Answer:
Ternary
Explanation:
A ternary ionic compound is an ionic compound composed of three or more elements. Copper II Nitrate is a ionic compound and contains 3 elements thus making it Ternary
A car generates 2552 N and weighs 2250 kg. What is its rate of acceleration
2 m/s ^2
0.88m/s^2
5,742,000m/s^2
1.13m/s^2
Answer:
[tex]a=1.134\frac{m}{s^2}[/tex]
Explanation:
Hello there!
In this case, by considering the physical definition of force in terms of mass and acceleration:
[tex]F=m*a[/tex]
Given the generated force and the involved mass, we can compute the required acceleration as shown below:
[tex]a=\frac{F}{m}\\\\a=\frac{2552N}{114kg}[/tex]
Yet it is necessary to break out Newtons to:
[tex]a=\frac{2552\frac{kg*m}{s^2} }{114kg}\\\\a=1.134\frac{m}{s^2}[/tex]
Best regards!
Which one is it for a brialiest
which of the following, when dissolved in water, forms a weak acid.A. HNO3B. HClO4C. HBrD. HClOE. NH3
Answer:
The weak acid is - E. [tex]NH_3[/tex]
Explanation:
Ammonia is a strong base, which in turn make it to be a weak acid.
As, the rest of the options are acid and therefore furnish hydrogen ions when dissolved in water, making them strong acid.
And ammonia dissolves in water to form its conjugate ammonium ion and hydroxide ion, therefore making the solution basic.
Hence, from the given options, the correct option is E. [tex]NH_3[/tex]
The compound which when dissolved in water, forms a weak acid is; Choice E: NH3
According to the question;
we are required to determine which compound forms a weak acid when dissolved in water.Unlike other compounds (HNO3, HClO, HBr, HClO) which dissolve in water to yield H+ ion, Ammonia dissolves in water to form ammonium ion and hydroxide ion, OH-.
In essence, NH3 is a strong base when dissolved in water and consequently, is a weak acid when dissolved in water.
Read more:
https://brainly.com/question/15192126
Nitrous oxide (N2O), more commonly known as laughing gas, is used as a mild sedatitive during various dental procedures.As a gas, it has a densityof 1.977 x 10-3g/mL.Wheniron is exposed to oxygen it forms rust (Fe2O3), which is a solid and has a density value of 5.25 g/mL.Why are the density values so different among these substances?
a)The metal atoms weigh more than the atoms of the gas.
b)The metal forms metallic bonds which are more greatly affected by gravity, increasing the mass.
c)The metal is a solid, and solids weigh more based on the principles of their states of matter.
d)There are fewer gas particles than solid particles in the same volume.
Answer:
B.
Explanation:
The metal forms metallic bonds which are more greatly affected by gravity, increasing the mass.
A balloon has a pressure of 3.5atm and a volume of 4.2L. What will the volume of the balloon be if the pressure is increased to 7.0atm? Assume that temperature remains constant. SHOW ALL WORK FOR FULL CREDIT!
The volume of the balloon is 2.1L.
What is volume?Volume is the amount of space the matter occupies. The SI unit of volume is cubic meter.
Using Boyles law equation,
P1V1 = P2V2
Where P1 and V1 are the initial pressure and volume of the gas
P2 and V2 are the final pressure and volume of the gas
Given:
P1 = 3.5atm
V1 = 4.2L
P2 = 7.0atm
V2 = ?
Solve for V2 ,
V2 = P1V1/P2
V2 = (3.5atm x 4.2 L) / (7.0atm)
= 2.1L
Hence, the volume of the balloon is 2.1L.
To learn more about volume here
https://brainly.com/question/22756604
#SPJ2
Why do scientists think that liquid water might have once existed on Mars?
Answer: The discovery of three buried lakes. Scientists think that a long time ago there were lakes and rivers, etc on Mars. Now of course, you can't see any visible water sources on the surface.
Answer:
Almost all water on Mars today exists as ice, though it also exists in small quantities as vapor in the atmosphere.[5] What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae may be grains of flowing sand and dust slipping downhill to make dark streaks.The only place where water ice is visible at the surface is at the north polar ice cap. Abundant water ice is also present beneath the permanent carbon dioxide ice cap at the Martian south pole and in the shallow subsurface at more temperate conditions. More than 5 million km3 of ice have been detected at or near the surface of Mars, enough to cover the whole planet to a depth of 35 meters. Even more ice is likely to be locked away in the deep subsurface.
