Answer:
0.0838 = 8.38% probability of obtaining a sample proportion less than 0.5.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Proportion of 0.6
This means that [tex]p = 0.6[/tex]
Sample of 46
This means that [tex]n = 46[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.6[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.6*0.4}{46}} = 0.0722[/tex]
Probability of obtaining a sample proportion less than 0.5.
p-value of Z when X = 0.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.5 - 0.6}{0.0722}[/tex]
[tex]Z = -1.38[/tex]
[tex]Z = -1.38[/tex] has a p-value of 0.0838
0.0838 = 8.38% probability of obtaining a sample proportion less than 0.5.
4b^2+300=0 this is a quadratic equation that I am trying to solve including any solutions with imaginary numbers I will include a picture
Answer:
b= 5i square root of 3
b = -5i square root of 3
Step-by-step explanation:
4b^2+300=0
4b^2 = -300
b^2 = -75
b = square root of -75
b = -75^1/2
^1/2 means square root
b = 25^1/2 * 3^1/2 * i
b= 5i square root of 3
b = -5i square root of 3
A farmer picks pumpkins from a large field. The farmer makes samples of 260 pumpkins and inspects them. If one in fifty pumpkins are not fit to market and will be saved for seeds, what is the standard deviation of the mean of the sampling distribution of sample proportions?
Answer:
[tex]\mu = 5.2[/tex]
[tex]\sigma = 2.257[/tex]
Step-by-step explanation:
Given
[tex]n = 260[/tex] -- samples
[tex]p = \frac{1}{50}[/tex] --- one in 50
Solving (a): The mean
This is calculated as:
[tex]\mu = np[/tex]
[tex]\mu = 260 * \frac{1}{50}[/tex]
[tex]\mu = 5.2[/tex]
Solving (b): The standard deviation
This is calculated as:
[tex]\sigma = \sqrt{\mu * (1-p)}[/tex]
[tex]\sigma = \sqrt{5.2 * (1-1/50)}[/tex]
[tex]\sigma = \sqrt{5.2 * 0.98}[/tex]
[tex]\sigma = \sqrt{5.096}[/tex]
[tex]\sigma = 2.257[/tex]
Explain how to divide a decimal by a decimal
Answer:
To divide a decimal by another decimal:
Move the decimal point in the divisor to the right until it is a whole number.
Move the decimal point in the dividend to the right by the same number of places as the decimal point was moved to make the divisor a whole number.
Then divide the new dividend by the new divisor
Step-by-step explanation:
see in the example
use the figure below to find the answer. find y.
9514 1404 393
Answer:
y = 7√2
Step-by-step explanation:
We are given the side opposite the angle, and we want to find the hypotenuse. The relevant trig relation is ...
Sin = Opposite/Hypotenuse
sin(45°) = 7/y
y = 7/sin(45°) = 7/(1/√2)
y = 7√2
__
Additional comment
In this 45°-45°-90° "special" right triangle, the two legs are the same length. Thus, ...
x = 7
when price of indomie noodles was lowered from #50 to #40 per unit, quantity demanded increases from 400 to 600 units per week. calculate the coefficient of price elasticity of demand and determine whether by lowering price this firm has made a wise decision
Answer:
The price elasticity of demand is -10
Step-by-step explanation:
Given
[tex]p_1,p_2 = 50,40[/tex]
[tex]q_1,q_2 = 400,500[/tex]
Solving (a): The coefficient of price elasticity of demand (k)
This is calculated as:
[tex]k = \frac{\triangle q}{\triangle p}[/tex]
So, we have:
[tex]k = \frac{500 - 400}{40 - 50}[/tex]
[tex]k = \frac{100}{-10}[/tex]
[tex]k = -10[/tex]
Because |k| > 0, then we can conclude that the company made a wise decision.
Suppose a large shipment of televisions contained 9% defectives. If a sample of size 393 is selected, what is the probability that the sample proportion will differ from the population proportion by less than 3%
Answer:
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose a large shipment of televisions contained 9% defectives
This means that [tex]p = 0.09[/tex]
Sample of size 393
This means that [tex]n = 393[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{393}} = 0.0144[/tex]
What is the probability that the sample proportion will differ from the population proportion by less than 3%?
Proportion between 0.09 - 0.03 = 0.06 and 0.09 + 0.03 = 0.12, which is the p-value of Z when X = 0.12 subtracted by the p-value of Z when X = 0.06.
X = 0.12
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.12 - 0.09}{0.0144}[/tex]
[tex]Z = 2.08[/tex]
[tex]Z = 2.08[/tex] has a p-value of 0.9812
X = 0.06
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.0144}[/tex]
[tex]Z = -2.08[/tex]
[tex]Z = -2.08[/tex] has a p-value of 0.0188
0.9812 - 0.0188 = 0.9624
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
What is the value of 3 minus (negative 2)?
A number line going from negative 5 to positive 5.
Answer:
5
Step-by-step explanation:
3-(-2) will become positive 5. so number line will go towards positive 5.
FREE
Circle O has a circumference of approximately 250 ft.
What is the approximate length of the diameter, d?
O 40 ft
O 80 ft
O 125 ft
O 250 ft
Save and Exit
Next
Submit
Mark this and return
Answer:
Step-by-step explanation:
circumference = πd ≅ 250 ft
d ≅ 250/π ≅80 ft
Find the numerical value of each expression. (Round your answers to five decimal places.) (a) sinh(ln(5)) (b) sinh(5)
sinh(ln(4)) = (exp(ln(4)) - exp(-ln(4)))/2 = (4 - 1/4)/2 = 15/8 = 1.875
sinh(4) = (exp(4) - exp(-4))/2 ≈ 27.28992
Value of the expression in which each variable was swapped out with a number from its corresponding domain sinh (l5)
How do you determine an expression's numerical value?sinh (5)
=sinh(1.6094) =2.39990 rad
=sinh(1.6094) =2.3
By doing the following, you may determine the numerical value of an algebraic expression: Replace each variable with the specified number. Then, enter your score in your team's table.
Analyze expressions that are linear.Multi-variable expressions should be evaluated.Analyze expressions that are not linear.Value of the expression in which each variable was swapped out with a number from its corresponding domain. In the case of a number with only one digit, referring to the numerical value associated with a digit by its "value" is a convenient shorthand.
To learn more about Value of the expression refer to:
https://brainly.com/question/13961297
#SPJ2
will give brainyest (m^2/3 n^-1/3)^6
Step-by-step explanation:
here is the answer to your question
HELP ASAP I WILL GIVE BRAINLIST
Find the length of an arc of a circle with a 8-cm radius associated with a central angle of 240 degrees. Give your answer in exact and approximate form to the nearest hundredth. Show and explain your work
Answer:
33.51 cm
Step-by-step explanation:
240/360 = 2/3 (Arc length is 2/3 of the total circumference)
C = 2[tex]\pi[/tex]r ( Calculate the total circumference)
C = 2(8)[tex]\pi[/tex]
C = 50.265
2/3(50.265) (Take 2/3 of the circumference. times 2 divide by 3)
33.51
Use a calculator and leave the answer to C and then multiply and divide. You get a more precise answer.
The exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.
The arc length in approximate form is 33.49 radians.
What is the formula for arc length?[tex]s = r\times \theta[/tex]
where r is the radius of the circle and [tex]\theta[/tex] is the central angle in radians.
How to convert angle from degrees to radians?Radians = Degrees ×[tex]\frac{\pi}{180^{\circ}}[/tex]
For given question,
We have been given a circle with a 8-cm radius associated with a central angle of 240 degrees.
[tex]r=8~cm,~\theta=240^{\circ}[/tex]
First we convert angle in radians.
[tex]\theta=240^{\circ}\\\\\theta=240^{\circ} \times \frac{\pi}{180^{\circ}}\\\\ \theta=\frac{4\pi}{3}[/tex]
Using the formula of the arc length,
[tex]s=8\times \frac{4\pi}{3} \\\\s=\frac{32\pi}{3}[/tex]
The exact answer of the arc length is [tex]s=\frac{32\pi}{3}[/tex]
Substitute the value of [tex]\pi = 3.14[/tex]
So, the arc length would be,
[tex]\Rightarrow s=\frac{32\times \pi}{3}\\\\\Rightarrow s=\frac{32\times 3.14}{3}\\\\\Rightarrow s=33.49[/tex]radians
Therefore, the exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.
the arc length in approximate form is 33.49 radians.
Learn more about the arc length here:
https://brainly.com/question/16403495
#SPJ2
the focus of a parabola is (-5,-1) and the directrix is y= -3.
what is an equation of the parabola? (one of the answered above)
Answer:
Step-by-step explanation:
-2
11 Emilio makes metal fences.
He is making a fence using this design.
1.44 m
DO NOT WRITE IN THIS AREA
1.8 m
.
The fence will need
3 horizontal metal pieces of length 1.8m
2 tall metal pieces of length 1.44 m
5 medium metal pieces
6 short metal pieces as shown on the diagram.
The heights of the tall, medium and short metal pieces are in the ratio 9:8:7
.
How many metres of metal in total does Emilio need to make the fence?
Answer:
21.4 m
Step-by-step explanation:
Let x represent the sum of the tall metal, medium metal and short metal heights. Since the tall metal has a length of 1.44 m, and the ratio is in 9:8:7, hence:
(9/24) * x = 1.44
x = 3.84 m
For the medium metal pieces:
(8/24) * 3.84 = medium metal height
medium metal height = 1.28 m
For the short metal pieces:
(7/24) * 3.84 = short metal height
short metal height = 1.12 m
Total horizontal metal piece length = 3 * 1.8 m = 5.4 m
Total tall metal piece length = 2 * 1.44 m = 2.88 m
Total medium metal piece length = 5 * 1.28 m = 6.4 m
Total short metal piece length = 6 * 1.12 m = 6.72 m
Total length of metal = 5.4 + 2.88 + 6.4 + 6.72 = 21.4 m
Un automóvil consume 4 galones de gasolina al recorrer 180 kilómetros y para recorrer 900 kilómetros necesita 20 galones ¿cuántos kilómetros recorre por galón? ¿Cuantos galones consumirá en 2700 kilómetros?
Answer:
45 km por galón
60 galones en 2700 Km
Step-by-step explanation:
180 / 4
45 km por galón
900 / 45
20 galones
2700 / 45
60 galones en 2700 Km
The sum of the base and height of a triangle is 14 cm. Which of the following equations could be used to find the maximum area of the triangle?
A) A = 0.5x^2 - 15x
B) A = -0.5x^2 + 7x
C) A = -x^2 + 10x
D) A = x^2 - 10x
Answer:
B
Step-by-step explanation:
Let the base of the triangle be b and the height be h.
The sum of the base and height is 14. Thus:
[tex]b+h=14[/tex]
Recall that the area of a triangle is given by:
[tex]\displaystyle A=\frac{1}{2}bh[/tex]
From the first equation, solve for either variable:
[tex]h=14-b[/tex]
Substitute:
[tex]\displaystyle A=\frac{1}{2}b(14-b)[/tex]
Distribute:
[tex]\displaystyle A=\frac{1}{2}(14b-b^2)[/tex]
Distribute:
[tex]\displaystyle A=-0.5b^2+7b[/tex]
Let b = x. Hence:
[tex]A=-0.5x^2+7x[/tex]
Therefore, our answer is B.
work out the area of this shape
Answer:
1000
Step-by-step explanation:
calculate the cost of 4 liters of gasoline if 10 Liters of gasoline cost $8.20 (using proportional relationship).
A . $3.28
B. $4.20
C. $8.20
D.$10
Question 1 of 10
Estimate the difference of the decimals below by rounding to the nearest
whole number. Enter your answer in the space provided.
46.327
-4.801
Answer:
Step-by-step explanation:
46.327=46 ( neaarest whole number)
-4.801=-5 (nearest whole number)
46-(-5)=46+5=51
What does point b represent on the graph ?
