solution?

Answers

With complete dissociation, the pH of 3.67 mg/L [tex]Ba(OH)_2[/tex] solution is will be 12.63.

pH

First, let's calculate the concentration of OH- ions in the solution:

Ba(OH)2 is present at 3.67 mg/L. Since the molar mass of Ba(OH)2 is 171.34 g/mol, we can convert the concentration to moles per liter (mol/L):

3.67 mg/L / 171.34 g/mol = 0.0214 mmol/L (millimoles per liter)

Since Ba(OH)2 dissociates into 2 OH- ions, the concentration of OH- ions is twice that of Ba(OH)2:

0.0214 mmol/L * 2 = 0.0428 mmol/L

To find the pOH of the solution, we can take the negative logarithm (base 10) of the OH- ion concentration:

pOH = -log10(0.0428) ≈ 1.37

Now, to find the pH, we can use the relation:

pH + pOH = 14

pH + 1.37 = 14

pH ≈ 14 - 1.37

pH ≈ 12.63

Therefore, the pH of the Ba(OH)2 solution is approximately 12.63.

More on pH can be found here: https://brainly.com/question/2288405

#SPJ4

The Ka values for several weak acids are given below. Which acid (and its conjugate base) would be the best buffer at pH 3.7?
a. MES: Ka 7.9 x 10
b. HEPES; Ka 3.2 x 103
c. Tris; Ka 6.3 x 109
d. Formic acid: K 1.8 x 10

Answers

Formic acid (HCOOH) and its conjugate base (HCOO-) would be the best buffer at pH 3.7.

To determine the best buffer among the provided weak acids at pH 3.7, we need to identify the weak acid with a pKa closest to the pH value of 3.7. The weak acid whose pKa value is closest to the desired pH will be the most effective buffer at pH 3.7.So, let's first find out the pKa values of the weak acids provided. pKa = -log Ka For MES, pKa = -log(7.9 x 10^-6) = 5.1For HEPES, pKa = -log(3.2 x 10^-3) = 8.5For Tris, pKa = -log(6.3 x 10^-10) = 9.2For formic acid, pKa = -log(1.8 x 10^-4) = 3.7

In chemistry, a buffer is an aqueous solution that can resist a change in pH when hydroxide ions or protons are added to it. A buffer is created by mixing a weak acid (or base) and its salt with a strong acid (or base).A buffer's pH depends on the pKa value of its weak acid. The pKa value is defined as the negative log of the acid dissociation constant (Ka).

To know more about acid visit:

https://brainly.com/question/29796621

#SPJ11

Automobile batteries use 3.0 M H2SO4 as an electrolyte. How many liters (L) of 1.20 M NaOH solution will be needed to completely react with 225 mL of battery acid. The balanced chemical reaction is: H2SO4 (aq) + 2 NaOH (aq) → Na2SO4 (aq) + 2 H2O (l) Automobile batteries use 3.0 M H2SO4 as an electrolyte. How many liters (L) of 1.20 M NaOH solution will be needed to completely react with 225 mL of battery acid. The balanced chemical reaction is: H2SO4 (aq) + 2 NaOH (aq) → Na2SO4 (aq) + 2 H2O (l)
A) 0.45 L
B) 0.28 L
C) 0.56 L
D) 0.90 L
E) 1.1 L

Answers

The volume of 1.20 M NaOH solution needed to completely react with 225 mL of battery acid is 0.001125 L, which is equivalent to 1.1 L. So, the correct option is E).

The balanced chemical equation of the reaction is given as:H2SO4(aq) + 2NaOH(aq) → Na2SO4(aq) + 2H2O(l)From the equation, it can be seen that 1 mole of H2SO4 reacts with 2 moles of NaOH. Therefore, the number of moles of H2SO4 in 225 mL of 3.0 M H2SO4 solution is given by: moles of H2SO4 = Molarity x Volume (in L) = 3.0 x 0.225/1000 = 0.000675 mol.

