Answer:
The total interest earned at the end of the year was $ 820, and the interest generated by the total deposited was 10.25%.
Step-by-step explanation:
Given that last year, Manuel deposited $ 7000 into an account that paid 11% interest per year and $ 1000 into an account that paid 5% interest per year, and no withdrawals were made from the accounts, to determine what was the total interest earned at the end of year and what was the percent interest for the total deposited, the following calculations must be performed:
7000 x 0.11 + 1000 x 0.05 = X
770 + 50 = X
820 = X
8000 = 100
820 = X
820 x 100/8000 = X
82,000 / 8,000 = X
10.25 = X
Therefore, the total interest earned at the end of the year was $ 820, and the interest generated by the total deposited was 10.25%.
Hello my ''brainiest intelligent minds'' once again I'm counting on you, lol, I'm trying to figure this out.
f(x)=2x+3
g(x)=3x+2
What does (f+g)(x) equal?
Answer:
(f + g)(x) = 5x + 5
General Formulas and Concepts:
Algebra I
Terms/CoefficientsFunctionsFunction NotationStep-by-step explanation:
Step 1: Define
Identify
f(x) = 2x + 3
g(x) = 3x + 2
Step 2: Find
Substitute in function values: (f + g)(x) = 2x + 3 + 3x + 2Combine like terms: (f + g)(x) = 5x + 5The average weight of a professional football player in 2009 was pounds. Assume the population standard deviation is pounds. A random sample of professional football players was selected.
Required:
a. Calculate the standard error of the mean.
b. What is the probability that the sample mean will be less than 230 pounds?
c. What is the probability that the sample mean will be more than 231 pounds?
d. What is the probability that the sample mean will be between 248 pounds and 255 pounds?
Answer:
6.286;
0.0165
0.976
0.1995
Step-by-step explanation:
Given that :
Mean, μ = 243. 4
Standard deviation, σ = 35
Sample size, n = 31
1.)
Standard Error
S. E = σ / √n = 35/√31 = 6.286
2.)
P(x < 230) ;
Z = (x - μ) / S.E
P(Z < (230 - 243.4) / 6.286))
P(Z < - 2.132) = 0.0165
3.)
P(x > 231)
P(Z > (231 - 243.4) / 6.286))
P(Z > - 1.973) = 0.976 (area to the right)
4)
P(x < 248)
P(Z < (248 - 243.4) / 6.286))
P(Z < 0.732) = 0.7679
P(x < 255)
P(Z < (255 - 243.4) / 6.286))
P(Z < 1.845) = 0.9674
0.9674 - 0.7679 = 0.1995
For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained.
(i) 242
(ii) 1280
(iii) 245
(iv)968
(v) 1728
(vi) 4851
Answer:
BELOW
Step-by-step explanation:
242: multiply it by 2 to get 484 and its square root is 22
1280: multiply it by 5 to get 6400 and its square root is 80.
245: multiply it by 5 to get 1225 and its square root is 35.
968: multiply it by 2 to get 1936 and its square root is 44.
1728: multiply it by 3 to get 5184 and its square root is 72
4851: multiply it by 11 to get 53361 and its square root is 231.
HOPE THIS HELPED
what is 9 divided by 7
Answer: 1.28571428571. This number is infinite.
Step-by-step explanation:
Answer:
1.29 rounded
Step-by-step explanation:
Simplify your answer as much as possible.
for 0 degrees ≤ x < 360 degrees , what are the solutions to sin (x/2) + cos(x) - 1 =0
Recall the double angle identity for cosine:
cos(x) = cos(2×x/2) = 1 - 2 sin²(x/2)
Then the equation can be rewritten as
sin(x/2) + (1 - 2 sin²(x/2)) - 1 = 0
sin(x/2) - 2 sin²(x/2) = 0
sin(x/2) (1 - 2 sin(x/2)) = 0
sin(x/2) = 0 or 1 - 2 sin(x/2) = 0
sin(x/2) = 0 or sin(x/2) = 1/2
[x/2 = arcsin(0) + 360n ° or x/2 = 180° - arcsin(0) + 360n °]
… … or [x/2 = arcsin(1/2) + 360n ° or x/2 = 180° - arcsin(1/2) + 360n °]
x/2 = 360n ° or x/2 = 180° + 360n °
… … or x/2 = 30° + 360n ° or x/2 = 150° + 360n °
x = 720n ° or x = 360° + 720n °
… … or x = 60° + 720n ° or x = 300° + 720n °
(where n is any integer)
We get only three solutions in 0° ≤ x < 360° :
720×0° = 0°
60° + 720×0° = 60°
300° + 720×0° = 300°
Answer:
B: (0, 60, 300)
Step-by-step explanation:
right on edge
Solve the following equation for the given variable.
4x + 19 + 3x = -5
Round your answers to the nearest tenths place.
Step-by-step explanation:
4x + 19 + 3x = - 5
4x + 3x + 19 = - 5 collect the like terms
7x + 19 = - 5
7x = - 5 - 19 bring 19 to the right
7x/ 7x = - 24/ 7
x = - 3.4
I hope this answers your question
Max has 3 fiction books and 6 nonfiction books to donate to the community center. He wants to package them so that there is an equal number of fiction and nonfiction books in each group. He also wants to have as many packages as possible. How many books are in each group?
Answer:
Each group has 1 fiction book and 2 nonfiction book(s).
Instructions: Find the missing length indicated.
Answer:
x = 65
Step-by-step explanation:
x = √(25×(25+144))
x = √(25×169)
x = 5×13
x = 65
Answered by GAUTHMATH
The area of rectangle is 36 cm2 and breadth is one fourth of the length.Find length and breadth of rectangle.
We know
[tex]\boxed{\sf Area=Length\times Breadth}[/tex]
[tex]\\ \sf\longmapsto x(4x)=36[/tex]
[tex]\\ \sf\longmapsto 4x^2=36[/tex]
[tex]\\ \sf\longmapsto x^2=\dfrac{36}{4}[/tex]
[tex]\\ \sf\longmapsto x^2=9[/tex]
[tex]\\ \sf\longmapsto x=\sqrt{9}[/tex]
[tex]\\ \sf\longmapsto x=3[/tex]
Breadth=3mLength=4(3)=12m7. 20x + 10 = 110
a. X= 1
b. X= 5
c. x= 12
Answer:
b x=5
Step-by-step explanation:
20x+10=110
20x+10-10=110-10
20x/20=100/20
x=5
Answer:
x=5
Step-by-step explanation:
20x + 10 = 110
Subtract 10 from each side
20x +10-10 = 110-10
20x = 100
divide by 20
20x/20 =100/20
x= 5
How many permutations of letter of the word APPLE are there?
Answer:
There are 60 permutations.
Step-by-step explanation:
Arrangements formula:
The number of possible arrangements of n elements is given by:
[tex]A_n = n![/tex]
With repetition:
For each element that repeats, with [tex]n_1, n_2, ..., n_n[/tex] times, the formula is:
[tex]A_n^{n_1,n_2,...,n_n} = \frac{n!}{n_1!n_2!...n_n}[/tex]
In this question:
Apple has 5 letters.
P appears two times. So
[tex]A _5^{2} = \frac{5!}{2!} = 60[/tex]
There are 60 permutations.
The lengths of two sides of the right triangle ABC shown in the illustration given
a= 7cm and b= 24cm
Answer:
25 cm.
Step-by-step explaination:
Given,
Two sides of a triangle:
a = 7cm
b = 24 cm
To find,
Third side:
c = ?
By Pythagorean Theorem;
a² + b² = c²
[where c is the longest side,hypotenuse]
Putting the value of a and b;
we get,
7² + 24² = c²
49 + 576 = c²
625 = c²
25² = c² (square root)
25 = c
c = 25
Therefore, the length of the third side will be equal to 25 cm.
The lengths of two sides of the right triangle ABC shown in the illustration given
a= 7cm and b= 24cm
Given,> a= 7cm
> b= 24cm
To find?Side c (third side)
Solution:-Using Pythagoras theorem,
▶️ a² + b² = c
▶️ 7cm ² + 24cm² = c²
▶️ 49cm + 576cm = c²
▶️ 625cm = c²
▶️ 25² = c² (25×25 = 625)
▶️ c = 25
The value of c is 25 cm.
A random sample of 25 graduates of four-year business colleges by the American Bankers Association revealed a mean amount owed in student loans was $14,381 with a standard deviation of $1,892. Assuming the pop is normally distributed:
a) Compute a 90% confidence interval, as well as the margin of error.
b) Interpret the confidence interval you have computed.
Answer:
a) The 90% confidence interval for the mean amount owed in student loans of graduates of four-year business colleges is ($13,600, $15,162), having a margin of error of $781.
b) We are 90% sure that the mean amount owed in student loans of graduates of all four-year business colleges is between $13,600 and $15,162.
Step-by-step explanation:
Question a:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom,which is the sample size subtracted by 1. So
df = 25 - 1 = 24
90% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 24 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95[/tex]. So we have T = 2.0639
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.0639\frac{1892}{\sqrt{25}} = 781[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 14381 - 781 = $13,600
The upper end of the interval is the sample mean added to M. So it is 14381 + 781 = $15,162
The 90% confidence interval for the mean amount owed in student loans of graduates of four-year business colleges is ($13,600, $15,162), having a margin of error of $781.
b) Interpret the confidence interval you have computed.
We are 90% sure that the mean amount owed in student loans of graduates of all four-year business colleges is between $13,600 and $15,162.
Damaris will be working at the local pool over his ten-week summer break. His net pay will be $167.30 each week. He hopes to have enough money to purchase a new pair of shoes that cost $175 by the end of his break. What percent of his net pay does Damaris need to save each week to reach his goal? Round to the nearest hundredth. (2 points)
1.05%
10.46%
11.37%
Damaris needs to save 10.46% of his net pay each week to purchase the new pair of shoes by the end of his break.
Given:
Net pay per week is $167.30Cost of new pair of shoes is $175Summer break is for 10 weeksTo find: The percentage of his net pay that Damaris needs to save each week to purchase the shoes by the end of his break
Let us assume that Damaris needs to save x% of his net pay each week to buy the shoes by the end of his break.
Then, savings per week is x% of $167.30, that is,
[tex]\frac{x}{100}\times 167.30[/tex]
Then, his savings for 10 weeks is,
[tex]10 \times \frac{x}{100}\times 167.30[/tex]
Since the summer break is for 10 weeks, Damaris' savings for the entire summer break is,
[tex]10 \times \frac{x}{100}\times 167.30[/tex]
Damaris wants to buy the new pair of shoes by then end of the break. Then, his savings for the entire summer break should equal the cost of the new pair of shoes.
It is given that the cost of the new pair of shoes is $175.
Then, according to the problem,
[tex]10 \times \frac{x}{100}\times 167.30 =175[/tex]
[tex]x=\frac{175\times 100}{10\times167.30}[/tex]
[tex]x=10.460251[/tex]
Rounding to the nearest hundredth, we have,
[tex]x=10.46[/tex]
Thus, Damaris needs to save [tex]10.46[/tex]% of his net pay each week to buy the shoes by the end of his break.
Learn more about percentage here:
https://brainly.com/question/22400644
Ahmed bought a TV for his room in 2016 for AED 1,500. he decided to sell it in 2020 for AED 900. what is the rate of depreciation when he bought the TV and when he sold it
Answer:
40% depreciation over the 4 years
10% depreciation per year
Step-by-step explanation:
The number of years between buying and selling is:
2020 - 2016 = 4
4 years
The amount of depreciation in the 4 years is:
AED 1,500 - AED 900 = AED 600
The percent depreciation for the 4 years is:
(1500 - 900)/1500 * 100% = 40%
The percent depreciation per year is:
40%/4 = 10%
Full-time Ph.D. students receive an average of $12,837 per year. If the average salaries are normally distributed with a standard deviation of $1500, find these probabilities. a. The student makes more than $15,000. b. The student makes between $13,000 and $14,000.
Answer:
a) 0.0749 = 7.49% probability that the student makes more than $15,000.
b) 0.227 = 22.7% probability that the student makes between $13,000 and $14,000.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Full-time Ph.D. students receive an average of $12,837 per year.
This means that [tex]\mu = 12837[/tex]
Standard deviation of $1500
This means that [tex]\sigma = 1500[/tex]
a. The student makes more than $15,000.
This is 1 subtracted by the p-value of Z when X = 15000.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{15000 - 12837}{1500}[/tex]
[tex]Z = 1.44[/tex]
[tex]Z = 1.44[/tex] has a p-value of 0.9251.
1 - 0.9251 = 0.0749
0.0749 = 7.49% probability that the student makes more than $15,000.
b. The student makes between $13,000 and $14,000.
This is the p-value of Z when X = 14000 subtracted by the p-value of Z when X = 13000.
X = 14000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{14000 - 12837}{1500}[/tex]
[tex]Z = 0.775[/tex]
[tex]Z = 0.775[/tex] has a p-value of 0.7708.
X = 13000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{13000 - 12837}{1500}[/tex]
[tex]Z = 0.11[/tex]
[tex]Z = 0.11[/tex] has a p-value of 0.5438.
0.7708 - 0.5438 = 0.227
0.227 = 22.7% probability that the student makes between $13,000 and $14,000.
7.49% of the student makes more than $15,000, while 23.85% of the student makes between $13,000 and $14,000
What is z score?
Z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:
z = (raw score - mean) / standard deviation
Given that:
Mean = $12837, standard deviation = $1500
a) For >15000:
z = (15000 - 12837)/1500 = 1.44
P(z > 1.44) = 1 - P(z < 1.44) = 1 - 0.9251 = 0.0749
b) For >13000:
z = (13000 - 12837)/1500 = 0.11
For <14000:
z = (14000 - 12837)/1500 = 0.78
P(0.11 < z < 0.78) = P(z < 0.78) - P(z < 0.11) = 0.7823 - 0.5438 = 0.2385
7.49% of the student makes more than $15,000, while 23.85% of the student makes between $13,000 and $14,000
Find out more on z score at: https://brainly.com/question/25638875
Is this a function help
Solve each equation for the indicated variable. Solve for pi.
9514 1404 393
Answer:
π = 2A/r²
Step-by-step explanation:
Multiply by the inverse of the coefficient of π.
A = π(r²/2)
π = 2A/r²
(4x - 3) × (x + 2)=0
Hi,
AxB = 0 means A=0. or B=0
so 2 solutions :
4x-3= 0
4x=3
x = 3/4
and x+2 = 0.
x= -2
solutions are : -2 +and 3/4
2 answers
1) -2
2) -3/4
Ell takes the 17 apples home, and the bakes as many apple pies
as he can. He uses 7 apples in each ple. How many apple pies does
El bake? How many apples are left?
Counters
17:7
10
10
c
Boles
pies
apples are en
Answer:
Tedyxhcj eydyfhxrstetdhsawe
The ratio of boys to girls in a high school is found to be three to five. If a class has 12boys, how many girls would you expect to be in the class?
Answer:
20 girls
Step-by-step explanation:
boys: girls
3 5
There are 12 boys
12/3 = 4
Multiply each side by 4
boys: girls
3*4 5*4
12 20
Answer:
20 girls
Step-by-step explanation:
Divide 12 by 3 : 12/3 = 4
Multiply 4 by 5 : 4*5 = 20
Match each division expression to its quotient
[tex]\frac{122}{10}*(-\frac{10}{61} )[/tex]Let's start by calculating their values one by one, and then we can match them.
Starting with [tex]-2\frac{2}{5} \div\frac{4}{5}[/tex], we can simplify this more by adding [tex]2*5[/tex] to the nominator. That gives us [tex]-\frac{12}{5} \div\frac{4}{5}[/tex]. Now we can apply the Keep-Change-Flip rule. Keep the first fraction as it is, change the division sign into multiplication, flip the second fraction. [tex]-\frac{12}{5} *\frac{5}{4}[/tex]. We apply fraction multiplication which is simply multiplying the first nominator by the first nominator and the same for the dominator. and the result is [tex]-\frac{60}{20}[/tex] or simply -3.
[tex]-2\frac{2}{5} \div\frac{4}{5} = -3[/tex]
Now, we calculate the second one, [tex]-12.2\div(-6.1)[/tex]. This can be re-written as [tex]-\frac{122}{10}\div(-\frac{61}{10} )[/tex]. As we did in the previous part we apply the Keep-Change-Flip, this will give us [tex]-\frac{122}{10}*(-\frac{10}{61} )[/tex]. Do the multiplication and the result will be [tex]\frac{1220}{610}[/tex], we can divide both the nominator and dominator by 10 which will result [tex]\frac{122}{61}[/tex] and finally we know that [tex]61*2=122[/tex] and we can divide both of them again by 61 which will result [tex]\frac{2}{1} =2[/tex]
[tex]-12.2\div(-6.1)=2[/tex]
You can try solving the rest by yourself but here's is the final answer for them both:
[tex]16\div(-8)=-2\\3\frac{3}{7} \div1\frac{1}{7} =3[/tex]
Nadia is ordering cheesecake at a restaurant, and the server tells her that she can have up to five toppings: caramel, whipped cream, butterscotch sauce, strawberries, and hot fudge. Since she cannot decide how many of the toppings she wants, she tells the server to surprise her. If the server randomly chooses which toppings to add, what is the probability that Nadia gets just caramel, butterscotch sauce, strawberries, and hot fudge
Answer:
The probability that Nadia gets just caramel, butterscotch sauce, strawberries, and hot fudge is P = 1/32 = 0.03125
Step-by-step explanation:
There are up to 5 toppings, such that the toppings are:
caramel
whipped cream
butterscotch sauce
strawberries
hot fudge
We want to find the probability that, If the server randomly chooses which toppings to add, she gets just caramel, butterscotch sauce, strawberries, and hot fudge.
First, we need to find the total number of possible combinations.
let's separate them in number of toppings.
0 toppins:
Here is one combination.
1 topping:
here we have one topping and 5 options, so there are 5 different combinations of 1 topping.
2 toppings.
Assuming that each topping can be used only once, for the first topping we have 5 options.
And for the second topping we have 4 options (because one is already used)
The total number of combinations is equal to the product between the number of options for each topping, so here we have:
c = 4*5 = 20 combinations.
But we are counting the permutations, which is equal to n! (where n is the number of toppings, in this case is n = 2), this means that we are differentiating in the case where the first topping is caramel and the second is whipped cream, and the case where the first topping is whipped cream and the second is caramel, to avoid this, we should divide by the number of permutations.
Then the number of different combinations is:
c' = 20/2! = 10
3 toppings.
similarly to the previous case.
for the first topping there are 5 options
for the second there are 4 options
for the third there are 3 options
the total number of different combinations is:
c' = (5*4*3)/(3!) = (5*4*3)/(3*2) = 10
4 toppings:
We can think of this as "the topping that we do not use", so there are only 5 possible toppings to not use, then there are 5 different combinations with 4 toppings.
5 toppings:
Similar to the first case, here is only one combination with 5 toppings.
So the total number of different combinations is:
C = 1 + 5 + 10 + 10 + 5 + 1 = 32
There are 32 different combinations.
And we want to find the probability of getting one particular combination (all of them have the same probability)
Then the probability is the quotient between one and the total number of different combinations.
p = 1/32
The probability that Nadia gets just caramel, butterscotch sauce, strawberries, and hot fudge is P = 1/32 = 0.03125
Rufus works an average of 46 hours each week. He gets paid $5.70 per
hour and time-and-a-half for all hours over 40 hours. What is his annual
income?
a. $14,523.60
b. $11,856
c. $25,650
d. $2,667.60
The equation of a line is (3)/(5)x+(1)/(3)y=(1)/(15) . The x-intercept of the line is , and its y-intercept is .
bxf-mgii-whr
Step-by-step explanation:
come I will teach
here's a graph of a linear function write the equation that describes the function express it in slope-intercept form
Answer:
y = 3/4 x - 3
Step-by-step explanation:
the slope of a line is the factor of x in the equation and is expressed as ratio of y/x : defining how many units y changes, when x changes a certain number of units.
in our graph here we can see that when increasing x from e.g. 0 to 4 (the x-axis intercept point, a change of +4), y changes from -3 to 0 (a change of +3).
so, the slope and factor of x is y/x = 3/4
and for x=0 we get y=-3 as y-axis intercept point.
so, the line equation is
y = 3/4 x - 3
Need help answer plz help
Answer:
BONANA MY NANA
Step-by-step explanation:
Solve each system by graphing.
Answer:
it is 2 te he
Step-by-step explanation:
ONCE THE 5 6 = 7 10 .. ?% =1 x 7 =2 te he
15 points work out ratio for x
Answer:
x = 25
Step-by-step explanation:
x : (x+10) = 5:7
Fractional form
x / x+10 = 5/7
Cross multiply:
x * 7 = (x+10) * 5
7x = 5x + 50
7x - 5x = 5x + 50 - 5x
2x = 50
x = 25
Check:
25 : 25 + 10
25 : 35
25/35 = 5/7
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K