Some liquid water may occur transiently on the Martian surface today, but limited to traces of dissolved moisture from the atmosphere and thin films, which are challenging environments for known life. No large standing bodies of liquid water exist on the planet's surface, because the atmospheric pressure there averages just 600 pascals , a figure slightly below the vapor pressure of water at its melting point; under average Martian conditions, pure water on the Martian surface would freeze or, if heated to above the melting point, would sublime to vapor. Before about 3.8 billion years ago, Mars may have had a denser atmosphere and higher surface temperatures, allowing vast amounts of liquid water on the surface, possibly including a large ocean that may have covered one-third of the planet.Water has also apparently flowed across the surface for short periods at various intervals more recently in Mars' history. Aeolis Palus in Gale Crater, explored by the Curiosity rover, is the geological remains of an ancient freshwater lake that could have been a hospitable environment for microbial life.Many lines of evidence indicate that water ice is abundant on Mars and it has played a significant role in the planet's geologic history.The present-day inventory of water on Mars can be estimated from spacecraft images, remote sensing techniques (spectroscopic measurements, radar, etc.), and surface investigations from landers and rovers.Geologic evidence of past water includes enormous outflow channels carved by floods, ancient river valley networks, deltas and lakebeds,and the detection of rocks and minerals on the surface that could only have formed in liquid water. Numerous geomorphic features suggest the presence of ground ice (permafrost)and the movement of ice in glaciers, both in the recent past and present. Gullies and slope lineae along cliffs and crater walls suggest that flowing water continues to shape the surface of Mars, although to a far lesser degree than in the ancient past.Although the surface of Mars was periodically wet and could have been hospitable to microbial life billions of years ago, the current environment at the surface is dry and subfreezing, probably presenting an insurmountable obstacle for living organisms. In addition, Mars lacks a thick atmosphere, ozone layer, and magnetic field, allowing solar and cosmic radiation to strike the surface unimpeded. The damaging effects of ionizing radiation on cellular structure is another one of the prime limiting factors on the survival of life on the surface. Therefore, the best potential locations for discovering life on Mars may be in subsurface environments. Large amounts of underground ice have been found on Mars; the volume of water detected is equivalent to the volume of water in Lake Superior. In 2018, scientists reported the discovery of a subglacial lake on Mars, 1.5 km (0.93 mi) below the southern polar ice cap, with a horizontal extent of about 20 km (12 mi), the first known stable body of liquid water on the planet.Understanding the extent and situation of water on Mars is vital to assess the planet’s potential for harboring life and for providing usable resources for future human exploration. For this reason, "Follow the Water" was the science theme of NASA's Mars Exploration Program (MEP) in the first decade of the 21st century. NASA and ESA missions including 2001 Mars Odyssey, Mars Express, Mars Exploration Rovers (MERs), Mars Reconnaissance Orbiter (MRO), and Mars Phoenix lander have provided information about water's abundance and distribution on Mars.Mars Odyssey, Mars Express, MRO, and Mars Science Lander Curiosity rover are still operating, and discoveries continue to be made.
arrange the following group of atoms in order of decreasing atomic size:B,Al,Ga
Answer:
B<Ga<Al
Explanation:
Hope this helps
Iron has a density of 7.87 g/cm^3. What is the mass of 55.2 cm^3 of iron?
Answer: Formula: Mass = (Volume)(Density)
Iron Density = 7.87 g/cm^3
Volume of Iron = 55.2 cm^3
Mass=(V)(D)
Mass= (55.2 cm^3) x (7.87 g/cm^3)
Mass= 434,42 g
Explanation:
Iron has a density of 7.87 g/cm³. 434,42 g is the mass of 55.2 cm³ of iron.
What do you mean by density ?The term density is defined as the measurement of how closely a material is packed together.
It is also defined as the mass per unit volume. Density Symbol is D or ρ Density Formula is ρ = m/V, where ρ is the density, m is the mass of the object and V is the volume of the object.
Density is an important because it allows us to find out what substances will float and what substances will sink when placed in a liquid.
Formula:
Mass = (Volume)(Density)
Given:
Iron Density = 7.87 g/cm³
Volume of Iron = 55.2 cm³
Mass=(V)(D)
Mass= (55.2 cm³) x (7.87 g/cm³)
Mass= 434,42 g
Thus, Iron has a density of 7.87 g/cm³. 434,42 g is the mass of 55.2 cm³ of iron.
To learn more about the density, follow the link;
https://brainly.com/question/29775886
#SPJ2
g At elevated temperatures, molecular hydrogen and molecular bromine react to partially form hydrogen bromide: H 2 (g) Br 2 (g) 2HBr (g) A mixture of 0.682 mol of H 2 and 0.440 mol of Br 2 is combined in a reaction vessel with a volume of 2.00 L. At equilibrium at 700 K, there are 0.516 mol of H 2 present. At equilibrium, there are ________ mol of Br 2 present in the reaction vessel.
Answer: At equilibrium , there are 0.274 moles of [tex]Br_2[/tex]
Explanation:
Moles of [tex]H_2[/tex] = 0.682 mole
Moles of [tex]Br_2[/tex] = 0.440 mole
Volume of solution = 2.00 L
Initial concentration of [tex]H_2[/tex] = [tex]\frac{0.682}{2.00}=0.341 M[/tex]
Initial concentration of [tex]Br_2[/tex] = [tex]\frac{0.440}{2.00}=0.220 M[/tex]
Equilibrium concentration of [tex]H_2[/tex] = [tex]\frac{0.516}{2.00}=0.258 M[/tex]
The given balanced equilibrium reaction is,
[tex]H_2(g)+Br_2(g)\rightleftharpoons 2HBr(g)[/tex]
Initial conc. 0.341 M 0.220 M 0 M
At eqm. conc. (0.341-x) M (0.220-x) M (2x) M
Given : (0.341-x) M = 0.258 M
x= 0.083 M
Thus equilibrium concentartion of [tex]Br_2[/tex] = (0.220-0.083) M = 0.137 M
Thus moles of [tex]Br_2[/tex] at equilibrium = [tex]0.137M\times 2.00L=0.274mol[/tex]
At equilibrium , there are 0.274 moles of [tex]Br_2[/tex]
What is orbit? A. An increase in centripetal motion and mass friction. B. Resistance of an object to avoid friction. C. Gravity causing a curved path as an object tries to go straight. D. How well an object floats.
Answer:
C. gravity causing a curved path as an object tries to go straight.
Which element had the smallest atomic radius
Answer:
helium is the answer
Explanation:
helium is the smallest element in francium is the largest hope this helps
When P4O10(s) reacts with H2O(l) to form H3PO4(aq) , 453 kJ of energy are evolved for each mole of P4O10(s) that reacts. Write a balanced thermochemical equation for the reaction with an energy term in kJ as part of the equation.
Answer:
P4O10 + 6H2O → 4H3PO4 ΔH = 453 kJ
Explanation:
A thermochemical reaction is one in which the amount of heat gained/evolved is written as part of the reaction equation.
A thermochemical equation helps us to judge whether an equation is endothermic or exothermic. For an endothermic reaction, ΔH is positive while for an exothermic reaction ΔH is negative.
Since, the reaction of one mole of P4O10(s) with H2O(l) to form H3PO4(aq) evolves 453 kJ of energy for each mole of P4O10(s) that reacts. Then we can write;
P4O10 + 6H2O → 4H3PO4 ΔH = 453 kJ
What is the volume of 0.200 moles of O2 gas at STP?
Answer:
4.48 L O2
Explanation:
At STP, a mole of any gas contains 22.4 liters. Therefore, we simply have to multiply the amount of moles by 22.4
0.2mol O2 ( 22.4 L) = 4.48 L O2
How many grams are in 3.0 moles of sodium chloride (NaCl)?
Answer:
175.5
Explanation:
It took 14.50 mL of 0.455M NaOH to fully neutralize 12.0mL of HCl. What is the concentration of the HCl?
HCl + NaOH \rightarrow→ NaCl + H2O
Answer:
0.550 M HCl
Explanation:
M1V1 = M2V2
M1 = 0.455 M NaOH
V1 = 14.50 mL NaOH
M2 = ?
V2 = 12.0 mL HCl
Solve for M2 --> M2 = M1V1/V2
M2 = (0.455 M)(14.50 mL) / (12.0 mL) = 0.550 M HCl
Answer:
The appropriate answer is "0.549 M".
Explanation:
The given values are:
N₁ = 14.50 mL
V₁ = 0.455 M
N₂ = 12 mL
Let
V₂ = C = ?