Answer:
Step-by-step B represents the $14 John earned in the 2 hours he worked.
explanation:
Midsegments geometry acellus pls helppfpfpff
Answer:
BC = 28
Step-by-step explanation:
The midsegment DF is half the measure of the third side BC , then
BC = 2 × DF = 2 × 14 = 28
Find the volume
h=9cm
8cm
8cm
Answer: (8x8x9)/3=192
log2(6x) – log2 (x)-2
Answer:
xlog(64)−xlog(2)−2
Step-by-step explanation:
Simplify 6log(2) by moving 6 inside the logarithm.
log(2^6)x − log(2)x − 2
Raise 2 to the power of 6.
log(64)x − log(2)x − 2
Reorder factors in log(64)x − log(2)x −2.
Answer pllllllleeeaaaaasssss
(3.1) … … …
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{2x-y}{x-2y}[/tex]
Multiply the right side by x/x :
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{2-\dfrac yx}{1-\dfrac{2y}x}[/tex]
Substitute y(x) = x v(x), so that dy/dx = x dv/dx + v :
[tex]x\dfrac{\mathrm dv}{\mathrm dx} + v = \dfrac{2-v}{1-2v}[/tex]
This DE is now separable. With some simplification, you get
[tex]x\dfrac{\mathrm dv}{\mathrm dx} = \dfrac{2-2v+2v^2}{1-2v}[/tex]
[tex]\dfrac{1-2v}{2-2v+2v^2}\,\mathrm dv = \dfrac{\mathrm dx}x[/tex]
Now you're ready to integrate both sides (on the left, the denominator makes for a smooth substitution), which gives
[tex]-\dfrac12\ln\left|2v^2-2v+2\right| = \ln|x| + C[/tex]
Solve for v, then for y (or leave the solution in implicit form):
[tex]\ln\left|2v^2-2v+2\right| = -2\ln|x| + C[/tex]
[tex]\ln(2) + \ln\left|v^2-v+1\right| = \ln\left(\dfrac1{x^2}\right) + C[/tex]
[tex]\ln\left|v^2-v+1\right| = \ln\left(\dfrac1{x^2}\right) + C[/tex]
[tex]v^2-v+1 = e^{\ln\left(1/x^2\right)+C}[/tex]
[tex]v^2-v+1 = \dfrac C{x^2}[/tex]
[tex]\boxed{\left(\dfrac yx\right)^2 - \dfrac yx+1 = \dfrac C{x^2}}[/tex]
(3.2) … … …
[tex]y' + \dfrac yx = \dfrac{y^{-3/4}}{x^4}[/tex]
It may help to recognize this as a Bernoulli equation. Multiply both sides by [tex]y^{\frac34}[/tex] :
[tex]y^{3/4}y' + \dfrac{y^{7/4}}x = \dfrac1{x^4}[/tex]
Substitute [tex]z(x)=y(x)^{\frac74}[/tex], so that [tex]z' = \frac74 y^{3/4}y'[/tex]. Then you get a linear equation in z, which I write here in standard form:
[tex]\dfrac47 z' + \dfrac zx = \dfrac1{x^4} \implies z' + \dfrac7{4x}z=\dfrac7{4x^4}[/tex]
Multiply both sides by an integrating factor, [tex]x^{\frac74}[/tex], which gives
[tex]x^{7/4}z'+\dfrac74 x^{3/4}z = \dfrac74 x^{-9/4}[/tex]
and lets us condense the left side into the derivative of a product,
[tex]\left(x^{7/4}z\right)' = \dfrac74 x^{-9/4}[/tex]
Integrate both sides:
[tex]x^{7/4}z=\dfrac74\left(-\dfrac45\right) x^{-5/4}+C[/tex]
[tex]z=-\dfrac75 x^{-3} + Cx^{-7/4}[/tex]
Solve in terms of y :
[tex]y^{4/7}=-\dfrac7{5x^3} + \dfrac C{x^{7/4}}[/tex]
[tex]\boxed{y=\left(\dfrac C{x^{7/4}} - \dfrac7{5x^3}\right)^{7/4}}[/tex]
(3.3) … … …
[tex](\cos(x) - 2xy)\,\mathrm dx + \left(e^y-x^2\right)\,\mathrm dy = 0[/tex]
This DE is exact, since
[tex]\dfrac{\partial(-2xy)}{\partial y} = -2x[/tex]
[tex]\dfrac{\partial\left(e^y-x^2\right)}{\partial x} = -2x[/tex]
are the same. Then the general solution is a function f(x, y) = C, such that
[tex]\dfrac{\partial f}{\partial x}=\cos(x)-2xy[/tex]
[tex]\dfrac{\partial f}{\partial y} = e^y-x^2[/tex]
Integrating both sides of the first equation with respect to x gives
[tex]f(x,y) = \sin(x) - x^2y + g(y)[/tex]
Differentiating this result with respect to y then gives
[tex]-x^2 + \dfrac{\mathrm dg}{\mathrm dy} = e^y - x^2[/tex]
[tex]\implies\dfrac{\mathrm dg}{\mathrm dy} = e^y \implies g(y) = e^y + C[/tex]
Then the general solution is
[tex]\sin(x) - x^2y + e^y = C[/tex]
Given that y (1) = 4, we find
[tex]C = \sin(1) - 4 + e^4[/tex]
so that the particular solution is
[tex]\boxed{\sin(x) - x^2y + e^y = \sin(1) - 4 + e^4}[/tex]
Test 21,753 for divisibility by 2,3,5,9 and 10
Answer:
Step-by-step explanation:
21,753
at unit place=3 not an even number,not equal to 5 and not equal to 0
so 21,753 is not divisible by 2,5 and 10
again
2+1+7+5+3=18 divisible by 3 and 9.
