Jose bought a piece of fabric that was 5.6 meters long. From that, he cut 0.4
meter. How much fabric is left?

Answers

Answer 1

Answer:

Jose has 5.2 meters of fabric left.

Step-by-step explanation:

5.6 - 0.4 = 5.2

Answer 2
5.2 meters bc 5.6-0.4= 5.2

Related Questions

PLEASE ANSWER ASAP THANK YOU!!! How much money will be in a bank account after 3 years if $9 is deposited at an interest rate of 5% compounded annually? Round to the nearest dollar.....​

Answers

Answer:

10 bucks

Step-by-step explanation:

Money=9*(1+0.05)^3

Money=9*(1.05)^3=10.41≈10

Write an inequality for the shaded region shown in the figure.​

Answers

Answer:

the equation of the circle is x^2 + y^2 < 36

NOT LESS OR EQUAL cause of the dotted lines

and the theory behind this is because the square root of 36 is +-6 so when the equation is less than +-6 the shade cannot go outside these point, if you know what i mean

hope that answers your question :)

Help me solve please

Answers

(3a^4b/2b^3)^3

cube all the terms:

3^3 = 27

b^3

(a^4)^3 = a^(4*3) = a^12

2^3 = 8

(b^3)^3 = b^3*3 = b^9

27a^12b^3 / 8b^9

Divide the b terms to get the final answer:

27a^12 / 8b^6

The hypotenuse of a right triangle measures 14 cm and one of its legs measures 1 cm. Find the measure of the other leg. If necessary, round to the nearest tenth.

Answers

Answer:

b=14 cm

Step-by-step explanation:

Use pythagorean equation

A^2+b^2=c^2

1^2+b^2=14^2

1+b^2=196

b^2=195

b=13.964

An automobile went 84 miles on 6.5 gallons of gasoline. At this rate, how many gallons would be needed to travel 126 miles

Answers

Answer:

10 gallons

Step-by-step explanation:

84 ÷ 6.5 =12.9(The unit rate.)

Seeing as one gallon can get you 12.9 miles;

126÷12.9=9.7

So the answers 9.7 gallons, but if you need to round, then 10 to get a whole number.

Answer:

9.75

Step-by-step explanation:

We can write a ratio to solve

84 miles          126 miles

--------------   = -------------------

6.5 gallons        x gallons

Using cross products

84 x = 6.5 * 126

84x=819

84x/84 = 819/84

x = 9.75

What would be the equation for this word problem?

Jack drove y miles in 20 mins. If he continues at the same rate how many miles can he drive in the next 15 mins?

Answers

9514 1404 393

Answer:

  d/15 = y/20

Step-by-step explanation:

At a given rate, distance is proportional to time. The distance d that Jack can drive in 15 minutes will be ...

 d/15 = y/20 . . . . the equation

  d = (3/4)y . . . . . the solution (multiply the above equation by 15, reduce)

.........................................................

Answers

Answer:

..............................what this

Solve the equation Axb by using the LU factorization given for A. Also solve Axb by ordinary row reduction. A ​, b Let Lyb and Uxy. Solve for x and y. nothing nothing Row reduce the augmented matrix and use it to find x. The reduced echelon form of is nothing​, yielding x nothing.

Answers

Answer: Hello your question is poorly written attached below is the complete question

answer:

[tex]y = \left[\begin{array}{ccc}-4\\-11\\5\end{array}\right][/tex]

[tex]x = \left[\begin{array}{ccc}16\\12\\-40\end{array}\right][/tex]

Step-by-step explanation:

[tex]y = \left[\begin{array}{ccc}-4\\-11\\5\end{array}\right][/tex]

[tex]x = \left[\begin{array}{ccc}16\\12\\-40\end{array}\right][/tex]

attached below is the detailed solution using LU factorization

The sum of two positive integers is 19 and the product is 48

Answers

Answer:

16 and 3

Step-by-step explanation:

Let x and y represent the positive integers. We know that

[tex]x + y = 19[/tex]

[tex]xy = 48[/tex]

Isolate the top equation for the x variable.

[tex]x = 19 - y[/tex]

Substitute into the second equation.

[tex](19 - y)y = 48[/tex]

[tex]19y - {y}^{2} = 48[/tex]

[tex] - {y}^{2} + 19y = 48[/tex]

[tex] - {y}^{2} + 19y - 48[/tex]

[tex](y - 16)(y - 3)[/tex]

So our values are

16 and 3.

Which choice correctly shows the solution(s) of the equation x2 = 1442
A)
x= √144
B)
x=V12
X=-
-V144
D)
x = 1V144

Answers

Answer:

Step-by-step explanation:

If the 2s are exponents, you need to indicate this with "^":  

x^2 = 144^2 means x² = 144²

x = ±√144² = ±144

Answer:

Step-by-step explanation:

f the 2s are exponents, you need to indicate this with "^":  

x^2 = 144^2 means x² = 144²

x = ±√144² = ±144

in a fruit punch drink,the 3 ingredients are apple juice,orange juice and cramberry juice.if 3/4 of the drink is apple juice and 1/10 is orange juice then write the ratio of cranberry juice to apple juice to orange juice in its simplest form​

Answers

Answer:

3 : 15 : 2

Step-by-step explanation:

Let cranberry juice = x,

3/4 + 1/10 + x = 1

x = 3/20

Ratio = cranberry : apple : orange

= 3/20 : 3/4 : 1/10

= 3 : 15 : 2 (Times everything with 20)

Please Help!
Function: y=x^2+5x-7
Vertex: (___,___)
Solutions: (___,___) and (___,___)

* i thought the vertex was (-5/2,-53,4) but apparently i’m wrong since it keeps saying it* i need answers please

Answers

Answer:

Step-by-step explanation:

lim(x-0) (sinx-1/x-1)

Answers

9514 1404 393

Answer:

as written: the limit does not existsin(x-1)/(x-1) has a limit of sin(1) ≈ 0.841 at x=0

Step-by-step explanation:

The expression written is interpreted according to the order of operations as ...

  sin(x) -(1/x) -1

As x approaches 0 from the left, this approaches +∞. As x approaches 0 from the right, this approaches -∞. These values are different, so the limit does not exist.

__

Maybe you intend ...

  sin(x -1)/(x -1)

This can be evaluated directly at x=0 to give sin(-1)/-1 = sin(1). The argument is interpreted to be radians, so sin(1) ≈ 0.84147098...

The limit is about 0.841 at x=0.

Simplify, write without exponents.

[tex]2*4^{2} *(128\frac{1}{4})[/tex]


[tex]_\sqrt[_]{_}[/tex]


a.) 8

b.) 20

c.) 2

d.) 64

e.) 4

f.) 16

Answers

it is helpful to you

The width of a rectangle is

3

inches less than the length. The perimeter is

54

inches. Find the length and the width.

please help asap!!!

Answers

Answer:

let length be x

b = x - 3

perimeter = 2( l + b)

54 = 2(x+x-3)

27 = 2x - 3

30 = 2x

x = 15

l = 15

b = 15 - 3

b = 12

Suppose the distributor charges the artist a $40.00 cost for distribution, and the streaming services pays $4.00 per unit. (Note: One unit = one thousand streams)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Formula: y = 40x + 4 (Graph Attached)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

After how many streams will you pay for the distributor charges? (Hint: this is where the line crosses the x-axis, round to the nearest thousand)

Answers

Answer:

356 streams

Step-by-step explanation:

From the graph, you will see that the line cross the x-axis at x = 8.8

Substitute into the expression y = 40x + 4

y = 40(8.8)+4

y = 352 + 4

y = 356

Hence the distributor charges will be paid for after 356 streams

Shortern this expression pls​

Answers

Answer:

[tex]c =\frac{8}{3}[/tex]

Step-by-step explanation:

Given

[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}}[/tex]

Required

Shorten

We have:

[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}}[/tex]

Rationalize

[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7} * \frac{4 + \sqrt 7}{4 + \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}*\frac{4 - \sqrt 7}{4 - \sqrt 7}}[/tex]

Expand

[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{4^2 - (\sqrt 7)^2}} + \sqrt{\frac{(4 - \sqrt 7)^2}{4^2 - (\sqrt 7)^2}[/tex]

[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{16 - 7}} + \sqrt{\frac{(4 - \sqrt 7)^2}{16 - 7}[/tex]

[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{9}} + \sqrt{\frac{(4 - \sqrt 7)^2}{9}[/tex]

Take positive square roots

[tex]c =\frac{4 + \sqrt 7}{3} + \frac{4 - \sqrt 7}{3}[/tex]

Take LCM

[tex]c =\frac{4 + \sqrt 7 + 4 - \sqrt 7}{3}[/tex]

Collect like terms

[tex]c =\frac{4 + 4+ \sqrt 7 - \sqrt 7}{3}[/tex]

[tex]c =\frac{8}{3}[/tex]

1.8>4.7+w

Does anyone know what this may be ? Thank you very much .

Answers

Answer:

-2.9 > w

Step-by-step explanation:

1.8>4.7+w

Subtract 4.7 from each side

1.8-4.7>4.7-4.7+w

-2.9 > w

Answer:

w = -2.9

Step-by-step explanation:

integration of 3^x (1-3^(x+1)^9)dx​

Answers

Step-by-step explanation:

the answer is in picture

According to government data, the probability than an adult never had the flu is 19%. You randomly select 70 adults and ask if he or she ever had the flu. Decide whether you can use the normal distribution to approximate the binomial distribution, If so, find the mean and standard deviation, If not, explain why. Round to the nearest hundredth when necessary.

Answers

Answer:

Since [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal distribution can be used to approximate the binomial distribution.

The mean is 13.3 and the standard deviation is 3.28.

Step-by-step explanation:

Binomial probability distribution

Probability of exactly x successes on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex], if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex].

The probability than an adult never had the flu is 19%.

This means that [tex]p = 0.19[/tex]

You randomly select 70 adults and ask if he or she ever had the flu.

This means that [tex]n = 70[/tex]

Decide whether you can use the normal distribution to approximate the binomial distribution

[tex]np = 70*0.19 = 13.3 \geq 10[/tex]

[tex]n(1-p) = 70*0.81 = 56.7 \geq 10[/tex]

Since [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal distribution can be used to approximate the binomial distribution.

Mean:

[tex]\mu = E(X) = np = 70*0.19 = 13.3[/tex]

Standard deviation:

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{70*0.19*0.81} = 3.28[/tex]

The mean is 13.3 and the standard deviation is 3.28.

[tex]\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx[/tex]

Answers

First integrate the indefinite integral,

[tex]\int(1-x^2)^{3/2}dx[/tex]

Let [tex]x=\sin(u)[/tex] which will make [tex]dx=\cos(u)du[/tex].

Then

[tex](1-x^2)^{3/2}=(1-\sin^2(u))^{3/2}=\cos^3(u)[/tex] which makes [tex]u=\arcsin(x)[/tex] and our integral is reshaped,

[tex]\int\cos^4(u)du[/tex]

Use reduction formula,

[tex]\int\cos^m(u)du=\frac{1}{m}\sin(u)\cos^{m-1}(u)+\frac{m-1}{m}\int\cos^{m-2}(u)du[/tex]

to get,

[tex]\int\cos^4(u)du=\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{4}\int\cos^2(u)du[/tex]

Notice that,

[tex]\cos^2(u)=\frac{1}{2}(\cos(2u)+1)[/tex]

Then integrate the obtained sum,

[tex]\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int\cos(2u)du+\frac{3}{8}\int1du[/tex]

Now introduce [tex]s=2u\implies ds=2du[/tex] and substitute and integrate to get,

[tex]\frac{3\sin(s)}{16}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int1du[/tex]

[tex]\frac{3\sin(s)}{16}+\frac{3u}{4}+\frac{1}{4}\sin(u)\cos^3(u)+C[/tex]

Substitute 2u back for s,

[tex]\frac{3u}{8}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\sin(u)\cos(u)+C[/tex]

Substitute [tex]\sin^{-1}[/tex] for u and simplify with [tex]\cos(\arcsin(x))=\sqrt{1-x^2}[/tex] to get the result,

[tex]\boxed{\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C}[/tex]

Let [tex]F(x)=\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C[/tex]

Apply definite integral evaluation from b to a, [tex]F(x)\Big|_b^a[/tex],

[tex]F(x)\Big|_b^a=F(a)-F(b)=\boxed{\frac{1}{8}(a\sqrt{1-a^2}(5-2a^2)+3\arcsin(a))-\frac{1}{8}(b\sqrt{1-b^2}(5-2b^2)+3\arcsin(b))}[/tex]

Hope this helps :)

Answer:[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]General Formulas and Concepts:

Pre-Calculus

Trigonometric Identities

Calculus

Differentiation

DerivativesDerivative Notation

Integration

IntegralsDefinite/Indefinite IntegralsIntegration Constant C

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                    [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

U-Substitution

Trigonometric Substitution

Reduction Formula:                                                                                               [tex]\displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx[/tex]

Step 2: Integrate Pt. 1

Identify variables for u-substitution (trigonometric substitution).

