Answer:
its false
Step-by-step explanation:
Answer:
The answer is false
Step-by-step explanation:
Find the range of f(x) = –x + 4 for the domain {–3, –2, –1, 1}.
Answer:
{3, 5, 6, 7}
Step-by-step explanation:
Plug in each number form the domain and solve for f(x). The set of f(x) values is the range.
f(x) = -x + 4
f(-3) = -(-3) + 4 = 7
f(-2) = -(-2) + 4 = 6
f(-1) = -(-1) + 4 = 5
f(1) = -1 + 4 = 3
Range: {3, 5, 6, 7}
if the probability of david passing his exam is 1/4 what is the probabilty of him failing
Answer:
3/4
Step-by-step explanation:
4/4-1/4=3/4
i hoped this helped :)
Answer:
3/4
Step-by-step explanation:
10 points to the person who answers this question.
Answer:
your answer is
2 X l+b
2 X 6x + 3x
8x + 10...
The equation of line WX is 2x + y = −5. What is the equation of a line perpendicular to line WX in slope-intercept form that contains point (−1, −2)?
Answer: [tex]y=\dfrac12x-\dfrac{3}{4}[/tex]
Step-by-step explanation:
Given, The equation of line WX is 2x + y = −5.
It can be written as [tex]y=-2x-5[/tex] comparing it with slope-intercept form y=mx+c, where m is slope and c is y-intercept, we have
slope of WX = -2
Product of slopes of two perpendicular lines is -1.
So, (slope of WX) × (slope of perpendicular to WX)=-1
[tex]-2\times\text{slope of WX}=-1\\\\\Rightarrow\ \text{slope of WX}=\dfrac{1}{2}[/tex]
Equation of a line passes through (a,b) and has slope m:
[tex]y-b=m(x-a)[/tex]
Equation of a line perpendicular to WX contains point (−1, −2) and has slope [tex]=\dfrac12[/tex]
[tex]y-(-2)=\dfrac{1}{2}(x-(-1))\\\\\Rightarrow\ y+2=\dfrac12(x+1)\\\\\Rightarrow\ y+2=\dfrac12x+\dfrac12\\\\\Rightarrow\ y=\dfrac12x+\dfrac12-2\\\\\Rightarrow\ y=\dfrac12x-\dfrac{3}{4}[/tex]
Equation of a line perpendicular to line WX in slope-intercept form that contains point (−1, −2) [tex]:y=\dfrac12x-\dfrac{3}{4}[/tex]
have two one-quart jars; the first is filled with water, and the second is empty. I pour half of the water in the first jar into the second, then a third of the water in the second jar into the first, then a fourth of the water in the first jar into the second, then a fifth of the water in the second jar into the first, and so on. How much water in quarts is in the first jar after the $10^{\textrm{th}}$ pour? Express your answer as a common fraction.
Answer:
water in quarts is in the first jar after 10th pour = 12/11
Step-by-step explanation:
Let X represent first jar and Y represents second jar.
have two one-quart jars; the first is filled with water, and the second is emptyLets give the initial value of 2 to the first jar which is filled with water. Lets say there are two liters of water in first jar.
Lets give the initial value of 0 to the second as it is empty.
So before any pour, the values are:
X: 2
Y: 0
pour half of the water in the first jar into the secondAfter first pour the value of jar X becomes:
Previously it was 2.
Now half of water is taken i.e. half of 2
2 - 1 = 1
So X = 1
The value of jar Y becomes:
The half from jar X is added to second jar Y which was 0:
After first pour the value of jar Y becomes:
0 + 1 = 1
Y = 1
a third of the water in the second jar into the firstAfter second pour the value of jar X becomes:
Previously it was 1.
Now third of the water in second jar Y is added to jar X
1 + 1/3
= (3 + 1)/3
= 4/3
X = 4/3
After second pour the value of jar Y becomes:
Previously it was 1.
Now third of the water in Y jar is taken and added to jar X so,
1 - 1/3
= (3 - 1)/3
= 2/3
Y = 2/3
a fourth of the water in the first jar into the secondAfter third pour the value of jar X becomes:
Previously it was 4/3.
Now fourth of the water in the first jar X is taken and is added to jar Y
= 3/4 * (4/3)
= 1
X = 1
After third pour the value of jar Y becomes:
Previously it was 2/3
Now fourth of the water in the second jar X is added to jar Y
= 2/3 + 1/4*(4/3)
= 2/3 + 4/12
= 1
Y = 1
a fifth of the water in the second jar into the firstAfter fourth pour the value of jar X becomes:
Previously it was 1
Now fifth of the water in second jar Y is added to jar X
= 1 + 1/5*(1)
= 1 + 1/5
= (5+1) / 5
= 6/5
X = 6/5
After fourth pour the value of jar Y becomes:
Previously it was 1.
Now fifth of the water in Y jar is taken and added to jar X so,
= 1 - 1/5
= (5 - 1) / 5
= 4/5
Y = 4/5
a sixth of the water in the first jar into the secondAfter fifth pour the value of jar X becomes:
Previously it was 6/5
Now sixth of the water in the first jar X is taken and is added to jar Y
5/6 * (6/5)
= 1
X = 1
After fifth pour the value of jar Y becomes:
Previously it was 4/5
Now sixth of the water in the first jar X is taken and is added to jar Y
= 4/5 + 1/6 (6/5)
= 4/5 + 1/5
= (4+1) /5
= 5/5
= 1
Y = 1
a seventh of the water in the second jar into the firstAfter sixth pour the value of jar X becomes:
Previously it was 1
Now seventh of the water in second jar Y is added to jar X
= 1 + 1/7*(1)
= 1 + 1/7
= (7+1) / 7
= 8/7
X = 8/7
After sixth pour the value of jar Y becomes:
Previously it was 1.
Now seventh of the water in Y jar is taken and added to jar X so,
= 1 - 1/7
= (7-1) / 7
= 6/7
Y = 6/7
a eighth of the water in the first jar into the secondAfter seventh pour the value of jar X becomes:
Previously it was 8/7
Now eighth of the water in the first jar X is taken and is added to jar Y
7/8* (8/7)
= 1
X = 1
After seventh pour the value of jar Y becomes:
Previously it was 6/7
Now eighth of the water in the first jar X is taken and is added to jar Y
= 6/7 + 1/8 (8/7)
= 6/7 + 1/7
= 7/7
= 1
Y = 1
a ninth of the water in the second jar into the firstAfter eighth pour the value of jar X becomes:
Previously it was 1
Now ninth of the water in second jar Y is added to jar X
= 1 + 1/9*(1)
= 1 + 1/9
= (9+1) / 9
= 10/9
X = 10/9
After eighth pour the value of jar Y becomes:
Previously it was 1.
Now ninth of the water in Y jar is taken and added to jar X so,
= 1 - 1/9
= (9-1) / 9
= 8/9
Y = 8/9
a tenth of the water in the first jar into the secondAfter ninth pour the value of jar X becomes:
Previously it was 10/9
Now tenth of the water in the first jar X is taken and is added to jar Y
9/10* (10/9)
= 1
X = 1
After ninth pour the value of jar Y becomes:
Previously it was 8/9
Now tenth of the water in the first jar X is taken and is added to jar Y
= 8/9 + 1/10 (10/9)
= 8/9 + 1/9
= 9/9
= 1
Y = 1
a eleventh of the water in the second jar into the firstAfter tenth pour the value of jar X becomes:
Previously it was 1
Now eleventh of the water in second jar Y is added to jar X
= 1 + 1/11*(1)
= 1 + 1/11
= (11 + 1) / 11
= 12/11
X = 12/11
After tenth pour the value of jar Y becomes:
Previously it was 1.
Now eleventh of the water in Y jar is taken and added to jar X so,
= 1 - 1/11
= (11-1) / 11
= 10/11
Y = 10/11
Answer:
6/11
Step-by-step explanation:
1/2 + (1/2)(2/11) = 6/11
sus
How many solutions does the system have?
Answer:
B. no solutionsStep-by-step explanation:
Left sides of both equations are the same sum (8x+2y), so the right sides also has to be the same. They are not so there is no solutions.
{If they are the same then system has infinitely many solutions.}
find the area of the shaded region
One shaded triangle has a base of 4.5 ft and a height of 9 ft, so its area is 0.5 * 4.5 * 9 = 20.25.
There are two such triangles, so the area of the shaded region is 40.5.
The formula e= 3n can be used to relate the number of sides (n) in the base of a prism to the number of edges (e) that the prism has.
a) Make n the the subject of the formula.
Step-by-step explanation:
e=3n
where e =edges and n= number of sides
n= e/3
12. Solve the systems of linear equations using the substitution method.
x=y - 2
4y = x + 23
Answer:
x=5 and y=7
Step-by-step explanation:
x + 2 = y (equation 1)
x + 23 = 4y (equation 2)
(equation 2) - (equation 1)
This gives,21 = 3y
y = 21/3
y = 7.
Put y = 7 into equation 1 to find x
x + 2 = 7
x = 7 - 2
x = 5.
A company knows that if it sets the price of a product at p dollars, the number of units sold will be x million, where p = 2 - x. If the cost of the product is given by 0.25 + 0.5x million dollars. What price should be set to make a profit of $ 0.25 million?
====================================================
Explanation:
x = number of products, in millions, sold
p = price per product
R = revenue
R = (number of products sold)*(price per product)
R = x*p
R = x(2-x)
R = 2x-x^2
C = costs
C = 0.25 + 0.5x
F = profit
F = revenue - costs
F = R - C
F = (2x - x^2) - (0.25 + 0.5x)
F = -x^2 + 1.5x - 0.25
We want a profit of 0.25 million, so plug in F = 0.25 and solve for x
F = -x^2 + 1.5x - 0.25
0.25 = -x^2 + 1.5x - 0.25
0 = -x^2 + 1.5x - 0.25 - 0.25
-x^2 + 1.5x - 0.5 = 0
Use the quadratic formula to find the two solutions to be x = 0.5 and x = 1
If x = 0.5, then p = 2-x = 2-0.5 = 1.5
If x = 1, then p = 2-1 = 1
There are two price points (p = 1.5 and p = 1) that lead to the same profit F = 0.25
4. Given the following pattern of shapes, choose the mathematical expression showing th
changes for each iteration if b is the number of boxes in the previous iteration
a) b + 1
b) b + 2
c) 6-1
d) 6-2
Answer:
b)b+2
Step-by-step explanation:
3+2=5
5+2=7
so for the next iteration 2is added.
If EH = 23, calculate AB.
Youngblood say you want me back in your life...
Answer:
2/4 = 23/AB
1/2 = 23/AB
AB= 46
Hope it helps ^_^
What property is 21+(36+19)
Answer:
76
Step-by-step explanation:
21+(36+19)
21+(55)
21+55
=76
Answer:
The identity property
Step-by-step explanation:
I took it on Egd.
Pls answer I really need help
Brainlist and thank you will be the reward thank you so much!!!
Answer:
0.667 ✅Step-by-step explanation:
This is best solved using a proportion.
The formula is soy/vinegar = soy/vinegar where one of these is a variable.
Here we have:
[tex]\frac{150}{100} = \frac{1}{x}[/tex]
Now, we solve this by cross multiplying.
150x = 100
Dividing both sides by x, we get x = 2/3 or about 0.667.
Checking:
[tex]\frac{150}{100} = \frac{1}{0.667}[/tex]
1.5 = 1.5 ✅
I'm always happy to help :)Aileen is planning a huge graduation party for her
best friend, Melody. She decides to offer both beef
and chicken meals at the party. Each chicken meal
costs $4 and each beef meal costs $6. There will
be 150 people at the party, and the total cost of the
food is $700. How many chicken meals did Aileen
order?
A) 80
B) 100
C) 90
D) 110
Answer:
B) 100
Step-by-step explanation:
Let c represent the number of chicken meals ordered. Then 150-c is the number of beef meals ordered, and the total meal cost is ...
4c +6(150-c) = 700
-2c = -200 . . . . . . . . subtract 900, simplify
c = -200/-2 = 100
100 chicken meals were ordered.
Can you just answer this question quickly please what is the answer to 420 12 it is multiplication. thanks
Answer:
the answer to 420 times 12 is 5,040
Step-by-step explanation:
Answer: The answer would be 5040.
Step-by-step explanation:
Can someone explain probability with permutations and combinations and explain where they are applied?
Answer:
If the order doesn't matter then we have a combination, if the order do matter then we have a permutation. One could say that a permutation is an ordered combination. The number of permutations of n objects taken r at a time is determined by the following formula: P(n,r)=n!
Step-by-step explanation:
To calculate the probability of a combination, you will need to consider the number of favorable outcomes over the number of total outcomes. Combinations are used to calculate events where order does not matter. In this lesson, we will explore the connection between these two essential topics.
Answer:
combination : If the order of numbers or operations does not matter
Permutation : when the order of numbers matter ( common example most teachers use : a code of 4 numbers has to be in a certain order and the numbers are from 0 to 9 , how many permutation can you make if you use the number one time)
P=n!/(n-r)!
n! ( are number from 0-9 we have 10 numbers)
r is the number of digits in the code = 4
n!=10*9*8*7*6*5*4*2*1
(n-r)!=(10-4)!=6!=6*5*4*3*2*1
P=5040 ways ( if the order matter)
If the order does not matter
Combination C(n,r)=n!/(n-r)!r!
C(10,4)=(10*9*8*7*6*5*4*2*1)/[(6*5*4*3*2*1)(4*3*2*1)]
the width of a rectangle is 3 less than twice length. the perimeter is 51 cm . what is the length and width of the rectangle.
Answer:
[tex]length = x[/tex]
[tex]width = 2x - 3[/tex]
[tex]perimeter = 2(x + (2x - 3))[/tex]
[tex]51 = 2(3x - 3)[/tex]
[tex]51 = 6(x - 1)[/tex]
[tex]x - 1 = 8.5[/tex]
[tex]x = 9.5cm[/tex]
[tex]length = 9.5[/tex]
[tex]width = 2x - 3 = 2(9.5) - 3 = 16cm[/tex]
Is the data point, P, an outlier, an influential point, both,Is the data point, P, an outlier, an influential point, both, or neither? The regression equation for a set of paired data is ^y = 6 + 4x. The correlation coefficient for the data is 0.92. A new data point(13,74) is added to the set.
outlier
neither
influential point
Both
Answer: Both
Step-by-step explanation:
Outliers are the data points that are away from the overall pattern.Influential point is an outlier that affect the slope of the regression line.Given: The regression equation for a set of paired data is [tex]\hat{y}=6+4x[/tex]. The correlation coefficient for the data is 0.92.
A new data point(13,74) is added to the set.
Put x= 13 , we get
[tex]\hat{y}=6+4(13)=6+52=58[/tex].
Predicted value of y= 58 which is different from 74.
So, the new data point(13,74) is an influential point as it can affect the slope.
Thus, (13,74) is both outlier and influential point.
Hence, the correct option is "Both".
I need helps will give you a good rating.
Answer: x = 3
Step-by-step explanation:
Sqrt(x+7) - 1 = x
Sqrt(x+7) = x + 1
x+7 = x^2 + 1
x = x^2 - 6
x=3
An inchworm (exactly one inch long, of course) is crawling up a yardstick (guess how long that is?). After the rst day, the inchworm's head (let's just assume that's at the front) is at the 3" mark. After the second day, the inchworm's head is at the 6" mark. After the third day, the inchworm's head is at the 9" mark. Let d equal the number of days the worm has been crawling. (So after the rst day, d = 1.) Let h be the number of inches the head has gone. Let t be the position of the worm's tail.
I need help with these 3 questions plzzz.
Answer:
6. No. See explanation below.
7. 18 months
8. 16
Step-by-step explanation:
6. To rewrite a sum of two numbers using the distributive property, the two numbers must have a common factor greater than 1.
Let's find the GCF of 85 and 99:
85 = 5 * 17
99 = 3^2 + 11
5, 3, 11, and 17 are prime numbers. 85 and 99 have no prime factors in common. The GCF of 85 and 99 is 1, so the distributive property cannot be used on the sum 85 + 99.
Answer: No because the GCF of 85 and 99 is 1.
7.
We can solve this problem with the lest common multiple. We need to find a number of a month that is a multiple of both 6 and 9.
6 = 2 * 3
9 = 3^2
LCM = 2 * 3^2 = 2 * 9 = 18
Answer: 18 months
We can also answer this problem with a chart. We write the month number and whether they are home or on a trip. Then we look for the first month in which both are on a trip.
Month Charlie Dasha
1 home home
2 home home
3 home home
4 home home
5 home home
6 trip home
7 home home
8 home home
9 home trip
10 home home
11 home home
12 trip home
13 home home
14 home home
15 home home
16 home home
17 home home
18 trip trip
Answer: 18 months
8.
First, we find the prime factorizations of 96 an 80.
96 = 2^5 * 3
80 = 2^4 *5
GCF = 2^4 = 16
Answer: 16
Choose which of the following demonstrate a dilation centered at the origin: (x,y)→(1.5x,1.5y) choose a graph.
The dilation rule (x,y) --> (1.5x, 1.5y) says to multiply each coordinate by the scale factor 1.5
Point A in blue is located at (5,5). After dilation, it will move to A ' (7.5, 7.5)
Point B is located at (0,2) and it moves to B ' (0,3)
Point C is located at (1,-1) and it moves to C ' (1.5, -1.5)
This all matches with what is shown below, so the answer is choice B
What were Malcolm's and Ravi's maximum speeds?
Answer:
Malcom's maximum speed = 200 km/h
Ravi's maximum speed = 320 km/h
Step-by-step explanation:
Represent the maximum speed of Malcolm and Ravi with equation as follows:
Let Malcom's speed be x, and Ravi's speed by y.
The average of speed is said to be 260 km/h. An equation to represent this is: [tex] \frac{x + y}{2} = 260 [/tex]
[tex] x + y = 260*2 [/tex]
[tex] x + y = 520 [/tex] => equation 1.
We are also told that when Malcom's speed (x) is doubled it equal 80 km/hr more than Ravi's speed (y). An equation can be created for this, which is [tex] 2x = y + 80 [/tex]
[tex] 2x - y = 80 [/tex] => equation 2
Now that we have 2 equations as a system, solve for the values of x and y simultaneously.
Add both equations together to eliminate y
[tex] x + y = 520 [/tex]
[tex] 2x - y = 80 [/tex]
[tex] 3x = 600 [/tex]
[tex] x = \frac{600}{3} [/tex]
[tex] x = 200 [/tex]
Plug in the value of x into equation 1 to find y.
[tex] 200 + y = 520 [/tex]
[tex] y = 520 - 200 [/tex]
[tex] y = 320 [/tex]
Malcom's maximum speed = x = 200 km/h
Ravi's maximum speed = y = 320 km/h
Last question.... please help
Answer:
B {-10 , -6 , 10}
Step-by-step explanation:
D= {-1 , 0 , 4}
When x = -1 ;
y = 4x - 6
y = 4*(-1) -6
= -4 - 6
y = -10
When x = 0,
y = 4 *0 -6
y = -6
When x = 4,
y = 4*4 - 6
= 16 - 6
y = 10
Range = { -10, -6 , 10}
3 sides of the triangle are consecutive odd numbers. What is the smallest possible perimeter of the triangle ?
The sides are 3, 5, and 7 because 7 is less than 3 + 5, so it equals a triangle.
The smallest possible perimeter of such triangle would be 8.
What is triangle inequality theorem?Triangle inequality theorem of a triangle says that the sum of any of the two sides of a triangle is always greater than the third side.
Suppose a, b and c are the three sides of a triangle. Thus according to this theorem,
[tex](a+b) > c\\(b+c) > a\\(c+a) > b[/tex]
Given; 3 sides of the triangle are consecutive odd numbers.
The sides are 3, 5, and 7 because 7 is less than 3 + 5 so it equals a triangle.
The smallest consecutive odd numbers are 1, 3 and 5
Therefore, the smallest possible perimeter of such triangle = 8
Learn more about triangle inequality theorem here:
https://brainly.com/question/342881
#SPJ2
Top Hat Soda has 300,000 milliliters of cola to bottle. Each bottle holds 500 milliliters. How many bottles will the cola fill?
Answer:
600 bottlesStep-by-step explanation:
Given that Top Hat Soda has 300,000 millilitres of cola to bottle and,
a bottle is 500 millilitres in capacity.
To find the amount of bottles that will fill the Top Hat Soda,
we have to divide Top Hat Soda by the 500 millilitres bottle
we have:
Number of bottles needed to fill Top Hat Soda= 300,000/500 = 600 bottles.
Hence 600 bottles will fill the Top Hat Soda
I have no chair, no church, no philosophy, I lead no man to a dinner-table, library, exchange, But each man and each woman of you I lead upon a knoll, My left hand hooking you round the waist, My right hand pointing to landscapes of continents and the public road. Which statement best describes how these lines reflect the theme of the poem?
This question is missing the options, here is the complete question:
Read the quotation from "Song of Myself."
I have no chair, no church, no philosophy,
I lead no man to a dinner-table, library, exchange,
But each man and each woman of you I lead upon a knoll,
My left hand hooking you round the waist,
My right hand pointing to landscapes of continents and the public road.
Which statement best describes how these lines reflect the theme of the poem?
A. They indicate that Whitman is more interested in communicating with individuals than society.
B. They show Whitman’s sociability and his interest in human nature.
C. They reflect Whitman’s desire to share his love of the wilderness.
D. They suggest that Whitman views all individuals as equals who should communicate with each other as such.
The answer to this question is A. They indicate that Whitman is more interested in communicating with individuals than society.
Explanation:
In the poem "Song of Myself", Walt Whitman focuses on recognizing his value as an individual and the value of other individuals in society. In the section presented, the author shows the importance of communicating and interacting with individuals as he explains "My left hand hooking you round the waist", which shows through figurative language the interaction between individuals. This is emphasized by the use of "each man and each woman" as Whitman does not refer to others as a group but recognizes individuality. Thus, the theme or message about the importance of individuals is reflected in these lines because "they indicate that Whitman is more interested in communicating with individuals than society."
Answer:
A: They indicate that Whitman is more interested in communicating with individuals than society.
Step-by-step explanation:
Edge 2021
The dosage for a certain drug calls for 20mg per kg per day and is divided into two doses(1every 12 hours) if a person weighs 197 pounds how much of the drug should be given each dose
Answer:
893.42
Step-by-step explanation:
1kg=2.205pounds
so 20mg is for 2.205pounds
therefore for 197pounds will be 1784.84mg
but the dose is once every 12hrs meaning twice a day so divide 1784.84/2 to get the pounds
whats the squareroot of 18
Answer:
it should be 4.24264068712 looked it up
Answer:
18 doesn't have a square root but you can simplify it
[tex] \sqrt{18 } [/tex]
then you take 9 which is a square number and divide it to get 3 which you'll place on the outside
[tex] 3\sqrt{2} [/tex]