so 21,753 is divisible by 3 and 9.
Please help it’s a test and I can’t get logged out
Answer:
the anwer is B ( i mean second option)
And you can try it
you will find ;
[tex]y = \frac{x}{3} - 1[/tex]
HAVE A NİCE DAY
Step-by-step explanation:
GREETİNGS FROM TURKEY ツ
An air conditioning system can circulate 310 cubic feet of air per minute. How many cubic yards of air can it circulate per minute? The air conditioning system can circulate about cubic yards of air per minute.
Answer:
310/[tex]3^{3}[/tex] = 310/27 =11.48
Step-by-step explanation:
Answer:
310/ = 310/27 =11.48
Step-by-step explanation:
Find the volume of the figure. Express answers in terms of t, then round to the nearest whole number
Please help :)
Answer:
729π ft³
Step-by-step explanation:
Applying,
Volume of a cone
V = πr²h/3.............. Equation 1
Where r = radius of the base, h = height, π = pie
From the question,
Given: r = 9 ft, h = 27 ft
Substitite these values into equation 1
V = π(9²)(27)/3
V = 729π ft³
Hence the volume of the figure in terms of π is 729π ft³
Many electronics follow a failure rate described by an exponential probability density function (PDF). Solar panels are advertised to last 20 years or longer, but panels made in China are failing at a higher rate. The time-to-failure of this device is usually exponentially distributed with mean 13 years. What is the probability of failure in the first 5 years
Answer:
The right answer is "0.3193".
Step-by-step explanation:
According to the question,
Mean,
[tex]\frac{1}{\lambda} = 13[/tex]
[tex]\lambda = \frac{1}{13}[/tex]
As we know,
The cumulative distributive function will be:
⇒ [tex]1-e^{-\lambda x}[/tex]
hence,
In the first 5 years, the probability of failure will be:
⇒ [tex]P(X<5)=1-e^{-\lambda\times 5}[/tex]
[tex]=1-e^{-(\frac{1}{13} )\times 5}[/tex]
[tex]=1-e^(-\frac{5}{13})[/tex]
[tex]=1-0.6807[/tex]
[tex]=0.3193[/tex]
The cardinal number of {200, 201, 202, 203, ..., 1099}
Answer:
I have not been able to answer it sorry
Points A, B, C, and D lie on a line in that order. If AD/AC = 2/1 and AD/AB = 3/1, what is the value of AC/BD?
9514 1404 393
Answer:
3/4
Step-by-step explanation:
It might be easier to start by expressing the ratios with AD as the denominator.
AD/AC = 2/1 ⇒ AC/AD = 1/2
AD/AB = 3/1 ⇒ AB/AD = 1/3
From the latter, we have ...
(AD -AB)/AD = 1 -1/3 = 2/3 = BD/AD
Then the desired ratio is ...
AC/BD = (AC/AD)/(BD/AD) = (1/2)/(2/3) = (3/6)/(4/6)
AC/BD = 3/4