Set u:                                                                                                             [tex]\displaystyle x = sin(u)[/tex][u] Differentiate [Trigonometric Differentiation]:                                         [tex]\displaystyle dx = cos(u) \ du[/tex]Rewrite u:                                                                                                       [tex]\displaystyle u = arcsin(x)[/tex]

Step 3: Integrate Pt. 2

[Integral] Trigonometric Substitution:                                                           [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Rewrite:                                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Simplify:                                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du[/tex][Integral] Reduction Formula:                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b[/tex][Integral] Simplify:                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du[/tex][Integral] Reduction Formula:                                                                          [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Simplify:                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Reverse Power Rule:                                                                     [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex]Simplify:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b[/tex]Back-Substitute:                                                                                               [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b[/tex]Simplify:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Rewrite:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Find the midpoint of the line segment defined by the points: (5, 4) and (−2, 1) (2.5, 1.5) (3.5, 2.5) (1.5, 2.5) (3.5, 1.5)

Answers

Answer:

[tex]\boxed {\boxed {\sf (1.5 , 2.5)}}[/tex]

Step-by-step explanation:

The midpoint is the point that bisects a line segment or divides it into 2 equal halves. The formula is essentially finding the average of the 2 points.

[tex](\frac {x_1+x_2}{2}, \frac {y_1+ y_2}{2})[/tex]

In this formula, (x₁, y₁) and (x₂, y₂) are the 2 endpoints of the line segment. For this problem, these are (5,4 ) and (-2, 1).

x₁= 5 y₁= 4 x₂= -2 y₂= 1

Substitute these values into the formula.

[tex]( \frac {5+ -2}{2}, \frac {4+1}{2})[/tex]

Solve the numerators.

5+ -2 = 5-2 = 3 4+1 = 5

[tex]( \frac {3}{2}, \frac{5}{2})[/tex]

Convert the fractions to decimals.

[tex](1.5, 2.5)[/tex]

The midpoint of the line segment is (1.5 , 2.5)

A plane traveled 4425 miles with the wind in 7.5 hours and 3675 miles against the wind in the same amount of time. Find the speed of the plane in still air and the speed of the wind.

Answers

Answer:

540 and 50 respectively

Step-by-step explanation:

Let the speed of plane in still air be x and the speed of wind be y.

ATQ, (x+y)*7.5=4425 and (x-y)*7.5=3675. Solving it, we get x=540 and y=50

Write this quadratic equation in standard form.

Answers

Answer:

-[tex]x^{2} + 3x -8 = 0[/tex]

Step-by-step explanation:

[tex]x^{2} + x -8 - 2x = 0[/tex] [tex]x^{2} + 3x -8 = 0[/tex]

On Monday, Main Street station sells 40 tickets.
There are four types of ticket; infant, child, adult and senior.
The bar chart shows the number of infant, child and adult tickets sold.

How many Senior tickets sold ?

Find how many adult tickets were sold than child tickets ?
BOTH QUESTIONS ANSWER NEEDED PLES HELP

Answers

Answer:

0 senior tickets were sold

5 more adult tickets were sold than chil tickets

Step-by-step explanation:

You need to see the frequency of each bar

Answer by Gauthmath

A fruit company delivers its fruit in two types of boxes: large and small. A delivery of 3 large boxes and 5 small boxes has a total weight of 88 kilograms. A delivery of 12 large boxes and 2 small boxes has a total weight of 235 kilograms. How much does each type of box weigh?

Answers

Answer:

Step-by-step explanation:

We need a system of equations here. The first equation is that 3L boxes + 5s boxes (L = large and s = small) = 88 kg so

3L + 5s = 88

12L + 2s = 235 according to the other information given.

Solve the first equation for either L or s. I'll solve for L, just because:

3L = 88 - 5s and

L = [tex]\frac{88}{3}-\frac{5}{3}s[/tex] and sub that into the second equation for L:

[tex]12(\frac{88}{3}-\frac{5}{3}s)+2s=235[/tex] and if you distribute the 12 into the parenthesis you'll simplify it down a bit to

352 - 20s + 2s = 235 and combine like terms:

-18s= -117 so

s = 6.5 kg and plug that in to solve for L:

L = [tex]\frac{88}{3}-\frac{5}{3}(6.5)[/tex] and

L = 18.5 kg

Use formula autocomplete to enter a sum function in cell B7 to calculate the total of cells in B2:B6

Answers

Excel enables the users to perform mathematics basic and advanced function with just one formula.

The formula for sum of entire row or column can be done with just entering a single formula and results are shown in seconds.

The formula for sum of few column cells is,

=SUM(B2:B6)

The spreadsheet allows the user to enter various formula and results are displayed withing seconds.

There are formulas for basic math functions and there are also formulas for advance mathematics calculations. For addition of values of many cells sum formula is used and range is assigned for reference.

The formula adds all the values of selected cells and displays the results in different cell.

Learn more at https://brainly.com/question/24365931

HELP URGENT !!!!!!



what happens if the lines that are being cut by the transversal are not parallel

Answers

The answer is c. Alcohol your welcome

what percent is equal to 7/25​

Answers

28% because 25x4=100 7x4=28

Question two
The lengths of the sides of a triangle are in the ratio 2:3:4. The shortest side is 14cm long.
Find the lengths of the other two sides​

Answers

Answer:

14 and 21 and 28

Step-by-step explanation:

2:3:4.

The shortest side is 14

14/2 = 7

Multiply each side by 7

2*7:3*7:4*7

14 : 21 : 28

Triangle are in the ratio 2:3:4.

2x =5

x = 5/2 = 2.5 cm

3x = 3(2.5) =7.5 cm
4x =4(2.5) =10.0 cm
Other Questions
prove that the square of an odd number is always 1 more than a multiple of 4 Find the area of the shaded region. Round to the nearest tenth. 11.1m 130 Area = [ ? ] m Read and choose the correct option to complete the sentence.________ es un desastre natural. Un incendio en la cocina de casa Una falta de electricidad en mi edificio Un maremoto en el sur del pas Una cascada en el ro Find a recursive rule for the nth term of the sequence.5, 20, 80, 320, ... Explain carefully what happen to the propanol-water system if approximately50% of propanol by mass is fractionally distilled. What will be the distillate andthe residue? (r-3)(r-1)Help me please!!! Question 8 of 30Which of these fields of study would be the most useful for someoneinterested in preserving native plants in grasslands?A. MeteorologyB. BotanyC. ChemistryD. AnthropologySUBMIT does she have to call him( into passive) g A spherical container of inner diameter 0.9 meters contains nuclear waste that generates heat at the rate of 872 W/m3. Estimate the total rate of heat transfer from the container to its surroudings ignoring radiation. How do I find the image after its been rotated 270 degrees about the point (-2,-1)? Carlos has been trying to manage his type 2 diabetes more effectively through diet, but he's stillunhappy with his daily sugar levels. He's not sure what he's doing wrong, since he has eliminated mostsugary foods from his diet. He has a significant budget available to help him reach this goal but isunsure how to spend the money. What might be the most appropriate purchase for Carlos? What do you think might happen if someone is released from the community? Which observation provided Albert Einstein the clue that he needed to explain the photoelectric effect? Exercise 4-11 Computing net sales for multiple-step income statement LO P4 A company reports the following sales-related information. Sales, gross $ 245,000 Sales returns and allowances $ 20,000 Sales discounts 4,900 Sales salaries expense 10,900 Prepare the net sales portion only of this companys multiple-step income statement. A(n) _____ is the component of an expert system that performs tasks similar to what a human expert does by explaining to end users how recommendations are derived. Which simple machine is shown in the diagram?a wedgea screwan inclined planea wheel and axle Can you please help with this question. Please please (e) Find the height and orbital velocity of the geostationary satellite above the earth assuming earth as a sphere of radius 6370 km. [Radius of earth, R = 6370km, Acceleration due to gravity = 10ms) On January 1, 2020, Cheyenne Company purchased 40% of Santos Corporation 465,000 outstanding shares of common stock at a total cost of $13 per share. On October 25, Santos declared and paid a cash dividend of $0.40 per share. On December 31, Santos reported a net income of $934,000 for the year and the market price of its common stock was $14 per share. Prepare all necessary journal entries for Mica company for 2020. On March 31, 2019, Brodie Corporation acquired bonds with a par value of $400,000 for $425,800. The bonds are due December 31, 2024, carry a 12% annual interest rate, pay interest on June 30 and December 31, and are being held to maturity. The accrued interest is included in the acquisition price of the bonds. Brodie uses straight-line amortization.Required: 1. Prepare journal entries for Brodie to record the purchase of the bonds and the first two interest receipts.2. Next Level If Brodie failed to separately record the interest at acquisition, explain the errors that would occur in the companys financial statements (no calculations are required).