Answer:
3
Step-by-step explanation:
A = [tex]\frac{base1 + base2}{2}[/tex] x h Formula
[tex]\frac{base1 + 5}{2}[/tex] x 20 = 80 Substitution
[tex]\frac{base1 + 5}{2}[/tex] = 4 Work (divide by 20, multiply by 2, subtract 5)
base1 + 5 = 8
base1 = 3 Solution
The sum of two numbers is -5 and their difference is -1. Find the two
numbers.
Answer:
x=-3 and y=-2
Step-by-step explanation:
let the numbers be x and y
x+y=-5
x-y=-1
therefore x=-5-y
-5-y-y=-1
-2y=-1+5
-2y=4
y=-2
×=-5-(-2)
x=-5+2
x=-3
Answer: -2 and -3
Step-by-step explanation:
Number #1 = xNumber #2 = yx + y = -5
x - y = -1 -> x = y - 1
(y - 1) + y = -5
y - 1 + y = -5
2y = 1 - 5
2y = -4
y = -2
x = y - 1 = -2 - 1 = -3
Which of the following values of r will result in a true statement when substituted into the given equation?
2(4r + 4) = -16
A. r = -3
B. r = -2
C. r = 2
D. r = 3
PLEASE I NEED HELP WITH THIS ONE
Answer:
H
Step-by-step explanation:
When h=0,t=45.
so we can exclude F.
When h=10,t=15.
only H satisfiy the condition.
Answer:
H
The line shows an inverse proportionality between temperature and time:
[tex]{ \tt{t \: \alpha \: \frac{1}{h} }} \\ \\ { \tt{t = \frac{k}{h} }}[/tex]
Slope or change:
[tex] = \frac{45 - 30}{0 - 5} \\ = - 3[/tex]
y-intercept:
[tex]c = 45[/tex]
General equation:
[tex]y = - 3x + 45[/tex]
x + y = 3, 4y = -4x - 4
System of Equations
Answer:
no solutions
Step-by-step explanation:
Hi there!
We're given this system of equations:
x+y=3
4y=-4x-4
and we need to solve it (find the point where the lines intersect, as these are linear equations)
let's solve this system by substitution, where we will set one variable equal to an expression containing the other variable, substitute that expression to solve for the variable the expression contains, and then use the value of the solved variable to find the value of the first variable
we'll use the second equation (4y=-4x-4), as there is already only one variable on one side of the equation. Every number is multiplied by 4, so we'll divide both sides by 4
y=-x-1
now we have y set as an expression containing x
substitute -x-1 as y in x+y=3 to solve for x
x+-x-1=3
combine like terms
-1=3
This statement is untrue, meaning that the lines x+y=3 and 4y=-4x-4 won't intersect.
Therefore the answer is no solutions
Hope this helps! :)
The graph below shows the two equations graphed; they are parallel, which means they will never intersect. If they don't intersect, there's no common solution
Lines L and M are parallel.
Help I’ll make u brainliest if it’s right!!
Answer:
∠3 = 142°
Step-by-step explanation:
L // M
∠2 = 38° {Corresponding angles are congruent}
∠2 + ∠3 = 180 {Linear pair}
38 + ∠3 = 180
∠3 = 180 - 38
∠3 = 142°
the answer is 142 degrees, get 180 degrees from a straight lines and subtract the acute angle from 180 to get the answer, 180-38
If you have 6 periods per day at school and math is 1 of them, what percentage of your school day is spent in math?
Answer:
16.67% of your day is spent in math class.
Step-by-step explanation:
The total would be 100% and then since you have 6 periods we divide 100 by 6 to get 16.67%. So 16.67% of your day is spent in math class.
There is a bag with only red marbles and blue marbles.
The probability of randomly choosing a red marble is
7/12
There are 84 marbles in total in the bag and each is equally likely to be chosen.
Work out how many red marbles there must be.
Answer:
49
Step-by-step explanation:
The probability of choosing a red marble is equal to the number of red marbles over the number of total marbles there are.
Therefore, let the number of red marbles be [tex]x[/tex].
We have the following equation:
[tex]\frac{x}{84}=\frac{7}{12}[/tex]
Cross-multiplying, we get:
[tex]12x=7\cdot 84,\\x=\frac{84\cdot 7}{12},\\x=\boxed{49}[/tex]
Therefore, there are 49 red marbles in the bag.
What is the sum of the 15th square number and the 5th cube number?
The sum of the 15th square number and the 5th cube number is 350.