The stoichiometry of the reaction implies that 2 moles of NaOH are needed to react with 1 mole of H2SO4.Thus, the number of moles of NaOH needed is:0.000675 mol H2SO4 × 2 mol NaOH / 1 mol H2SO4 = 0.00135 mol NaOHTo calculate the volume of 1.20 M NaOH solution needed to provide 0.00135 mol of NaOH:Volume = moles / molarity = 0.00135 mol / 1.20 mol/L = 0.001125 L = 1.125 mL.

To know more about acid visit:

https://brainly.com/question/29796621

#SPJ11

What is the amount of heat energy released when 50.0 grams of water is cooled from 20.0°C to 10.0°C?
a) 5.00 x 10² J
b) 2.09 x 10³ J
c) 1.67 x 10^5 J
d) 1.13 x 10^6 J

Answers

The amount of heat energy released when 50.0 grams of water is cooled from 20.0°C to 10.0°C can be calculated as follows: As we know that, Q = m × c × ΔT.

Where, Q = Heat energy released m = mass of water c = Specific heat capacity of waterΔT = Change in temperature. Here, m = 50.0 gΔT = (20.0 - 10.0)°C = 10.0 °C.

Now, we need to calculate the specific heat capacity of water: c = 4.18 J/g°C.

So, substituting the values in the formula; we get,Q = m × c × ΔT= 50.0 g × 4.18 J/g°C × 10.0°C= 2090 J= 2.09 × 10³ J.

Therefore, the amount of heat energy released when 50.0 grams of water is cooled from 20.0°C to 10.0°C is 2.09 x 10³ J.

To know more about heat energy visit:

https://brainly.com/question/29210982

#SPJ11

what is δ for the reaction at body temperature (37.0 °c) if the concentration of a is 1.6 m and the concentration of b is 0.65 m ?

Answers

The δ for the reaction at body temperature (37.0 °c) if the concentration of a is 1.6 m and the concentration of b is 0.65 m is given by the formula below: ΔG° = −RT ln K, where R is the gas constant, T is the temperature, and K is the equilibrium constant of the reaction.

The δ for the reaction at body temperature (37.0 °c) if the concentration of a is 1.6 m and the concentration of b is 0.65 m is given by the formula below: ΔG° = −RT ln K, where R is the gas constant, T is the temperature, and K is the equilibrium constant of the reaction. For the equation below, a and b are reactants while c and d are products.

aA + bB ⇌ cC + dD

The equilibrium constant Kc is given by the formula below; Kc = ([C]^c x [D]^d) / ([A]^a x [B]^b)

where [A] is the concentration of A, [B] is the concentration of B, [C] is the concentration of C, and [D] is the concentration of D and a, b, c, and d are the stoichiometric coefficients of A, B, C, and D respectively. For the given equation, the ΔG° can be calculated as shown below.ΔG° = −RT ln Kc, where R = 8.314 J/mol. K is the gas constant and T = 37.0°C + 273.15 = 310.15 K is the temperature. The concentration of A is 1.6 M and the concentration of B is 0.65 M. If the stoichiometric coefficients are not given, they are assumed to be 1. Therefore, the equilibrium constant Kc is calculated as follows: Kc = ([C]^c x [D]^d) / ([A]^a x [B]^b)

Kc = ([C]^1 x [D]^1) / ([A]^1 x [B]^1)Kc = ([C] x [D]) / ([A] x [B])

Since a mole of A reacts with a mole of B to produce a mole of C and D each, the balanced chemical equation is; aA + bB → cC + dD1 mole of A reacts with 1 mole of B to produce 1 mole of C and 1 mole of D each. Therefore, a = 1, b = 1, c = 1, and d = 1. Substituting these values into the equation for Kc gives;

Kc = ([C] x [D]) / ([A] x [B])Kc = ([1] x [1]) / ([1.6] x [0.65])Kc = 0.9615R = 8.314 J/mol. K and T = 310.15 K (at body temperature)ΔG° = −RT ln KcΔG° = −(8.314 J/mol. K × 310.15 K) ln (0.9615)ΔG° = 7786.9 J/mol. Hence, the ΔG° for the reaction at body temperature (37.0 °c) if the concentration of a is 1.6 m and the concentration of b is 0.65 m is 7786.9 J/mol.

To know more about concentration visit: https://brainly.com/question/3045247

#SPJ11

given the following reaction, if one begins with 5.0 moles of al2o3 then how many moles of o2 could be produced?

2Al2O3 ➤ 4Al + 3O2

Answers

7.5 moles of oxygen would be produced if 5.0 moles of Al2O3 are used.

The given balanced chemical equation is2Al2O3 ➤ 4Al + 3O2

Here, 2 moles of aluminum oxide produce 3 moles of oxygen gas.

Now, we have5.0 moles of aluminum oxide.

Using stoichiometry, we can find the number of moles of oxygen produced as follows;

2Al2O3 ➤ 3O2

Moles of oxygen = Moles of aluminum oxide * (3/2)Moles of oxygen = 5.0 * (3/2)Moles of oxygen = 7.5

Hence, 7.5 moles of oxygen would be produced if 5.0 moles of Al2O3 are used.

learn more about moles here

https://brainly.com/question/15356425

#SPJ11

match each five-electron group designation to the correct molecular shape.

Answers

The correct match of each five-electron group designation to the molecular shape is given below: Five electron group designation are linear trigonal planar tetrahedral trigonal bipyramidal and octahedral.

Molecular Shape:-Linear - This electronic geometry is determined when there are two bonds and no lone pair of electrons around the central atom. Example: CO2Trigonal planar - When a central atom is surrounded by three atoms and no lone pair, the geometry is trigonal planar.

Tetrahedral - The electronic geometry is determined by four bonds and no lone pair of electrons around the central atom. Example: CH4.Trigonal bipyramidal - A central atom surrounded by five atoms or ligands is in the shape of a trigonal bipyramid. Example: PCl5Octahedral - When a central atom is surrounded by six atoms or ligands and is in the shape of an octahedron, the electronic geometry is octahedral.

To know more about electron visit:

https://brainly.com/question/18367541

#SPJ11

Identify A and B, isomers of molecular formula C3H4Cl2, from the given 1H NMR data: Compound A exhibits peaks at 1.75 (doublet, 3 H, J = 6.9 Hz) and 5.89 (quartet, 1 H, J = 6.9 Hz) ppm. Compound B exhibits peaks at 4.16 (singlet, 2 H), 5.42 (doublet, 1 H, J = 1.9 Hz), and 5.59 (doublet, 1 H, J = 1.9 Hz) ppm. Compound A: draw structure Compound B: draw structure

Answers

The given molecular formula C3H4Cl2, has different isomers. Two compounds, A and B, need to be identified. The following are the 1H NMR data for both compounds:

Compound A: Doublet, 3H, J = 6.9 Hz at 1.75 ppm Quartet, 1H, J = 6.9 Hz at 5.89 ppm Compound B: Singlet, 2H at 4.16 ppm Doublet, 1H, J = 1.9 Hz at 5.42 ppm Doublet, 1H, J = 1.9 Hz at 5.59 ppm

The structures of A and B are shown below:

Above is the image of the structures of isomers A and B. Compound A has peaks at 1.75 ppm and 5.89 ppm. It can be seen that there is only one carbon atom in this compound that is attached to a hydrogen atom, as shown in the structure. This carbon atom is attached to two other chlorine atoms. As a result, only two hydrogen atoms are left. The hydrogen atom at 1.75 ppm is a doublet, whereas the one at 5.89 ppm is a quartet. A doublet and a quartet signify that there are two and three hydrogen atoms, respectively, in the neighboring carbon atoms. The hydrogen atoms are separated from each other by 3 bonds or have a coupling constant of 6.9 Hz. As a result, it is a 1,1-dichloroethene isomer.

B, on the other hand, has peaks at 4.16 ppm, 5.42 ppm, and 5.59 ppm. It can be seen that there are two carbon atoms in the structure, each of which is attached to a chlorine atom. As a result, only two hydrogen atoms are left. There are two hydrogen atoms at 4.16 ppm, signified by a singlet. The hydrogen atoms at 5.42 and 5.59 ppm are doublets, signifying that each is attached to a hydrogen atom in the neighboring carbon atoms. The coupling constant between the hydrogen atoms is 1.9 Hz, indicating that the hydrogen atoms are separated by 3 bonds or a distance of three atoms. As a result, it is a 1,2-dichloroethene isomer.

To know more about  molecular formula  refer to:

https://brainly.com/question/15960587

#SPJ11

Consider three 1-L flasks at STP. Flask A contains NH3 gas, flask B contains NO2 gas, and flask C contains N2 gas. In which flask are the molecules least polar and therefore most ideal in behavior? a. Flask A b. Flask B c. Flask C d. All are the same. e. More information is needed to answer this.

Answers

As a result, the NH3 and NO2 gas molecules in flasks A and B are more polar than the N2 gas molecule in flask C, making the N2 gas molecule in flask C less polar and most ideal in behavior. Therefore, option C is the correct ..

STP refers to Standard Temperature and Pressure. Standard temperature is 0°C (273.15K) and the standard pressure is 1 atm pressure.

Consider three 1-L flasks at STP. Flask A contains NH3 gas, flask B contains NO2 gas, and flask C contains N2 gas.

According to the given information, we can draw the following conclusion;

The molecule with least polar is N2 gas, so Flask C contains N2 gas is least polar. Nitrogen is a gas that is composed of two nitrogen atoms, and because both of these atoms are identical, the molecule is symmetric. There are no polar bonds in the nitrogen molecule because the two bonds between the nitrogen atoms are the same, and the electronegativity difference between nitrogen and nitrogen is zero.

The electronegativity of Nitrogen is 3.04, whereas for Oxygen it is 3.44. NH3 and NO2 have polarity because the electronegativity of Nitrogen is higher than Hydrogen and Oxygen, which are 2.20 and 3.44 respectively.

As a result, the NH3 and NO2 gas molecules in flasks A and B are more polar than the N2 gas molecule in flask C, making the N2 gas molecule in flask C less polar and most ideal in behavior. Therefore, option C is the correct answer.

To know more about molecules visit:

https://brainly.com/question/32298217

#SPJ11

1. Which of the following is in the correct order of standard state entropy? I. Liquid water < gaseous water II. Liquid water < solid water III. NH;

Answers

The correct order of standard state entropy is given as below: I. Gaseous water > Liquid water II. Solid water < Liquid water III. NH3 > N2H4

Entropy is an important concept of thermodynamics it is defined as the measure of disorder or randomness in a system. A system is said to be in a state of maximum entropy if its entropy is at a maximum and minimum entropy if its entropy is at a minimum. Standard entropy is defined as the entropy of a substance at its standard state, i.e., the most stable state at 1 atm and 25°C.The entropy of water can be represented in three states as gaseous water, liquid water, and solid water. I. Gaseous water has a higher entropy than liquid water. The reason for this is the gaseous water has more freedom of motion as compared to liquid water. Therefore, the entropy of gaseous water is higher than that of liquid water. II. Solid water has a lower entropy than liquid water. The reason for this is that the molecules in solid water have less freedom of motion as compared to liquid water.

Therefore, the entropy of solid water is lower than that of liquid water. III. NH3 has a higher entropy than N2H4. The reason for this is that the NH3 molecule has a higher number of particles as compared to the N2H4 molecule. Therefore, the entropy of NH3 is higher than that of N2H4.The correct order of standard state entropy is given as below: I. Gaseous water > Liquid water II. Solid water < Liquid water III. NH3 > N2H4

To know more about entropy visit:-

https://brainly.com/question/20166134

#SPJ11

Explain why the third ionization energy for Magnesium (7732.68 kJ/mol) is significantly higher than its first ionization energy (737

Answers

The ionization energy is the minimum energy that an atom requires to remove an electron from an atom or a positively charged ion. The third ionization energy for Magnesium (7732.68 kJ/mol) is significantly higher than its first ionization energy (737 kJ/mol) .

Explanation:

The ionization energies for magnesium are:1st ionization energy is 7.6462 electron volts (737.7 kJ/mol)2nd ionization energy is 14.963 eV (1445.5 kJ/mol)3rd ionization energy is 77.74 eV (7499.8 kJ/mol)The outermost shell of magnesium has two electrons, which are shielded by 12 core electrons. The first ionization energy is relatively low (737 kJ/mol) because the electron is removed from the outermost shell. The electron configuration for Magnesium is:1s² 2s² 2p⁶ 3s²

This becomes even more evident for the third ionization energy (7499.8 kJ/mol) because the electron being removed is in the 3s orbital which is closer to the nucleus and is not shielded by any other electrons. This makes it harder to remove, which leads to a higher ionization energy. Thus, the third ionization energy for magnesium is significantly higher than its first ionization energy.

To know more about ionization energy visit

https://brainly.com/question/1602374

#SPJ11

TRUE/FALSE. State whether each of the following statements is true or false. Justify your answer in each case. (a) NH3 contains no OH- ions, and yet its aqueous solutions are basic

Answers

The statement  "[tex]NH_3[/tex] contains no OH- ions, and yet its aqueous solutions are basic" is true.

When [tex]NH_3[/tex] dissolves in water, it undergoes the following reaction:

[tex]NH_3[/tex] (aq) +[tex]H_2O[/tex](l) ⇌ [tex]NH_4^+[/tex] (aq) + [tex]OH^-[/tex]  (aq)

This is an acid-base reaction, in which [tex]NH_3[/tex] acts as a base and accepts a proton from water to form ,[tex]OH^-[/tex]  ions.[tex]NH_3[/tex] has nitrogen atoms, which tend to attract electrons to themselves.

As a result, a partial negative charge is created on the nitrogen atom, while a partial positive charge is created on the hydrogen atom. Since nitrogen has a higher electron density than hydrogen, it can donate electrons to water molecules, forming a hydrogen bond. In this manner,[tex]OH^-[/tex] ions are formed.

Therefore, even though [tex]NH_3[/tex] does not contain [tex]OH^-[/tex]  ions, its aqueous solutions are basic due to the presence of ,[tex]OH^-[/tex]  ions produced by the reaction shown above. Hence, the given statement is true.

To know more about aqueous solutions refer here :

https://brainly.com/question/19587902

#SPJ11

the h⁺ concentration in an aqueous solution at 25 °c is 4.3 × 10⁻⁴. what is [oh⁻]?

Answers

The [OH⁻] is found by applying the equation: Kw = [H⁺] [OH⁻] where Kw is the ion-product constant of water which is equal to 1.0 × 10⁻¹⁴ M² at 25 °C.

The ion product constant of water, Kw is the product of the concentration of hydrogen ions and hydroxide ions in pure water. Given that the concentration of H⁺ ions in an aqueous solution at 25 °C is 4.3 × 10⁻⁴, the [OH⁻] can be calculated as follows:[OH⁻] = Kw / [H⁺]=[OH⁻]=[1.0 × 10⁻¹⁴ M²] / [4.3 × 10⁻⁴ M]=2.33 × 10⁻¹¹ M. Therefore, the [OH⁻] is 2.33 × 10⁻¹¹ M. The given problem can be solved using the following formula: Kw = [H⁺] × [OH⁻]Kw represents the equilibrium constant for the reaction that occurs between H₂O (water) molecules to form H⁺ and OH⁻ ions. Its value is 1.0 × 10⁻¹⁴ at 25 °C. [H⁺] and [OH⁻] represent the concentration of H⁺ and OH⁻ ions, respectively.

We are given [H⁺] = 4.3 × 10⁻⁴We need to find [OH⁻]Let's start with finding Kw and then we will proceed with our solution. Kw = [H⁺] × [OH⁻]= (1.0 × 10⁻¹⁴ )Kw = [H⁺] × [OH⁻] = 4.3 × 10⁻⁴ × [OH⁻]We know, [OH⁻] = Kw /[H⁺] = 1.0 × 10⁻¹⁴ / 4.3 × 10⁻⁴= 2.3 × 10⁻¹¹So, [OH⁻] is 2.3 × 10⁻¹¹.

To know more about concentration visit:-

https://brainly.com/question/3045247

#SPJ11

consider the reaction between iodine gas and chlroine agas a reaction mixture initally contains 0.25

Answers

The reaction between iodine gas and chlorine gas is investigated using a reaction mixture initially containing 0.25 moles iodine and 0.35 moles chlorine. Chemical equation is determined to be 1 mole of iodine reacting with 1 mole of chlorine to produce 2 moles of iodine chloride.

In this experiment, the reaction between iodine gas ([tex]I_2[/tex]) and chlorine gas ([tex]Cl_2[/tex]) is studied. The reaction mixture is prepared with an initial amount of 0.25 moles of iodine and 0.35 moles of chlorine. To understand the stoichiometry of the reaction, the balanced chemical equation is determined. Through experimentation, it is found that 1 mole of iodine reacts with 1 mole of chlorine to produce 2 moles of iodine chloride ([tex]ICl_2[/tex]).

Based on the given amounts of iodine and chlorine, it can be determined that there is an excess of chlorine gas in the reaction mixture. This is because the molar ratio between iodine and chlorine is 1:1, and there are more moles of chlorine present initially. Therefore, all of the iodine will be consumed in the reaction, while some chlorine will be left unreacted.

To obtain a more accurate understanding of the reaction, further experiments can be conducted by varying the initial amounts of iodine and chlorine. This would allow for a study of the reaction kinetics and the determination of the limiting reactant. Additionally, the products of the reaction can be analyzed using techniques such as spectroscopy to gain insights into the structure and properties of iodine chloride.

Learn more about stoichiometry here:  

https://brainly.com/question/28780091

#SPJ11

draw all four β-hydroxyaldehydes that are formed when a mixture of acetaldehyde and pentanal is treated with aqueous sodium hydroxide

Answers

When acetaldehyde (CH3CHO) and pentanal (C5H10O) are treated with aqueous sodium hydroxide (NaOH), a mixture of four β-hydroxyaldehydes is formed.

Here are the structures of the four β-hydroxyaldehydes that can be obtained:

1. 3-Hydroxybutanal:

            OH

           /

CH3CH2CH2CHO

2. 3-Hydroxy-2-methylbutanal:

         CH3

            \

             OH

            /

CH3CHCH2CH2CHO

3. 4-Hydroxy-2-methylpentanal:

         CH3

            \

             OH

            /

CH3CH2CHCH2CHO

4. 4-Hydroxy-3-methylpentanal:

         CH3

            \

             OH

            /

CH3CHCH2CHCHO

These are the four β-hydroxyaldehydes that could result from the treatment of an acetaldehyde and pentanal mixture with aqueous sodium hydroxide.

Learn more about acetaldehyde at https://brainly.com/question/28945966

#SPJ11

(1) which of the following transitions represent the emission of a photon with the largest energy? a) n = 2 to n = 1 b) n = 3 to n = 1 c) n = 6 to n = 4 d) n = 1 to n = 4 e) n = 2 to n = 4

Answers

The emission of a photon with the largest energy can be identified using the energy formula for an electron's transition between different energy levels in an atom.

The larger the energy difference between the initial and final energy levels, the larger the energy of the emitted photon. The energy difference between the initial and final energy levels is directly proportional to the frequency and inversely proportional to the wavelength of the emitted photon. Therefore, the larger the frequency or the smaller the wavelength, the larger the energy of the emitted photon.(a) n = 2 to n = 1: ΔE = 2.18 x 10^-18 J - 5.45 x 10^-19 J = 1.64 x 10^-18 J. The frequency of the emitted photon is given by:f = ΔE/h = (1.64 x 10^-18 J)/(6.626 x 10^-34 J s) = 2.47 x 10^15 Hz. The wavelength of the emitted photon is given by:λ = c/f = (2.998 x 10^8 m/s)/(2.47 x 10^15 Hz) = 1.21 x 10^-7 m.(b) n = 3 to n = 1: ΔE = 2.18 x 10^-18 J - 1.36 x 10^-18 J = 8.23 x 10^-19 J. The frequency of the emitted photon is given by:f = ΔE/h = (8.23 x 10^-19 J)/(6.626 x 10^-34 J s) = 1.24 x 10^15 Hz. The wavelength of the emitted photon is given by:λ = c/f = (2.998 x 10^8 m/s)/(1.24 x 10^15 Hz) = 2.42 x 10^-7 m.(c) n = 6 to n = 4: ΔE = 2.18 x 10^-18 J - 4.86 x 10^-19 J = 1.69 x 10^-18 J. The frequency of the emitted photon is given by:f = ΔE/h = (1.69 x 10^-18 J)/(6.626 x 10^-34 J s) = 2.55 x 10^15 Hz.

The wavelength of the emitted photon is given by:λ = c/f = (2.998 x 10^8 m/s)/(2.55 x 10^15 Hz) = 1.18 x 10^-7 m.(d) n = 1 to n = 4: ΔE = 4.36 x 10^-19 J - 2.18 x 10^-18 J = -1.74 x 10^-18 J. This is an absorption process, not emission.(e) n = 2 to n = 4: ΔE = 4.86 x 10^-19 J - 1.64 x 10^-18 J = -1.16 x 10^-18 J. This is an absorption process, not emission.Therefore, the correct answer is (b) n = 3 to n = 1 because it has the smallest wavelength and the highest frequency, and therefore, the largest energy of the emitted photon. The energy formula for this transition is ΔE = 8.23 x 10^-19 J, and the wavelength of the emitted photon is 2.42 x 10^-7 m.

To know more about photon visit:-

https://brainly.com/question/32364752

#SPJ11

Other Questions
"Hills Like White Elephants" is best characterized as bothcomedy and tragedy because of its fertility symbolism.Select one:TrueFalseby ernest hemingay Consumer landscape is changing but they can be understood. a) Describe the approach that you will take to understand the emerging consumer needs. In your descriptions, explain how you can use the information to refine the needs for the new product that you are going to design. b) Based on your description above, identify a product that will no longer meet the emerging needs and explain the factors that lead to this scenario. what did early scientists mean by the term "transformation"? Work in process, April 1 31,200 units (100% complete for materials, 40% for conversion) Direct materials $ 48,000 Conversion cost $ 66,000 Number of units started 94,800 units April costs Direct materials $135,600 Conversion cost $201,600 Work in process, April 30 48,000 units (100% complete for materials, 20% for conversion) Required: Using the weighted-average method of process costing, complete each of the following steps: 1. Reconcile the number of physical units worked on during the period. 2. Calculate the number of equivalent units. 3. Calculate the cost per equivalent unit rounded to five decimal places. 4. Reconcile the total cost of work in process. find an equation of the plane. the plane through the points (0, 2, 2), (2, 0, 2), and (2, 2, 0) Liberal theorists would argue that what is important to the maintenance of peace: a. All answers are correct b. Shared values c. Rules d. Collaboration e. No answers are correct. In the process of subduction, the subducting plate is always: a) Continental b) Oceanic c) It depends on the type of plate boundary Three candidates, A, B and C, participate in an election in which eight voters will cast their votes. The candidate who receives the absolute majority, that is at least five, of the votes will win the However, during _____ atoms must be separated from a group of _____, which requires a lot of _____. Light absorbed and released by the __________ in a metal accounts for the ________ of the metal. You are an economist working for the Congressional Budget Office (CBO). You receive a letter from the chair of the Senate Budget Committee: Dear CBO Economist: Congress is about to consider the president's request to increase all taxes by 10%. Before deciding whether to endorse the request, my committee would like your analysis. How would the tax increase affect the economy of the country in the short run and in the long run? Part I: use analysis from the IS-LM model to explain the impact on this policy in the short run. More specifically: (a) Draw IS-LM graphs to analyze the effects of this increase in taxes in the short run (Keynesian model). Be sure to label the graphs, axis, etc. Show the implied changes in the IS-LM diagram. (b) What are the effects of this policy in the short run on disposable income, consumption, output, money demand, real interest rates, and investment? And on prices? (c) Suppose that the Fed wants to intervene in the economy to keep the interest rates constant. What can the Fed do? Draw IS-LM graphs to analyze the effects of an increase in T in the short run combined with the Fed intervention to keep interest rates constant. Show the implied changes in the IS-LM diagram. What is the final effect on output? (d) Now, suppose that the Fed wants to intervene in the economy to keep output constant to avoid inflationary pressures. What can the Fed do? Draw IS-LM graphs to analyze the effects of an increase in T in the short run combined with the Fed intervention to keep output constant. Show the implied changes in the IS-LM diagram. What is the final effect on interest rates? 12 5 points Alset Inc. is considering manufacturing and selling high-end electric automobiles for the next four years. Its R&D team believes that it would be realistic to sell 16 cars for $295,000 aft Let X be the standard uniform random variable and let Y = 20X + 10. Then, Y~ Uniform(20, 30) Y is Triangular with a peak (mode) at 20 Y~ Uniform(0, 20) Y~ Uniform(10, 20) Y ~ Uniform(10, 30) which type of theories are based on the premise that all behavior is learned? The Discovery of PenicillinIn 1928, Sir Alexander Fleming was studying Staphylococcus bacteria growing in culture dishes. He noticed that a mold called Penicillium was also growing in some of the dishes. A clear area existed around the mold because all the bacteria that had grown in this area had died. In the culture dishes without the mold, no clear areas were present.Fleming hypothesized that the mold must be producing a chemical that killed the bacteria. He decided to isolate this substance and test it to see if it would kill bacteria. Fleming transferred the mold to a nutrient broth solution.This solution contained all the materials the mold needed to grow. After the mold grew, he removed it from the nutrient broth. Fleming then added the nutrient broth in which the mold had grown to a culture of bacteria. He observed that the bacteria died. This mold was later used to develop antibiotics, for the purpose of treating a variety of diseases.6. Identify the problem.7. What was Fleming's hypothesis?8. How was the hypothesis tested?9. Should the hypothesis be supported or rejected based on the experiment?10. This experiment led to the development of what major medical advancement? Trade Receivables Turnover Ratio 4 times, Cost of Revenue from Operations $2,56,000. Gross Profit onRevenue from operations 20%, Closing Trade Receivables were $8,000 more than at beginning.CashRevenue from operations being 33-1/3 % of Credit Revenue from operations. Find out the amount ofOpening and Closing Trade Receivables. east asia political changes brought by the mongols Axline Computers manufactures personal computers at two plants, one in Texas and the other in Hawall. The Texas plant has 50 employees; the Hawall plant has 20. A random sample of 10 employees is to be asked to fill out a benefits questionnaire. Round your answers to four decimal places.. a. What is the probability that none of the employees in the sample work at the plant in Hawaii? b. What is the probability that 1 of the employees in the sample works at the plant in Hawail? c. What is the probability that 2 or more of the employees in the sample work at the plant in Hawaii? d. What is the probability that 9 of the employees in the sample work at the plant in Texas? The absolute pressure at the bottom of a container of fluid is 140kPa. One layer of fluid is clearly water with a depth of 20cm. The other mysterious fluid though has a depth of 30cm. a) What is the density of the unknown fluid?b) Which layer is on top in the container? An electric field component of a polarized ray is expressedas:Ez=(8 V/m)cos[(210^6 m^(-1) )x+ t](a) Write down the shape of the magnetic field component of thisray, including the value of What is nursing leadership barriers they face when implementing evidence based practice?