In which list are the three compounds above correctly listed in order of increasing boiling point? A) lowest b.p.... isopropanol < isobutane < acetone ...highest b.p. B) lowest b.p.... isobutane < acetone < isopropanol ...highest b.p. C) lowest b.p.... isobutane < isopropanol < acetone ...highest b.p. D) lowest b.p.... acetone < isobutane < isopropanol ...highest b.p. E) lowest b.p.... acetone < isopropanol < isobutane ...highest b.p.

Answers

Answer 1

Answer:

The correct answer is - option B -  lowest b.p.... isobutane < acetone < isopropanol ...highest b.p.

Explanation:

Isobutane has lowest boiling point due to no hydrogen bonding and no diole to dipole interaction found in them. Isobutane only shows weak dispersion force.

Acetone has dipole dipole interaction but due to lack of Hydrogen bonding they have low boiling point than isopropanol but higher than isobutanol.

Isopropanol is the compound that has ability to form hydrogen bonding with other molecule its boiling point is maximum among all three.

Thus, the correct answer is - option B -  lowest b.p.... isobutane < acetone < isopropanol ...highest b.p.


Related Questions

An actacide tablet containing Mg(OH)2 (MM = 58.3g / (mol)) is titrated with a 0.100 M solution of HNO3. The end point is determined by using an indicator. Based on 20.00mL HNO3 being used to reach the endpoint, what was the mass of the Mg * (OH) in the antacid tablet? * 0.0583 g 0.583 5.83 g 58.3 g

Answers

Answer:

0.0583g

Explanation:

The equation of the reaction is;

2HNO3(aq) + Mg(OH)2(aq) -------> Mg(NO3)2(aq) + 2H2O(l)

From the question, number of moles of HNO3 reacted= concentration × volume

Concentration of HNO3= 0.100 M

Volume of HNO3 = 20.00mL

Number of moles of HNO3= 0.100 × 20/1000

Number of moles of HNO3 = 2×10^-3 moles

From the reaction equation;

2 moles of HNO3 reacts with 1 mole of Mg(OH)2

2×10^-3 moles reacts with 2×10^-3 moles ×1/2 = 1 ×10^-3 moles of Mg(OH)2

But

n= m/M

Where;

n= number of moles of Mg(OH)2

m= mass of Mg(OH)2

M= molar mass of Mg(OH)2

m= n×M

m= 1×10^-3 moles × 58.3 gmol-1

m = 0.0583g

A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
Br(g)
Cl2(g)
I2(g)
F2(g)
B. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2S(g)
H2O(g)
H2O2(g)
C. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous)
C(s, diamond)
C(s, graphite)

Answers

Answer:

A. Rank the following substances in order of decreasing standard molar entropy (S∘).

Rank the gases from largest to smallest standard molar entropy

I2(g)>Br2(g)>Cl2(g)>F2(g)

B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

H2O2(g)>H2S(g) >H2O(g)

C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

C(s, amorphous) >C(s, graphite)>C(s, diamond)

Explanation:

Hello,

In this case, we can apply the following principles to explain the order:

- The greater the molar mass, the larger the standard molar entropy.

- The greater the molar mass and the structural complexity, the larger the standard molar entropy.

- The greater the structural complexity, the larger the standard molar entropy.

A. Rank the following substances in order of decreasing standard molar entropy (S∘).

Rank the gases from largest to smallest standard molar entropy

I2(g)>Br2(g)>Cl2(g)>F2(g)

This is due to the fact that the greater the molar mass, the larger the standard molar entropy.

B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

H2O2(g)>H2S(g) >H2O(g)

This is due to the fact that the greater the molar mass and the structural complexity, the larger the standard molar entropy as the hydrogen peroxide has four bonds and weights 34 g/mol as well as hydrogen sulfide that has two bonds only.

C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

C(s, amorphous) >C(s, graphite)>C(s, diamond)

Since the molecular complexity is greater in the amorphous carbon (messy arrangement), mid in the graphite and lower in the diamond (well organized).

Regards.

The heat of vaporization of water is 40.66 kJ/mol. How much heat is absorbed when 3.11 g of water boils at atmospheric pressure?

Answers

Answer:

The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.

Explanation:

A molar heat of vaporization of 40.66 kJ / mol means that 40.66 kJ of heat needs to be supplied to boil 1 mol of water at its normal boiling point.

To know the amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure, the number of moles represented by 3.11 g of water is necessary. Being:

H: 1 g/moleO: 16 g/mole

the molar mass of water is:

H₂O= 2* 1 g/mole + 16 g/mole= 18 g/mole

So: if 18 grams of water are contained in 1 mole, 3.11 grams of water in how many moles are present?

[tex]moles of water=\frac{3.11 grams*1 mole}{18 gramos}[/tex]

moles of water= 0.1728

Finally, the following rule of three can be applied: if to boil 1 mole of water at its boiling point it is necessary to supply 40.66 kJ of heat, to boil 0.1728 moles of water, how much heat is necessary to supply?

[tex]heat=\frac{0.1728 moles*40.66 kJ}{1 mole}[/tex]

heat= 7.026 kJ

The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.

Write the equation for the reaction described: A solid metal oxide, , and hydrogen are the products of the reaction between metal and steam. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.)

Answers

Answer:

Pb + 2H2O --> PbO2 + 2H2

Explanation:

Products:

Solid metal; PbO2

Hydrogen; H

Reactants:

Metal; Pb

Steam; H2O

Reactants --> Products

Pb + H2O --> PbO2 + H2

Upon balancing we have;

Pb + 2H2O --> PbO2 + 2H2

By heating a 93% pure kclo3 sample, what percentage of its mass is reduced?
2KCLO3---->2KCL+3O2​

Answers

Explanation:

free your mind drink water and go outside take fresh air you will get answers

g What is the molarity of hydrochloric acid if 40.95 mL of HCl is required to neutralize 0.550 g of sodium oxalate, Na2C2O4

Answers

Answer:

0.0002 M

Explanation:

The molarity of the HCl required would be 0.0002 M.

First, let us consider the balanced equation of the reaction:

[tex]Na_2C_2O_4 + 2HCl = 2NaCl + H_2 + 2CO_2[/tex]

Stoichiometrically, 1 mole of [tex]Na_2C_2O_4[/tex] reacts with 2 moles of [tex]HCl[/tex] for a complete neutralization reaction.

Recall that: mole = [tex]\frac{mass}{molar mass}[/tex]

Mole of 0.550 g sodium oxalate = 0.550/134 = 0.0041 mole

If 1 mole [tex]Na_2C_2O_4[/tex] requires 2 moles HCl, then 0.0041 mole will require:

    0.0041 x 2 = 0.0082 mole HCl

Volume of the HCl = 40.95 L

Molarity = mole/volume

Hence, molarity of the HCl = 0.0082/40.95 = 0.0002 M

A sample is found to contain 1.29×10-11 g of salt. Express this quantity in picograms

Answers

Answer:12.9e-12g or in short 12.9pg

Explanation:as p=1e-12

An aqueous solution of potassium bromide, KBr, contains 4.34 grams of potassium bromide and 17.4 grams of water. The percentage by mass of potassium bromide in the solution is 20 %.

Answers

Answer:

True

Explanation:

The percentage by mass of a substance in a solution can be calculated by dividing the mass of the substance dissolved in the solution by the total mass of the solution. This can be expressed mathematically as:

Percentage by mass = mass of substance in solution/mass of solution x 100

In this case;

mass of KBr = 4.34 grams

mass of water = 17.4 grams

mass of solution = mass of KBr + mass of water = 4.34 + 17.4 = 21.74

Percentage by mass of KBr = 4.34/21.74 x 100

                                              = 19.96 %

19.96 is approximately 20%.

Hence, the statement is true.

The intermolecular forces present in CH 3NH 2 include which of the following? I. dipole-dipole II. ion-dipole III. dispersion IV. hydrogen bonding

Answers

Answer:

I. dipole-dipole

III. dispersion

IV. hydrogen bonding

Explanation:

Intermolecular forces are weak attraction force joining nonpolar and polar molecules together.

London Dispersion Forces are weak attraction force joining non-polar and polar molecules together. e.g O₂, H₂,N₂,Cl₂ and noble gases. The attractions here can be attributed to the fact that a non -polar molecule sometimes becomes polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant.

Dispersion forces are the weakest of all electrical forces that act between atoms and molecules. The force is responsible for liquefaction or solidification of non-polar substances such as noble gas an halogen at low temperatures.

Dipole-Dipole Attractions are forces of attraction existing between polar molecules ( unsymmetrical molecules) i.e molecules that have permanent dipoles such as HCl, CH3NH2 . Such molecules line up such that the positive pole of one molecule attracts the negative pole of another.

Dipole - Dipole attractions are more stronger than the London dispersion forces but weaker than the attraction between full charges carried by ions in ionic crystal lattice.

Hydrogen Bonding is a dipole-dipole intermolecular attraction which occurs when hydrogen is covalently bonded to highly electronegative elements such as nitrogen, oxygen or fluorine. The highly electronegative elements have very strong affinity for electrons. Hence, they attracts the shared pair of electrons in the covalent bonds towards themselves, leaving a partial positive charge on the hydrogen atom and a partial negative charge on the electronegative atom ( nitrogen in the case of CH3NH2 ) . This attractive force is know as hydrogen bonding.

Answer:

The intermolecular forces present in CH_3NH_2 includes

II. (ion-dipole) and IV. (hydrogen bonding)

Explanation:

The intermolecular forces present in CH_3NH_2 includes II. (ion-dipole) and IV. (hydrogen bonding)

It is a polar molecule due to NH polar bond and it can form Hydrogen bond also due to NH bond.

Interaction will be dipole- dipole and Hydrogen dispersion forces can always be taken into account.

For more information on intermolecular forces, visit

https://brainly.com/subject/chemistry

2NH3 → N2 + 3H2 If 2.22 moles of ammonia (NH3) decomposes according to the reaction shown, how many moles of hydrogen (H2) are formed? A) 2.22 moles of H2 B) 1.11 moles of H2 C) 3.33 moles of H2 D) 6.66 moles of H2

Answers

Answer:

C

Explanation:

According to the mole ratio, using 2NH3 will give you 3H2. Which means in order to find the moles of H2 you would only need to divide 2 and multiply 3 to get the amount of moles of H2 produced.

Answer:

I think it's C

Explanation:

Please, tell me if I'm incorrect.

At standard temperature and pressure conditions, the volume of an ideal gas contained in a jar is 55.3 L. How many molecules are in the jar. This question is to be answered in scientific notation.(eg. 1.5 e5)

Answers

Answer:

1.49e24

Explanation:

Standars temperature and pressure are 273.15K and 1atm, respectively.

Using ideal gas law, we can find moles of an ideal gas if we know its pressure, temperature and volume as follows:

PV = nRT

PV / RT = n

Where P is pressure (1atm), V is volume (55.3L), R is gas constant (0.082atmL/molK), T is temperature (273.15K) and n moles of the ideal gas.

Replacing:

PV / RT = n

1atm*55.3L / 0.082atmL/molK*273.15K = n

2.47 moles = n

Now, the question is about the number of molecules in the jar. By definition, 1 mole = 6.022x10²³ molecules.

As we have 2.47 moles:

2.47 mol × (6.022x10²³ molecules / 1 mole) =

1.49x10²⁴ molecules that are in the jar

In scientific notation:

1.49e24

Using the data: C2H4(g), = +51.9 kJ mol-1, S° = 219.8 J mol-1 K-1 CO2(g), = ‑394 kJ mol-1, S° = 213.6 J mol-1 K-1 H2O(l), = ‑286.0 kJ mol-1, S° = 69.96 J mol-1 K-1 O2(g), = 0.00 kJ mol-1, S° = 205 J mol-1 K-1 calculate the maximum amount of work that can be obtained, at 25.0 °C, from the process: C2H4(g) + 3 O2(g) → 2 CO2(g) + 2 H2O(l)

Answers

Answer:

The correct answer is 1332 KJ.

Explanation:

Based on the given information,  

ΔH°f of C2H4 is 51.9 KJ/mol, ΔH°O2 is 0.0 KJ/mol, ΔH°f of CO2 is -394 KJ/mol, and ΔH°f of H2O is -286 KJ/mol.  

Now the balanced equation is:  

C2H4 (g) + 3O2 (g) ⇔ 2CO2 (g) + 2H2O (l)

ΔH°rxn = 2 × ΔH°f CO2 + 2 × ΔH°fH2O - 1 × ΔH°fC2H4 - 3×ΔH°fO2

ΔH°rxn = 2 (-394) + 2(-286) - 1(51.9) - 3(0)

ΔH°rxn = -1411.9 KJ

Now, the given ΔS°f of C2H4 is 219.8 J/mol.K, ΔS°f of O2 is 205 J/mol.K, ΔS°f of CO2 is 213.6 J/mol.K, and ΔS°f of H2O is 69.96 J/mol.K.  

Now based on the balanced chemical reaction,  

ΔS°rxn = 2 × ΔS°fCO2 + 2 ΔS°fH2O - 1 × ΔS°f C2H4 - 3 ΔS°fO2

ΔS°rxn = 2 (213.6) + 2(69.96) - 1(219.8) -3(205)

ΔS°rxn = -267.68 J/K or -0.26768 KJ/K

T = 25 °C or 298 K

Now putting the values of ΔH, ΔS and T in the equation ΔG = ΔH-TΔS, we get

ΔG = -1411.9 - 298.0 × (-0.2677)

ΔG = -1332 KJ.  

Thus, the maximum work, which can obtained is 1332 kJ.  

Determine which set of properties correctly describes copper (Cu)?
A. Giant structure, conducts electricity, high melting point, soluble in water, malleable
B. Malleable, brittle, soluble in oil or gasoline, high melting point, simple structure
C. Ionic lattice, conducts electricity, soluble in oil or gasoline, low melting point, ductile
D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice

Answers

Answer:

D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice

Explanation:

Copper is a metal with an atomic number of 29. This metal is soft and reddish in color which explains why it is very malleable(beaten to form various shapes without breaking).

All metals are good conductors of electricity including copper which is also a metal. Metals generally are insoluble in water. Copper also has a high melting point which is a characteristic of metals due to their giant structure and metallic lattice which makes it difficult to be broken down.

What is the mass number of an element

Answers

Answer:

A (Atomic mass number or Nucleon number)

Explanation:

The mass number is the total number of protons and nucleons in an atomic nucleus.

Hope this helps.

Please mark Brainliest...

Atoms are indivisible spheres. 1.plum pudding model 2.Dalton model 3.Bohr model

Answers

Answer: 2. Dalton Model

Explanation:

John Dalton proposed that atoms are indivisible spheres. Although his model of an atom was not entirely new to the scientific world since the ancient Greeks has made  a similar statement in the past ( all matter are made up of small indivisible particle called atom).

As of when Dalton proposed his model of an atom, electrons and nucleus where yet to be discovered.

1.) A sample of neon gas at a pressure of 0.646 atm and a temperature of 242 °C, occupies a volume of 515 mL. If the gas is cooled at constant pressure until its volume is 407 mL, the temperature of the gas sample will be ________°C.
2.) A sample of argon gas at a pressure of 0.633 atm and a temperature of 261 °C, occupies a volume of 694 mL. If the gas is heated at constant pressure until its volume is 796 mL, the temperature of the gas sample will be___________°C.
3.) 0.962 mol sample of carbon dioxide gas at a temperature of 20.0 °C is found to occupy a volume of 21.5 liters. The pressure of this gas sample ismm ____________ Hg.

Answers

Answer:1 )T2=134°C   2) T2=339.48°C. 3)

P=817.59 mmHg.

Explanation:

1.Given ;

pressure, P1 of neon gas = 0.646 atm

temperature, T1 =242oC + 273=515oC

Volume, V1 =515ml

Volume V2= 407ml

temperature , T 2= ?

Solution;

And at constant pressure, the volume cools at V2=407 mL at T2=?

From ideal gas equation, PV=nRT

V/T=constant

therefore

V1/V2=T1/T2 = T2=(V2 xT1)/V1

T2=(407 mL x 515 K)/515 mL= 407K.

T2= 407K -273= 134°C.   recall 0°C=273 K)

2..Given ;

pressure, P1 of neon gas = 0.633 atm

temperature, T1 =261oC + 273=534oC

Volume, V1 =694ml

Volume V2= 796ml

temperature , T 2= ?

Solution;

And at constant pressure, the volume expands  at V2=796mL at T2=?

From ideal gas equation, PV=nRT

V/T=constant

therefore

V1/V2=T1/T2 = T2=(V2 xT1)/V1

T2=(796 mL x 534 K)/694mL= 612.48K.

T2= 612.48K -273= 339.48°C. recall 0°C=273 K

3

Given;

moles of CO2= n=0.962 mol,

temperature T=20°C=20+273 K =293 K,

volume V=21.5 L,

gas constant R at L·mmHg/mol·K= 62.3637 L mmHg mol^-1 K^-1

Using  ideal gas equation PV=nRT

P=nRT/V

P=(0.962 mol)x(62.3637mmHg mol^-1 K^-1)x(293 K)/(21.5L)

P=817.59 mmHg.

If one pound is the same as 454 grams, then convert the mass of 78 grams to pounds.

Answers

Answer:

0.17 lb

Explanation:

78 g * (1 lb/454 g)=0.17 lb

If you want additional help with chemistry or another subject for FREE, check out growthinyouth.org.

Beginning with Na, record the number of energy levels, number of protons, and atomic radius for each element in period 3.

Answers

Answer:

Sodium, magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon are the elements of third period.

Explanation:

There are three energy levels in sodium atom. It has 11 electrons revolving around the nucleus. the atomic radius of sodium atom is 227 ppm. Magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon has also three energy levels like sodium because all these elements belongs to third period. There are 12 electrons present in magnesium, 13 in aluminium, 14 in silicon, 15 in phosphorus, 16 in sulfur, 17 in chlorine, and 18 electrons in argon. The atomic radius of magnesium atom is 173 ppm.  The atomic radius of aluminium atom is 143 ppm.  The atomic radius of silicon atom is 111 ppm.  The atomic radius of phosphorus atom is 98 ppm.  The atomic radius of sulfur atom is 87 ppm. The atomic radius of chlorine atom is 79 ppm and the atomic radius of argon atom is 71 ppm.

Testbank Question 47 Consider the molecular orbital model of benzene. In the ground state how many molecular orbitals are filled with electrons?

Answers

Answer:

There are fifteen molecular orbitals in benzene filled with electrons.

Explanation:

Benzene is an aromatic compound. Let us consider the number of bonding molecular orbitals that should be present in the molecule;

There are 6 C-C σ bonds, these will occupy six bonding molecular orbitals filled with electrons.

There are 6 C-H σ bonds, these will occupy another six molecular orbitals filled with electrons

The are 3 C=C π bonds., these will occupy three bonding molecular pi orbitals.

All these bring the total number of bonding molecular orbitals filled with electrons to fifteen bonding molecular orbitals.

Identify four general properties that make an NSAID unique as compared to the NSAID aspirin. List specific properties that make aspirin, naproxen, and ibuprofen unique from one another

Answers

Answer:

NSAIDs are steroidal anti-inflammatories, their action is on the phospholipase A2 enzyme, this enzyme is responsible for breaking down the phospholipids of the membrane to trigger an inflammatory response. This is how steroidal anti-inflammatory drugs inhibit ALL inflammatory pathways (not like NSAIDs that they only inhibit the COX pathway).

These corticosteroid drugs cannot exceed the systemic mineralocorticoid value 1 in the body, since this corticosteroid hormone is also released by the adrenal cortex.

The NSAIDs generate: sporadic peaks in blood glucose, hypertension, fluid retention, increase in body fat mass, possible suppression of the adrenal cortex over time, inhibiting endogenous synthesis of corticosteroids.

On the other hand, naproxen and ibuprofen are NSAIDs, that is, non-steroidal anti-inflammatory drugs that do not influence both routes of inflammation, but only COX, this enzyme is abbreviated as COX but is called cyclooxygenase, and is responsible for a single route of inflammation.

NSAIDs such as naproxen and ibuprofen can cause gastric disorders such as ulcers or gastritis if they are consumed in a very repetitive manner.

In addition, both drugs are anti-inflammatory, analgesic and antipyretic. Although its two main functions are the first two, it was shown to have an effect in lowering body temperature.

That they are anti-inflammatory means that they inhibit the path of inflammation and analgesics the path of pain.

Explanation:

Both types of drugs generate the same effect but by different mechanisms.

Some are steroids and others are not, although steroids are considered to have a greater risk of benefit that is why they are administered against more systematically compromised instances such as anaphylactic shock.

NSAIDs such as naproxen and ibuprofen are the most prescribed today, since they have few risks and very good benefits, meaning that their adverse effects are not lethal or highly relevant and have a good effect on symptoms.

Both must be administered with care when treating a diabetic patient since corticosteroids generate glycemic peaks or increase in blood glucose, and NSAIDs compete for plasma protein with oral hypoglycemic agents, thus generating that these are in higher free concentrations. high diffusing better through the tissues and increases the potency of the adverse effects of these.

Why can gasses change volume?
A. The forces holding the gas particles together are
stronger than gravity.
B. The gas particles have no mass, so they can change volume.
C. Gravity has no effect on gas particles, so they can float away.
O D. There are no forces holding the gas particles together.

Answers

Answer:

There are no forces holding the gas particles together.

Explanation:

Please Help! Use Hess’s Law to determine the ΔHrxn for: Ca (s) + ½ O2 (g) → CaO (s) Given: Ca (s) + 2 H+ (aq) → Ca2+ (aq) + H2 (g) ΔH = 1925.9 kJ/mol 2 H2 (g) + O2 (g) → 2 H2O (l) ΔH = −571.68 kJ/mole CaO (s) + 2 H+ (aq) → Ca2+ (aq) + H2O (l) ΔH = 2275.2 kJ/mole ΔHrxn =

Answers

Answer:

ΔHrxn = -635.14kJ/mol

Explanation:

We can make algebraic operations of reactions until obtain the desire reaction and, ΔH of the reaction must be operated in the same way to obtain the ΔH of the desire reaction (Hess's law). Using the reactions:

(1)Ca(s) + 2 H+(aq) → Ca2+(aq) + H2(g) ΔH = 1925.9 kJ/mol

(2) 2H2(g) + O2 g) → 2 H2O(l) ΔH = −571.68 kJ/mole

(3) CaO(s) + 2 H+(aq) → Ca2+(aq) + H2O(l) ΔH = 2275.2 kJ/mole

Reaction (1) - (3) produce:

Ca(s) + H2O(l) → H2(g) + CaO(s)

ΔH = 1925.9kJ/mol - 2275.2kJ/mol = -349.3kJ/mol

Now this reaction + 1/2(2):

Ca(s) + ½ O2(g) → CaO(s)

ΔH = -349.3kJ/mol + 1/2 (-571.68kJ/mol)

ΔHrxn = -635.14kJ/mol

A student ran the following reaction in the laboratory at 242 K: 2NOBr(g) 2NO(g) Br2(g) When she introduced 0.143 moles of NOBr(g) into a 1.00 liter container, she found the equilibrium concentration of NOBr(g) to be 0.108 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc

Answers

Answer:

1.84 × 10⁻³

Explanation:

Step 1: Write the balanced equation

2 NOBr(g) ⇄ 2 NO(g) + Br₂(g)

Step 2: Calculate the initial concentration of NOBr

0.143 moles of NOBr(g) are introduced into a 1.00 liter container. The molarity is:

M = 0.143 mol / 1.00 L = 0.143 M

Step 3: Make an ICE chart

         2 NOBr(g) ⇄ 2 NO(g) + Br₂(g)

I             0.143               0           0

C              -2x               +2x        +x

E          0.143-2x            2x          x

Step 4: Find the value of x

The equilibrium concentration of NOBr(g) was 0.108 M. Then,

0.143-2x = 0.108

x = 0.0175

Step 5: Calculate the concentrations at equilibrium

[NOBr] = 0.108 M

[NO] = 2x = 0.0350 M

[Br₂] = x = 0.0175 M

Step 6: Calculate the equilibrium constant (Kc)

Kc = [0.0350]² × [0.0175] / [0.108]²

Kc = 1.84 × 10⁻³

Calculate the pH of a solution formed by mixing 250.0 mL of 0.15 M NH4Cl with 200.0 mL of 0.12 M NH3. The Kb for NH3 is 1.8 × 10-5.

Answers

Answer:

The pH of the solution is 9.06.

Explanation:

The reaction of the dissociation of NH₃ in water is:

NH₃(aq) + H₂O(l)  ⇄  NH₄⁺(aq) + OH⁻(aq)     (1)

[NH₃] - x                     [NH₄⁺] + x     x  

The concentration of NH₃ and NH₄⁺ is:

[tex] [NH_{3}] = \frac{n_{NH_{3}}}{V_{T}} = \frac{C_{i}_{(NH_{3})}*Vi_{NH_{3}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.12 M*0.2 L}{0.2 L + 0.25 L} = 0.053 M [/tex]

[tex] [NH_{4}^{+}] = \frac{C_{i}_{(NH_{4}^{+})*V_{NH_{4}^{+}}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.15 M*0.25 L}{0.2 L + 0.25 L} = 0.083 M [/tex]

From equation (1) we have:

[tex]Kb = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}[/tex]

[tex] 1.8 \cdot 10^{-5} = \frac{(0.083 + x)*x}{0.053 - x} [/tex]

[tex] 1.8 \cdot 10^{-5}(0.053 - x) - (0.083 + x)*x = 0 [/tex]

By solving the above equation for x we have:

x =  1.15x10⁻⁵ = [OH⁻]

The pH of the solution is:

[tex] pOH = -log([OH^{-}]) = -log(1.15 \cdot 10^{-5}) = 4.94 [/tex]

[tex] pH = 14 - pOH = 14 - 4.94 = 9.06 [/tex]

Therefore, the pH of the solution is 9.06.

I hope it helps you!

When balancing redox reactions under basic conditions in aqueous solution, the first step is to:________.
a. balance oxygen
b. balance hydrogen
c. balance the reaction as though under acidic conditions
d. none of the above

Answers

Answer:

When balancing redox reactions under basic conditions in aqueous solution, the first step is to balance oxygen.

Explanation:

Oxidation-reduction reactions or redox reactions are those in which an electron transfer occurs between the reagents. An electron transfer implies that there is a change in the number of oxidation between the reagents and the products.

The gain of electrons is called reduction and the loss of electrons oxidation. That is to say, there is oxidation whenever an atom or group of atoms loses electrons (or increases its positive charges) and in the reduction an atom or group of atoms gains electrons, increasing its negative charges or decreasing the positive ones.

The oxidation and reduction half-reactions, in a basic medium, adjust the oxygens and hydrogens as follows:

In the member of the half-reaction that presents excess oxygen, you add as many water molecules as there are too many oxygen. Then, in the opposite member, the necessary hydroxyl ions are added to fully adjust the half-reaction. Normally, twice as many hydroxyl ions, OH-, are required as water molecules have previously been added.

In short, you first adjust the oxygens with OH-, then you adjust the H with H₂O, and finally you adjust the charge with e-

So, when balancing redox reactions under basic conditions in aqueous solution, the first step is to balance oxygen.

Answer:

c. balance the reaction as though under acidic conditions

Explanation:

When balancing redox reactions under basic conditions, a good technique is to first balance the reaction as though under acidic conditions. We then adjust the result to reflect the basic conditions.

Fill in the blanks with the words given below- [Atoms, homogeneous, metals, true, saturated, homogeneous, colloidal, compounds, lustrous] 1.An element which are sonorous are called................ 2.An element is made up of only one kind of .................... 3.Alloys are ............................. mixtures. 4.Elements chemically combines in fixed proportion to form ........................ 5. Metals are................................... and can be polished. 6. a solution in which no more solute can be dissolved is called a .................... solution. 7. Milk is a .............. solution but vinegar is a .................. solution. 8. A solution is a ................... mixture. pls help, could not get these answers

Answers

Answer:

1. metals

2. atom

3. homogeneous

4. compounds

5. lustrous

6. saturated

7. colloidal

8. homogeneous

Explanation:

A student determines the value of the equilibrium constant to be 1.5297 x 107 for the following reaction: HBr(g) + 1/2 Cl2(g) --> HCl(g) +1/2 Br2(g) Based on this value of Keq, calculate the Gibbs free energy change for the reaction of 2.37 moles of HBr(g) at standard conditions at 298 K.

Answers

Answer:

[tex]\Delta G=-97.14kJ[/tex]

Explanation:

Hello,

In this case, the relationship between the equilibrium constant and the Gibbs free energy of reaction is:

[tex]\Delta G=-RTln(K)[/tex]

Hence, we compute it as required:

[tex]\Delta G=-8.314\frac{J}{mol\times K}*298K*ln(1.5297x10^7)\\\\\Delta G=-40.99kJ/mol[/tex]

And for 2.37 moles of hydrogen bromide, we obtain:

[tex]\Delta G=-40.99kJ/mol*2.37mol\\\\\Delta G=-97.14kJ[/tex]

Best regards.

How many atoms of oxygen are in one molecule of water (H2O)? one two four three

Answers

Answer:

there is one atom of oxygen and two atoms of hydrogen

Explanation:

One atom is in oxygen of water

A small amount of solid calcium hydroxide is shaken vigorously in a test tube almost full of water until no further change occurs and most of the solid settles out. The resulting solution is:______.

Answers

Answer:

Lime water, [tex]Ca(OH)_{2}_({aq} )[/tex] is formed.

Explanation:

Lime-water is a clear and colourless dilute solution of aqueous calcium hydroxide salt.

Small amounts of calcium hydroxide salt,  [tex]Ca(OH)_{2}_(s)[/tex]  is sparsely soluble at room temperature when dispersed vigorously. if in excess, a white suspension called 'milk of lime'is formed.

I hope this explanation is helpful.

A balloon has an initial volume of 2.954 L containing 5.50 moles of helium. More helium is added so that the balloon expands to 4.325 L. How much helium (moles) has been added if the temperature and pressure stay constant during this process.

Answers

Answer:

8.05 moles

Explanation:

5.50 / 2.954 = x / 4.325

x = 8.05

According to ideal gas equation, if the temperature and pressure stay constant during the process 0.520 moles have been added  so that the balloon expands to 4.325 L.

What is ideal gas equation?

The ideal gas equation is a equation which is applicable in a hypothetical state of an ideal gas.It is a combination of Boyle's law, Charle's law,Avogadro's law and Gay-Lussac's law . It is given as, PV=nRT where R= gas constant whose value is 8.314.The law has several limitations.The law was proposed by Benoit Paul Emile Clapeyron in 1834.

In the given example if pressure and temperature are constant then V=nR substituting V=4.325 l and R=8.314  so n=V/R=4.325/8.314=0.520 moles.

Thus, 0.520 moles of helium are added if the temperature and pressure stay constant during this process.

Learn more about ideal gas equation,here:

https://brainly.com/question/28837405

#SPJ2

Other Questions
The average monthly rainfall for 6 months was 28.5 mm. If it had rained 1mm more each month what would the average have been? By how much would the total have been increased in six months and by how much would average have been increased per month? What's the answer?? Which of the following is not a function of Mitosis? A. Growth and development B. Produce genetically identical daughter cells C. Produce genetically different daughter cells D. Replace damaged cells In the adjoining figure, in ABC, D is the midpoint of the side BC.Hence a) AD is ___________ A b) AM is ____________ c) Is BD = DC please help!!!!!!!!!!!!!! what is the right form for mla format? For each bond, show the direction of polarity by selecting the correct partial charges. _________ Si-P _________ _________ Si-Cl _________ _________ Cl-P _________ The most polar bond is _______ Is MNO=PQR? If so, name the congruence postulate that applies.Given:ME=PQNO=QRMO=PRA. Congruent - ASAB. Congruent - SSSC. Congruent - SASD. Might not be congruent Your mother calls you and asks you to help with a major family decision. Your maternal grandfather is 70 years old and has been diagnosed with a condition that will kill him some time in the next five years. He can have a procedure that will correct the disease and not leave him with any long-term problems, but the procedure has a 10% mortality rate. He wants to have the procedure, but your mother does not want him to. How would you help mediate this issue? aap kis vyakti se prabhavit rahe hain aur kyon Write a brief description about your visit to the Niagara Falls in not more than 120 words.( mention location, atmosphere, sights, sounds, history, importance etc.) Knowing she has sold 5,000 pairs, assume the company wants to launch a Black Friday promotion, where she would discount her shoes by 10%. How many more shoes would she have to sell to justify this promotion The new hybrid car can get 51.5 km/gal. It has a top speed of 40000.00 cm/min and is 4m long. How fast can the car go in m/hr? After creating an effective research question, what should a historian have? the answer to the research question a vague thesis with broad research goals the evidence needed to craft an argument a better understanding of potential research problems Need help quick pls Suppose that Dunkin Donuts reduces the price of its regular coffee from $2 to $1 per cup, and as a result, the quantity sold per day increased from 10 to 40. Over this price range, the price elasticity of demand for Dunkin Donuts regular coffee is: A city is holding a referendum on increasing property taxes to pay for a new high school. In a survey of 434 likely voters, 202 said that they would vote "yes" on the referendum. Create a 95% confidence interval for the proportion of likely voters who would vote "yes" on the referendum. Use a TI-83, TI-83 plus, or TI-84 calculator, rounding your answers to three decimal places. Solve for x. 7x+38=45 Every interaction with the outside world is because of A) epithelial tissue B) connective tissue C) nervous tissue D) muscular tissue An atom of 108Te has a mass of 107.929550 amu. Calculate the binding energy per MOLE in kJ. Use the values: mass of 1H atom Facial Cosmetics provides plastic surgery primarily to hide the appearance of unwanted scars and other blemishes. During 2021, the company provides services of $402,000 on account. Of this amount, $52,000 remains uncollected at the end of the year. An aging schedule as of December 31, 2021, is provided below. Age Group Amount Estimated Percent Receivable Uncollectible Not yet due $ 32,000 4 % 0-30 days past due 10,200 6 % 3160 days past due 7,200 12 % More than 60 days past due 2,600 30 % Total $ 52,000 Required: 1. Calculate the allowance for uncollectible accounts. 2. Record the December 31, 2021, adjustment, assuming the balance of Allowance for Uncollectible Accounts before adjustment is $400 (debit). 3. On April 3, 2022, a customers account balance of $500 is written off as uncollectible. Record the write-off. 4. On July 17, 2022, the customer whose account was written off in requirement 3 unexpectedly pays $100 of the amount but does not expect to pay any additional amounts. Record the cash collection.