The 15th square number will be:
15² = 15 × 15
= 225
The 5th cube number will be:
5³ = 5 × 5 × 5
= 125
The sum of the numbers will be:
225 + 125
= 350
Therefore, we get that, the sum of the 15th square number and the 5th cube number is 350.
Learn more about sum here:
https://brainly.com/question/17695139
#SPJ1
The value of the expression 10 - 1/2^4 x 48
A = 2
B = 4
C = 5
D = 7
Answer:
option d is correct answer
Let $S$ be the set of points $(a,b)$ in the coordinate plane, where each of $a$ and $b$ may be $-1$, 0, or 1. How many distinct lines pass through at least two members of $S$
Answer:
20 Lines
Step-by-step explanation:
According to the Question,
Given That, Let S be the set of points (a, b) in the coordinate plane, where each of a and b may be -1, 0, or 1.Now, the total pairs of points which can be formed is 9
And, the line passing through 2 such points 9c2 = 9! / (2! x 7!) = 9x4 ⇒ 36
Here, We have overcounted all of the lines which pass through three points.
And, each line that passes through three points will have been counted 3c2 = 3! / 2! ⇒ 3 times
Now, the sides of the square consist of 3 points. We have counted each side thrice, so 4*2 are repeated.
Therefore, the distinct lines pass through at least two members of S is 3 horizontal, 3 vertical, and 2 diagonal lines, so the answer is 36 - 2(3+3+2) = 20 Linestop cylinder: 6 in, 8 in
botton cube: 9 in, 9 in, 15 in
The volume of this figure is _____ cubic inches.
Answer:
1441.08 in^3
Step-by-step explanation:
Volume of rectangular prism = 15 * 9 * 9 = 1215 in^3
radius = 3 in
Volume of the cylinder = 3^2 * 3,14 * 8 = 226.08 in^3
Total volume = 1215 + 226.08 = 1441.08 in^3
Answer:
HJHJGHJHG
Step-by-step explanation:
JGHU45565677689789
What is the least possible value of (x +1)(x+2)(x+3)(x +4)+2019 where x is a real
number?
MANY POINTS
Answer:
f(x)=(x+1)(x+2)(x+3)(x+4)+2019
f(x)=(x2+5x+4)(x2+5x+6)+2019
Suppose that y=x2+5x
Hence we have f(y)f(y)=(y+4)(y+6)+2019=y2+10y+24+2019=y2+10y+25+2018=(y+5)2+2018≥2018[∵(y+5)2≥0,∀y∈R]
and therefore…. min (f(x))=2018
ANSWER = 2018
Step-by-step explanation:
hope that helps >3
Answer:
2018
Step-by-step explanation:
By grouping the first, last and two middle terms, we get ([tex]x^{2}[/tex]+5x+4)([tex]x^{2}[/tex]+5x+6) + 2019. This can then be simplified to ([tex]x^{2}[/tex]+5x+2)^2 - 1 + 2019 Noting that squares are nonnegative, and verifying that [tex]x^{2}[/tex] + 5x + 5 = 0 for some real x, the answer is 2018.
20. It takes Zach 15 minutes to walk 7 blocks to the swimming pool. 7 At this rate, how many blocks can he walk in one minute? Circle the letter of the correct answer. how do I do this step by step to solve it by myself
Answer:
Zach chose C as the correct answer
HELP ASAP!!!
The circle graph shows the percentage of visitors at a
convention who ordered various flavors of juice. There were 700
visitors at the convention.
About how many visitors ordered grape juice or apple juice?
Enter your answer in the box.
Step-by-step explanation:
40+24+11+8+17= 100
100 - 700
24 - ?
24×700/100
= 168 visitors ordered apple juice
100-700
11-?
11×700/100
=77 people ordered grape juice
find m to cos²x-(m²-3)sinx+2m²-3=0 have root
Answer:
[tex]-\sqrt{2} \le m \le \sqrt{2}[/tex] would ensure that at least one real root exists for this equation when solving for [tex]x[/tex].
Step-by-step explanation:
Apply the Pythagorean identity [tex]1 - \sin^{2}(x) = \cos^{2}(x)[/tex] to replace the cosine this equation with sine:
[tex](1 - \sin^{2}(x)) - (m^2 - 3)\, \sin(x) + 2\, m^2 - 3 = 0[/tex].
Multiply both sides by [tex](-1)[/tex] to obtain:
[tex]-1 + \sin^{2}(x) + (m^2 - 3)\, \sin(x) - 2\, m^2 + 3 = 0[/tex].
[tex]\sin^{2}(x) + (m^2 - 3)\, \sin(x) - 2\, m^2 + 2 = 0[/tex].
If [tex]y = \sin(x)[/tex], then this equation would become a quadratic equation about [tex]y[/tex]:
[tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex].
[tex]a = 1[/tex].[tex]b = m^{2} - 3[/tex].[tex]c = -2\, m^{2} + 2[/tex].However, [tex]-1 \le \sin(x) \le 1[/tex] for all real [tex]x[/tex].
Hence, the value of [tex]y[/tex] must be between [tex](-1)[/tex] and [tex]1[/tex] (inclusive) for the original equation to have a real root when solving for [tex]x[/tex].
Determinant of this quadratic equation about [tex]y[/tex]:
[tex]\begin{aligned} & b^{2} - 4\, a\, c \\ =\; & (m^{2} - 3)^{2} - 4 \cdot (-2\, m^{2} + 2) \\ =\; & m^{4} - 6\, m^{2} + 9 - (-8\, m^{2} + 8) \\ =\; & m^{4} - 6\, m^{2} + 9 + 8\, m^{2} - 8 \\ =\; & m^{4} + 2\, m^{2} + 1 \\ =\; &(m^2 + 1)^{2} \end{aligned}[/tex].
Hence, when solving for [tex]y[/tex], the roots of [tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex] in terms of [tex]m[/tex] would be:
[tex]\begin{aligned}y_1 &= \frac{-b + \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(m^{2} - 3) + \sqrt{(m^{2} + 1)^{2}}}{2} \\ &= \frac{-(m^{2} - 3) + (m^{2} + 1)}{2} = 2\end{aligned}[/tex].
[tex]\begin{aligned}y_2 &= \frac{-b - \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(m^{2} - 3) - \sqrt{(m^{2} + 1)^{2}}}{2} \\ &= \frac{-(m^{2} - 3) - (m^{2} + 1)}{2} \\ &= \frac{-2\, m^{2} + 2}{2} = -m^{2} + 1\end{aligned}[/tex].
Since [tex]y = \sin(x)[/tex], it is necessary that [tex]-1 \le y \le 1[/tex] for the original solution to have a real root when solved for [tex]x[/tex].
The first solution, [tex]y_1[/tex], does not meet the requirements. On the other hand, simplifying [tex]-1 \le y_2 \le 1[/tex], [tex]-1 \le -m^{2} + 1 \le 1[/tex] gives:
[tex]-2 \le -m^{2} \le 0[/tex].
[tex]0 \le m^{2} \le 2[/tex].
[tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
In other words, solving [tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex] for [tex]y[/tex] would give a real root between [tex]-1 \le y \le 1[/tex] if and only if [tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
On the other hand, given that [tex]y = \sin(x)[/tex] for the [tex]x[/tex] in the original equation, solving that equation for [tex]x\![/tex] would give a real root if and only if [tex]-1 \le y \le 1[/tex].
Therefore, the original equation with [tex]x[/tex] as the unknown has a real root if and only if [tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
The following are the last 10 run scores Colin got in cricket:
28, 13, 4, 12, 32, 22, 13, 22, 26, 32
a) Work out Colin's mean score.
b) Colin plays cricket again on Sunday. He gets 16 runs.
What is his new mean score?
Give your answers as decimals.
Answers:
a) Mean = 20.4b) New mean = 20==================================================
Explanation:
To get the mean, we add up the scores and divide by 10 (because there are 10 scores at first)
28+13+4+12+32+22+13+22+26+32 = 204
204/10 = 20.4
The mean is 20.4
------------
For part b), we redo those steps shown above, but tack 16 onto the list. So we'll add up all the values (including that 16 at the end) and divide by 11 this time.
28+13+4+12+32+22+13+22+26+32+16 = 220
220/11 = 20
The new mean is 20.
The new mean is slightly smaller than the old mean. Notice how 16 is smaller than 20.4, so this new score pulls down the mean just a little bit.
Can someone help solve the problems 2-4
Answer:
1234567891011121314151617181920
Step-by-step explanation:
you just count
whats the lowest common multiple of 120 and 19600
Answer:
Multiples of 120 are 120, 240, 360, 480, 600, 720, 840 etc; Multiples of 150 are 150, 300, 450, 600, 750, 900 etc; Therefore, the least common multiple of 120 and 150 is 600.
Least common multiple (LCM) of 19600 and 19619 is 384532400.