As we know,
⇒ [tex]N_1\times V_1=N_2\times V_2[/tex]
On substituting the values, we get
⇒ [tex]14.50\times 0.455 = 12\times C[/tex]
⇒ [tex]6.5975=12\times C[/tex]
⇒ [tex]C=\frac{6.5975}{12}[/tex]
⇒ [tex]=0.549 \ M[/tex]
how do you think a device could change the sound that we hear? Make sure you use vocabulary such as frequency, energy and amplitude
Answer:
good luck tho
Explanation:
Which factor contributes the most to the rates of diffusion and effusion between two gases in a mixture?
a)The size of the particles.
b)The molar mass of the particles.
c)The interactions between the particles.
d)The relative volume of the particles to each other.
Answer:
b)The molar mass of the particles.
Explanation:
The rate of effusion of a gas is inversely proportional to the square root of its molar mass (Graham's law), a relationship that closely approximates the rate of diffusion. As a result, light gases tend to diffuse and effuse much more rapidly than heavier gases.
The trait that shows up in the first generation.
Recessive
Dominant
Ok
Answer:
Dominant
Explanation:
hope this help
How many molecules of N204 are in 85.0 g of N2O4?
Answer:
5.56 x 10^23
Explanation:
Just convert and cancel out.
85 g N2O4 x 1 mol/92.01 g x 6.02 x 10^23 molecules /1 mol
Convert 0.0338 moles of K3PO4 to grams.
Write a formula and balanced equation for the following: solid copper metal reacts with aqueous silver nitrate to produce solid silver metal and aqueous copper Nitrate. How do I know if it will form copper (I) nitrate CuNO3 or copper (II) nitrate Cu(NO3)2 ?
Explanation:
copper (II) nitrate
Illustrate variety of substances of which an element can be part:
metal --> blue solution --> blue solid --> black solid --> blue solution (again) --> metal (again).When solid copper reacts with aqueous silver nitrate, the products are copper (II) nitrate and solid silver. and carbon monoxide gas produces solid iron and carbon dioxide gas.
why do we need digital technology in school?
Answer: See explanation
Explanation:
Digital technologies refers to the electronic tools, or devices that can be used to generate data, store them or process data. e.g. mobile phones, ebooks etc.
Digital learning makes use of technology. Effective use of digital learning tools can help increase the engagement of students. This csn.aksi be used by the teachers to enhance personalized learning and also improve the lesson plans.
Digital technology can enhance collaboration, and communication with the students. The use of videos, robots, virtual classrooms, augmented reality and other technologies can bring about fun and foster inquisitiveness.
identify the solute in the following: carbon dioxide dissolved in water
a. water
b. carbon dioxide
c. none of the above
d. carbon dioxide and water
Answer:
B
Explanation:
its solute state is gas and dissolve in (solvent) liquid which is water
Convert 8.19 x 10-14 moles of gold to atoms.
Answer:
4.932018 × 10¹⁰ atoms
Explanation:
Recall that:
1 mole = 6.022 × 10²³ atoms
To change 8.19× 10⁻¹⁴ moles to atoms;
Then, we have:
= (8.19× 10⁻¹⁴× 6.022 × 10²³ atoms)
= 4.932018 × 10¹⁰ atoms
What is the ratio by atoms of elements present in technetium (VII) peroxide? (peroxide
is a polyatomic ion)
1:7
2:8
4:9
3:1
Answer: 1:7
Explanation: 2 Tc^+7 + 7 O2^-2 -> Tc2 (O2)7
Also 2 Tc to 14 O
What will be the pH of a buffer solution containing an acid of pKa7.5, with an acid concentration exactly one fourth of that of the conjugate base
Answer: pH of buffer solution is 8.1
Explanation:
The formula for the Henderson–Hasselbalch equation is:
[tex]pH=pK_a+\log\frac{[A^-]}{[HA]}[/tex]
[tex]pH[/tex] is the concentration of [tex][H^+][/tex]
[tex]pK_a[/tex] is the acid dissociation constant,
[tex]A^-[/tex] and [tex]HA[/tex] are concentrations of the conjugate base and starting acid.
Putting in the values we get:
[tex]pH=7.5+\log\frac{x}{\frac{x}{4}}[/tex]
[tex]pH=8.1[/tex]
Thus pH of buffer solution is 8.1
Lab: Measuring pH Table or
Lab Report please ( just link it ) please
Answer:
sorry my phone died lol but here are the answers
<3
Only 5 minutes to answer!
Why are the weather satellites important on Mars?
Answer:
they can track the weather which can show if it would be posssible to live or have life on mars
Explanation:
Which fossil fuel was formed from the bodies of prehistoric animals and plants?
Answer:
coal
Explanation:
8. How much heat will be released when
18.6 g of hydrogen reacts with excess O2
according to the following equation?
Answer:
15 is it
Explanation: