Answer:
A. Mass of KMnO₄ = 316.08 g
B. Mass of KMnO₄ = 41.49 g
C. Mass of KMnO₄ = 0.13 g.
Explanation:
A. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 1 L
Molarity = 2 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 2 × 1
Mole of KMnO₄ = 2 moles
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 2 moles
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 2 × 158.04
Mass of KMnO₄ = 316.08 g
B. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 350 mL = 350/1000 = 0.35 L
Molarity = 0.75 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 0.75 × 0.35
Mole of KMnO₄ = 0.2625 mole
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 0.2625 mole
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 0.2625 × 158.04
Mass of KMnO₄ = 41.49 g
C. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 80 mL = 80/1000 = 0.08 L
Molarity = 0.01 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 0.01 × 0.08
Mole of KMnO₄ = 0.0008 mole
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 0.0008 mole
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 0.0008 × 158.04
Mass of KMnO₄ = 0.13 g
What are the laws and calculations governing gas behavior?
Answer:
Laws governing gas behavior.
Explanation:
Boyle's law:
It relates the pressure and volume of an ideal gas at a constant temperature.
According to this law:
"The volume of a fixed amount of gas at constant temperature is inversely proportional to its pressure".
[tex]P \alpha V[/tex].
Charle's law:
It relates the volume and absolute temperature of an ideal gas at a constant pressure.
According to this law:
"The volume of a fixed amount of gas at constant pressure is directly proportional to its absolute temperature".
[tex]V \alpha T[/tex].
Avogadro's law:
According to this law:
equal volumes of all gases under the same conditions of temperature and pressure contain, an equal number of moles.
[tex]V \alpha n[/tex].
Ideal gas equation:
By combining all the above-stated gas laws, this equation is formed as shown below:
[tex]V \alpha \frac{nT}{P} \\=> V= R. nT/ P\\=>PV=nRT[/tex]
R is called universal gas constant.
It has a value of 0.0821L.atm.mol-1.K-1.
Answer:
Boyle's law, Charle's law, Guy Lussac's law and Avogadro's law
Explanation:
All the gases behaves similarly when the environment conditions are normal. But when the physical condition changes like when the pressure, volume or temperature changes, the gas behaves differently and shows a deviation.
The number of gas laws are :
Boyle's Law
Boyle's law states that when the temperature remaining constant, the pressure of the gas varies inversely to the volume of the gas.
i.e. [tex]P \propto \frac{1}{V}[/tex]
Charle' law
Charle's law states that when pressure is constant, the temperature of a gas is directly proportional to the volume.
i.e. , [tex]$T \propto V$[/tex]
Gay Lussac's law
Gay - Lussa law states the volume and the mass of the pressure of the gas is directly proportional to the temperature of the gas.
i.e. P.T = constant
Avogadro's law
It states that under the conditions of same pressure as well as temperatures, the gases having equal volumes will have same numbers of molecules.
i.e. [tex]\frac{V_1}{n_1}=\frac{V_2}{n_2}[/tex] = constant
20ml of water is mixed with 40gm of fine powder. Calculate the concentration of the solution obtained.
Answer:
[tex]\%m=66.7\%[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the concentration of the solution obtained, by knowing 20 mL of water are the same to 20 g and therefore the mass of the solution is 40g+20g=60g.
Next, we apply the following equation to obtain the required concentration:
[tex]\%m=\frac{40g}{60g} *100\%\\\\\%m=66.7\%[/tex]
Regards!
Star
Planet
*
As the planet makes one completer revolution around the star, starting at the position shown the gravitational attraction between the star
and the planet will
A Continually decrease
3 Decrease, then increase
increase then decrease
Romain the same
RI
12.20 AM
618/2001
Answer:
according to the path shown in the figure it will start decreasing then again it will start increasing when the path will be nearer to the star.
Reason is gravitation force is indirectly proportional to the distance.
So, option B. decrease then increase is correct
A substance with two oxygen atoms is combined with a substance with one oxygen atom to form one product. What is true of the product?
There will be no oxygen in the product. Some of the oxygen will evaporate into the air.
HELP!!! i will give brainliest!!
Different chemical elements have different chemical symbols, and this is determined by their atomic structure. Look at the two chemical symbols in the image. Compare and contrast the atomic symbols and the atomic structure of fluorine and oxygen.
Answer:
Explanation:
fluorine have gained one electron that is why the sign is -1. they both have different number of protons. They have different neutron numbers. F have 10 and O have 8.
hope this helps :)
A student sets up the following equation to convert a measurement.
(The stands for a number the student is going to calculate.)
Fill in the missing part of this equation.
Answer:
–0.13 Pa.m²
Explanation:
From the question given above, the following data were obtained:
Measurement (Pa.mm²) = –1.3×10⁵ Pa.mm²
Measurement (Pa.m²) =?
We can convert from Pa.mm² to Pa.m² by doing the following:
1 Pa.mm² = 1×10¯⁶ Pa.m²
Therefore,
–1.3×10⁵ Pa.mm² = –1.3×10⁵ Pa.mm² × 1×10¯⁶ Pa.m² / 1 Pa.mm²
–1.3×10⁵ Pa.mm² = –0.13 Pa.m²
Thus, –1.3×10⁵ Pa.mm² is equivalent to –0.13 Pa.m².
The complete equation will be:
[tex](-1.3\times 10^5 Pa.mm^2)\times 10^{-6}=(-0.13) Pa.m^2[/tex]
Explanation:
Given:
The equation to convert a measurement:
[tex](-1.3\times 10^5 Pa.mm^2)\times ? = ? Pa.m^2[/tex]
To find:
The missing part of the equation.
Solution:
[tex](-1.3\times 10^5 Pa.mm^2)\times ? = ? Pa.m^2[/tex]
On LHS the unit is in [tex]Pa. mm^2[/tex] and RHS the unit is in [tex]Pa.m^2[/tex] which means that we have to convert [tex]mm^2[/tex] to [tex]m^2[/tex]
In 1 millimeter there are 0.001 meters.
[tex]1 mm = 0.001 m\\1 mm^2=0.000001 m^2=10^{-6} m^2[/tex]
So, the complete equation will be:
[tex](-1.3\times 10^5 Pa.mm^2)\times 10^{-6}=(-0.13) Pa.m^2[/tex]
Learn more about conversions here:
brainly.com/question/24530464
brainly.com/question/17743460
38. Consider the following equilibrium:
2CO(g) + O2(g) =2CO2
Keg=4.0 x 10-10
What is the value of Key for 2CO2(g) + 2COR + O2g) ?
Answer:
[tex]Key=2.5x10^{-9}[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the equilibrium constant value for the reverse reaction:
[tex]2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)[/tex]
By knowing that the equilibrium expression is actually:
[tex]Key =\frac{[CO]^2[O_2]}{[CO_2]^2} =\frac{1}{Keg}[/tex]
Thus, we plug in and solve for the inverse of Keq to obtain Key as follows:
[tex]Key =\frac{1}{4.0x10^{-10}}\\\\Key=2.5x10^{-9}[/tex]
Regards!
which type of chemical bond would be formed between two elements having electron configuration of 1s2 2s2 2p6 3s2 and 1s2 2s2 2p4
In the presence of excess iodide ions, the iodine formed by reaction of iodide with NBS will react further to form triiodide ions. What does the triiodide combine with to form the blue color of the endpoint
Answer:
Starch.
Explanation:
When the triiodide combine with starch, it forms dark blue colour. Amylose in starch is responsible for the occurrence of a deep blue color when the iodine is combine with the starch. The iodine molecule goes inside of the amylose coil which makes a linear triiodide ion complex that goes into the coil of the starch that leads to an intense blue-black color in the end so we can say that starch turns the colour into blue.
a) If we have a 4.5 L container of CH 10 gas at a temperature of 178 K and a pressure of 0.50 atm, then how many moles of CaHio do
we have?
b) How many grams of C4H1o do we have?
Answer:
a) 0.15 mol.
b) 8.95 g.
Explanation:
Hello there!
In this case, according to the given information, it is possible for us to infer this problem is solved by using the ideal gas equation:
[tex]PV=nRT[/tex]
And proceed as follows:
a) Here, we solve for the moles, n, as follows:
[tex]n=\frac{PV}{RT} \\\\n=\frac{0.50atm*4.5L}{0.08206\frac{atm*L}{mol*K}*178K} \\\\n=0.15mol[/tex]
b) for the calculation of the mass, we recall the molar mass of butane, 58.12 g/mol, to obtain:
[tex]0.15mol*\frac{58.12g}{1mol} =8.95g[/tex]
Regards!
This reaction was at equilibrium when 0.2 atm of iodine gas was pumped into the container, what happened to the equilibrium and the partial pressures of the gases
Answer:
Q was < K. Partial pressure of hydrogen decreased, iodine increased
Explanation:
After iodine was added the Q was [Select] K so the reaction shifted toward the Products [Select] ,The partial pressure of hydrogen [Select], Iodine [Select] |,and hydrogen iodide Decreased
Based on the equilibrium:
H2(g) + I2(g) ⇄ 2HI(g)
K of equilibrium is:
K = [HI]² / [H2] [I2]
Where [] are concentrations at equilibrium
And Q is:
Q = [HI]² / [H2] [I2]
Where [] are actual concentrations of the reactants.
When the reaction is in equilibrium, K=Q.
But as [I2] is increased, Q decreases and Q was < K
The only concentration that increases is [I2], doing partial pressure of hydrogen decreased, iodine increased
If 4.00 moles of O2 occupies a volume of 5.0 L at a particular temperature and pressure, what volume will 3.00 moles of oxygen gas occupy under the same condition?
Answer: Volume occupied by 3.00 moles of oxygen gas under the same condition is 3.75 L.
Explanation:
Given: [tex]n_{1}[/tex] = 4.00 moles, [tex]V_{1}[/tex] = 5.0 L
[tex]n_{2}[/tex] = 3.00 moles, [tex]V_{2}[/tex] = ?
Formula used is as follows.
[tex]\frac{V_{1}}{n_{1}} = \frac{V_{2}}{n_{2}}[/tex]
Substitute the values into above formula as follows.
[tex]\frac{V_{1}}{n_{1}} = \frac{V_{2}}{n_{2}}\\\frac{5.0 L}{4.00 mol} = \frac{V_{2}}{3.00 mol}\\V_{2} = 3.75 L[/tex]
Thus, we can conclude that volume occupied by 3.00 moles of oxygen gas under the same condition is 3.75 L.
In the reaction below, what is the limiting reactant when 1.24 moles NH3 of reacts with 1.79 moles of NO?
4NH_3 + 6NO (right arrow) 5N_2 + 6H_2O
1. NO
2. H_2O
3. NH_3
4. N_2
Answer:
Option 1. NO
Explanation:
The balanced equation for the reaction is given below below:
4NH₃ + 6NO —> 5N₂ + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted with 6 moles of NO.
Finally, we shall determine the limiting reactant. This can be obtained as follow:
From the balanced equation above,
4 moles of NH₃ reacted with 6 moles of NO.
Therefore, 1.24 moles of NH₃ will react with = (1.24 × 6)/4 = 1.86 moles of NO
From the calculation made above, we can see that a higher amount of NO (i.e 1.86 moles) than what was given (i.e 1.79 moles) is needed to react completely with 1.24 moles of NH₃.
Therefore, NO is the limiting reactant and NH₃ is the excess reactant.
Thus, the 1st option gives the correct answer to the question
Answer:
1. NO .
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to identify the limiting reactant by simply calculating the moles of any product, say N2, via the moles of each reactant and including the corresponding mole ratio (4:5 and 6:5):
[tex]1.24molNH_3*\frac{5molN_2}{4molNH_3}=1.55molN_2 \\\\1.79molNO*\frac{5molN_2}{6molNO}=1.50molN_2[/tex]
Thus, since NO yields the fewest moles of N2 product, we infer it is the limiting reactant.
Regards!
Acetylide ions react with aldehydes and ketones to give alcohol addition products.
a. True
b. False
Answer:
a
Explanation:
Please help me, it’s my last try
Answer:
Group 1A: alkali metals, or lithium family.
Group 2A: alkaline earth metals, or beryllium family.
Group 7A: the manganese family.
Group 8A: the iron family.
Explanation:
Answer:
1A: Alkali Metals
2A: Alkaline Earth Metals
7A: Halogens
8A: Noble Gases
A student is examining a chemical reaction the student notes that the reaction requires 7.14 kcal mol energy per biomlecule synthesized the reaction itself produces 21.42 kcal mol energy the sutdent argues this is enough energy to make 3 biomecules. What error has the student made in the analysis?
a. The studentiras not remembered the Second Law of Thermodynamics.
b. The students has not remembered the First Law of Thermodynamics.
c. The student has made a simple calculation error
d. The student has made a conversion error
cấu hình electron của nguyên tử Ca
Explanation:
Do đó cấu hình electron của canxi là: 1s2 2s2 2p6 3s2 3p6 4s2.
Rocks are classified as igneous, metamorphic, or sedimentary according to
Answer:
D. the minerals they contain
Hope this answer is right!!
If we have 1.23 mol of NaOH in solution and 0.85 mol of Cl2 gas is available to react, which one is the limiting reactant? Give your reason.
Answer:
NaOH is the limiting reactant.
Explanation:
Hello there!
In this case, since the reaction taking place between sodium hydroxide and chlorine has is:
[tex]NaOH+Cl_2\rightarrow NaCl+NaClO+H_2O[/tex]
Which must be balanced according to the law of conservation of mass:
[tex]2NaOH+Cl_2\rightarrow NaCl+NaClO+H_2O[/tex]
Whereas there is a 2:1 mole ratio of NaOH to Cl2, which means that the moles of the former that are consumed by 0.85 moles of the latter are:
[tex]n_{NaOH}=0.85molCl_2*\frac{2molNaOH}{1molCl_2}\\\\n_{ NaOH}=1.7molNaOH[/tex]
Therefore, since we just have 1.23 moles out of 1.70 moles of NaOH, we infer this is the limiting reactant.
Regards!
For the reaction...
N2 + O2 <=> 2NO: AH = +182 kJ mol-1.
If the temperature is increased the equilibrium position will shift
Your answer:
a) to the left
b) to the right
c) to the left and right
d) neither left nor
right
Answer:
B
Explanation:
AH is positive so the forward reaction is endothermic. Thus, increasing temperature would cause equilibrium to shift to the right as endothermic reaction favors higher temperature. This increases the yield of NO.
calculate the maximum theoretical percent recovery from the recrystallization of 1.00g of benzoic acid
Answer:
The maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water = 94.9%
Note: The question is incomplete. A similar but complete question is given below:
The solubility of benzoic acid in water is 6.80g per 100mL at 100 degrees C and 0.34 g per 100mL at 25 degrees C.
Calculate the maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water, assuming the solution is filtered at 25 degrees C.
Explanation:
Solubility of benzoic acid in water at 100 degrees C = 6.80g per 100mL
Solubility of benzoic acid in water at 25 degrees C = 0.34 g per 100mL
Mass of benzoic acid to be theoretically recovered from 100 mL of water = 6.80 g - 0.34 g = 6.46 g
At 25 degrees;
0.34 g of benzoic acid is present in 100 mL of water
x g of benzoic acid will be present in 15 mL of water
x = 0.34 × 15 / 100 = 0.051 g
Mass of benzoic acid to be theoretically recovered from 25 mL of water = 1.00 g - 0.051 g = 0.949 g
Maximum theoretical percent recovery = (mass recovered / original mass dissolved) x 100%
Maximum theoretical percent recovery = (0.949 / 1.00) × 100% = 94.9 %
Therefore, the maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water = 94.9%
The information below describes a redox reaction.
Ag+ (aq) + Al(s) — Ag(s) + Al3+ (aq)
Ag+ (aq) + -> Ag(s)
Al(s)->A3+ (aq) + 3e-
What is the coefficient of silver in the final, balanced equation for this reaction?
Answer:
Al°(s) + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)
Explanation:
Oxidation: Al°(s) => Al⁺³(aq) + 3e⁻
Reduction: 3Ag⁺(aq) + 3e⁻ => 3Ag°(s)
_________________________________________
Net Rxn: Al°(s) + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)
One mole of neutral aluminum atoms (Al°(s)) undergo oxidation delivering 3 moles of electrons to 3 moles silver ions (3Ag⁺³(aq)) that are reduced to 3 moles of neutral silver atoms (3Ag°(s)) in basic standard state 25°C; 1atm.
A balanced equation obeys the law of conservation of mass. According to the law of conservation of mass, mass can neither be created nor be destroyed. The coefficient of silver is 3.
What is a balanced equation?A balanced chemical equation can be defined as the chemical equation in which the number of reactants and products on both sides of the equation are equal. The amount of reactants and products on both sides of the equation will be equal in a balanced chemical equation.
The numbers which are used to balance the chemical equation are called the coefficients. The coefficients are the numbers which are added in front of the formula.
The balanced chemical equation for the given redox reaction is given as:
Al (s) + 3 Ag⁺ (aq) → Al³⁺ (aq) + 3Ag (s)
Thus the coefficient of silver is 3.
To know more about balanced equation, visit;
https://brainly.com/question/29769009
#SPJ7
what's the ph of 0.0000067 m hcl solution
Answer:
[tex]pH = - log[H {}^{ + } ] \\ = - log(0.0000067) \\ pH = 5.17[/tex]
A pressure cooker contains 5.68 L of air at a temperature of 390 4K if the absolute pressure of the air in the pressure cooker is 205 Pa how many moles of air are in the cooker
Answer:
3.59x10⁻⁴ mol
Explanation:
Assuming ideal behaviour we can solve this problem by using the PV=nRT formula, where:
P = 205 PaV = 5.68 Ln = ?R = 8314.46 Pa·L·mol⁻¹·K⁻¹T = 390.4 KWe input the data given by the problem:
205 Pa * 5.68 L = n * 8314.46 Pa·L·mol⁻¹·K⁻¹ * 390.4 KAnd solve for n:
n = 3.59x10⁻⁴ molDefine pure substance. How is it classified on the basid of chemical properties?
Answer:
if it is pure, the substances is either an element or a compound. if a substance is not chemically pure, it is either a heterogeneous mixture or a homogeneous mixture. if its composition is uniform throughout, it is a homogeneous.
What is the pH of 0.6 M NaOH?
Answer:
pOH = - log[OH-]
[OH-] = 0.6M
[tex]pOH \: = - log(0.6) \\ = 0.2218487496 \\ pH \: + pOH \: = 14 \\ pH \: + 0.221848749 = 14 \\ pH = 14 - 0.221848749 \\ = 13.77815125 \\ 13.8[/tex]
At a fixed volume, a four-fold increase in the temperature of a gas will lead to _______ in pressure.
Question 2 options:
A)
no change
B)
a two-fold decrease
C)
a four-fold decrease
D)
a four-fold increase
Answer:
D) a four-fold increase
Explanation:
According to Gay-Lussac's law, which states that the pressure of a given amount of gas is directly proportional to the temperature at a constant volume, the pressure increases with an increase in temperature.
According to this question, at a fixed volume, a four-fold increase in the temperature of a gas will lead to a four-fold increase in the pressure as well.
4. Complete the following equations:
CuCl2 + Na2CO3 → 2 NaCl +............
FeSO4 + BaCl2 →
Cu(NO3)2 + CaCO3
Answer:
2NaCl + CuCO3
FeCl2 + BaSO4
CuCO3 + Ca(NO3)2
Explanation:
Presumably this is a double replacement reaction.
A+B + C+D → A+D + C+B
It seems I may be wrong so please try to work out the problem yourself to double check, keeping in mind the charges of each compound.
Calculate the number of milliliters of 0.587 M NaOH required to precipitate all of the Fe3 ions in 197 mL of 0.654 M FeCl3 solution as Fe(OH)3. The equation for the reaction is: FeCl3(aq) 3NaOH(aq) Fe(OH)3(s) 3NaCl(aq)
Answer: The number of milliliters of 654 mL for 0.587 M NaOH required to precipitate all of the [tex]Fe^{3+}[/tex] ions in 197 mL of 0.654 M [tex]FeCl_{3}[/tex] solution as [tex]Fe(OH)_{3}[/tex].
Explanation:
The reaction equation is as follows.
[tex]FeCl_{3}(aq) + 3NaOH(aq) \rightarrow Fe(OH)_{3}(s) + 3NaCl(aq)[/tex]
Therefore, moles of [tex]Fe(OH)_{3}[/tex] are calculated as follows.
Moles = Molarity of [tex]Fe(OH)_{3}[/tex] [tex]\times[/tex] Volume (in L)
= 0.654 M [tex]\times[/tex] 0.197 L
= 0.128 mol
Now, according to the given balanced equation 1 mole of [tex]FeCl_{3}(aq)[/tex] reacts with 3 moles of NaOH(aq). Hence, moles of [tex]Fe(OH)_{3}[/tex] reacted are calculated as follows.
3 [tex]\times[/tex] 0.128 mol = 0.384 moles of NaOH
As moles of NaOH present are as follows.
Moles of NaOH = Molarity of NaOH [tex]\times[/tex] Volume (in L)
0.384 mol = 0.587 M [tex]\times[/tex] Volume (in L)
Volume (in L) = 0.654 L (1 L = 1000 mL) = 654 mL
Thus, we can conclude that the number of milliliters of 654 mL for 0.587 M NaOH required to precipitate all of the [tex]Fe^{3+}[/tex] ions in 197 mL of 0.654 M [tex]FeCl_{3}[/tex] solution as [tex]Fe(OH)_{3}[/tex].
1) 7.269 moles of oxygen gas are used in combusting butane (C H..). How many moles of carbon dioxide
gas are produced? You must start with a balanced chemical equation. Start with a balanced equation
Explanation:
C4H10 + 13/2O2 ---------> 4CO2 + 5H2O
so u can work out the amount of moles by doing
moles=mass/mr
mr of C4H10 is 12 × 4 + 10 =58
=7.269/58
= 0.125moles
Then u can use the molar ratio which is
6.5:4
0.125 ÷6.5 × 4 = 0.0769moles
hope this helps:)