Answer: 19600
Step-by-step explanation:
19600/120 = 160
What percent of 45 is 27
Answer:
60%
Step-by-step explanation:
27/45 = .6
.6 = 60%
William needs to work out the size of angle Y in this diagram
One of William’s reasons are wrong.
Write down the correct reason.
Answer:
because internal staggal angles are equal
Step-by-step explanation:
The first reason is wrong.
Angle EGH and DEG are internal staggal angles:
the two angles are on both sides of the cut line EG, and the two angles are between the two divided lines.
{the definition of internal staggal angle}
Please help me w the answer
Answer:
[tex]\frac{2(x-6)(x-10)}{(x-4)(x-5)}[/tex]
Step-by-step explanation:
In essence, one needs to work their way backwards to solve this problem. Use the information to construct the function.
The function has verticle asymptotes at (x = 4) and (x = 5). This means that the denominator must have (x - 4) and (x - 5) in it. This is because a verticle asymptote indicates that the function cannot have a value at these points, the function jumps at these points. This is because the denominator of a fraction cannot be (0), the values (x - 4) and (x - 5) ensure this. Since if (x) equals (4) or (5) in this situation, the denominator would be (0) because of the zero product property (this states that any number times zero equals zero). So far we have assembled the function as the following:
[tex]\frac{()}{(x-4)(x-5)}[/tex]
The function has x-intercepts at (6, 0), and (0, 10). This means that the numerator must equal (0) when (x) is (6) or (10). Using similar logic that was applied to find the denominator, one can conclude that the numerator must be ([tex](x - 6)(x-10)[/tex]). Now one has this much of the function assembled
[tex]\frac{(x-6)(x-10)}{(x-4)(x-5)}[/tex]
Finally one has to include the y-intercept of (0, 120). Currently, the y-intercept is (60). This is found by multiplying the constants together. (6 * 10) equals (60). One has to multiply this by (2) to get (120). Therefore, one must multiply the numerator by (2) in order to make the y-intercept (120). Thus the final function is the following:
[tex]\frac{2(x-6)(x-10)}{(x-4)(x-5)}[/tex]
Evaluate the question in the photo attached please. ASAP
find the value of 5 + 8 / 4 * 3
Answer:
44
Step-by-step explanation:
5+8/4*3
5+24/4
20+24
44
Mark had 3/2 cans of paint and used 1/2 cans for his room. What fraction of the paint did he use
Help I’m slowww
Answer:
1/3 fraction of whole paint is used by mark
Step-by-step explanation:
Mark used 1/2 out of 3/2 cans.
[tex]\frac{1}{2}[/tex] ÷ [tex]\frac{3}{2} = \frac{1}{2}*\frac{2}{3}=\frac{1}{3}[/tex]
The angle of elevation of a tree at a distance of 10m from the foot of the tree is 43°. Find the height of the tree
Answer:
9.32m is the height of. the tree from the ground.
Given: triangle RST is circumscribed about circle A.
m∠APT = _____°
Answer:
90
Step-by-step explanation:
From the given drawing, we have;
ΔRST is circumscribed about circle A
The center of the circle A = The point A
The line RT = A tangent to the circle A
The radius to the circle A = The line AP
According to circle theory, a line which is tangent to a circle is perpendicular to the radius of the circle drawn from the point of tangency
Where two lines are perpendicular to each other, then the angle formed between them = 90°
The angle formed between a tangent and the radius of the circle = m∠APT
Therefore;
m∠APT = 90°
Determine the length of AB.
16.3 units
23.6 units
5.7 units
14.9 units
Answer:
16.3
Step-by-step explanation:
i just took the quiz
Answer:
16.3 units
Step-by-step explanation:
Helloo, I just took the quiz too and the answer is 16.3
the value of x-y+xy if x=1 y=1 is
Answer:
1
Step-by-step explanation:
x-y+xy=1-1+1*1=0+1=1
Answer:
1
Step-by-step explanation:
X=1
Y=1
here,
x-y+xy=1-1+1×1
or,x-y+xy=0+1=1
Staysafe❤
PLISSSSSSSS HELPPPPPP!!!!!!
i will give brainliest
Which equation is the inverse of 2(x – 2)2 = 8(7 + y)?
Answer:
y = (4x - 71)/8
Step-by-step explanation:
2(x - 2)2 = 8(7 + y) solve for y instead of x for the inverse equation
4x - 8 = 63 + 8y
4x - 8 - 63 = 8y
4x - 71 = 8y
y = (4x - 71)/8
Answer:
A
Step-by-step explanation: