Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect. If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be

Answers

Answer 1

The question is incomplete, the complete question is;

Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect.

Part A If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be

K/2.

K.

2K.

greater than 2K.

Answer:

2K

Explanation:

Given that the kinetic energy of photo electrons is given by;

K= E -Wo

Where;

K = kinetic energy

E= energy of incident photon

Wo = work function

But;

E= hf

Wo = fo

h= Plank's constant

f= frequency of incident photon

fo= Threshold frequency

So:

K= hf - hfo

Where the frequency of incident light is doubled;

K= 2hf - hfo

Hence, maximum kinetic energy of the emitted electrons in this case will be 2K


Related Questions

In a game of pool, the cue ball moves at a speed of 2 m/s toward the eight ball. When the cue ball hits the eight ball, the cue ball bounces off with a speed of 0.8 m/s at an angle of 20', as shown in the diagram below. Both balls have a mass of 0.6 kg.
a) what is the momentum of the system before the collision
b) what is the momentum after the collision
c) what angle dose the right ball travel after the collision
d) what is the magnitude of the eight balls velocity after the collision

Answers

Answer:

a)  p₀ = 1.2 kg m / s,  b) p_f = 1.2 kg m / s,  c)   θ = 12.36, d)  v_{2f} = 1.278 m/s

Explanation:

For this exercise we define a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved

 

a) the initial impulse is

         p₀ = m v₁₀ + 0

         p₀ = 0.6 2

         p₀ = 1.2 kg m / s

b) as the system is isolated, the moment is conserved so

        p_f = 1.2 kg m / s

we define a reference system where the x-axis coincides with the initial movement of the cue ball

 

we write the final moment for each axis

X axis

         p₀ₓ = 1.2 kg m / s

         p_{fx} = m v1f cos 20 + m v2f cos θ

         p₀ = p_f

        1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ

         1.2482 = v_{2f} cos θ

Y axis  

        p_{oy} = 0

        p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ

        0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ

        0.2736 = v_{2f} sin θ

we write our system of equations

         0.2736 = v_{2f} sin θ

         1.2482 = v_{2f} cos θ

divide to solve

         0.219 = tan θ

          θ = tan⁻¹ 0.21919

          θ = 12.36

let's look for speed

            0.2736 = v_{2f} sin θ

             v_{2f} = 0.2736 / sin 12.36

            v_{2f} = 1.278 m / s

A space ship has four thrusters positioned on the top and bottom, and left and right as shown below. The thrusters can be operated independently or together to help the ship navigate in all directions.
Initially, the Space Probe is floating towards the East, as shown below, with a velocity, v. The pilot then turns on thruster #2.

Select one:

a.
Space ship will have a velocity to the West and will be speeding up.

b.
Space ship will have a velocity to the East and will be speeding up.

c.
Space ship will have a velocity to the East and will be slowing down.

d.
Space ship will have a velocity to the West and will be slowing down.

e.
Ship experiences no change in motion.

Answers

Answer:

The correct answer is - c.  Spaceship will have a velocity to the East and will be slowing down.

Explanation:

In this case, if turned on thruster #2 then it will exert force on the west side as thruster 2 is on the east side and it can be understood by Newton's third law that says each action has the same but opposite reaction.

As the spaceship engine applies force on the east side then according to the law the exhauster gas applies on towards west direction. It will try to decrease the velocity of the spaceship however, the direction of floating still be east side initally.

Each rarefraction on a longitudinal wave correspond to what point on a transverse wave?

Answers

Answer: In a longitudinal wave, the crest and trough of a transverse wave correspond respectively to the compression, and the rarefaction. A compression is when the particles in the medium through which the wave is traveling are closer together than in its natural state, that is, when their density is greatest.

If ∆H = + VE , THEN WHAT REACTION IT IS
1) exothermic
2) endothermic​

Answers

Answer:

endothermic

Explanation:

An endothermic is any process with an increase in the enthalpy H (or internal energy U) of the system. In such a process, a closed system usually absorbs thermal energy from its surroundings, which is heat transfer into the system.

Cuando el pistón tiene un volumen de 2x10^-4 m^3, el gas en el pistón está a una presión de 150 kPa. El área del pistón es 0.00133 m^2. Calcular la fuerza que el gas ejerce sobre el embolo del pistón.

Answers

Answer:

F = 1.128 10⁸ Pa

Explanation:

Pressure is defined by

         P = F / A

If the gas is ideal for equal force eds on all the walls, so on the piston area we have

        F = P A

We reduce the pressure to the SI system

       P = 150 kpa (1000 Pa / 1kPa = 150 103 Pa

we calculate

       F = 150 10³ / 0.00133

       F = 1.128 10⁸ Pa

What are the systems of units? Explain each of them.​

Answers

THERE ARE COMMONLY THREE SYSTEMS OF UNIT. THEY ARE:-

CGS System- (Centimeter-Gram-Second system) A metric system of measurement that uses the centimeter, gram and second for length, mass and time.

FPS System- (Foot–Pound–Second system).

The system of units in which length is measured in foot , mass in pound and time in second is called FPS system. It is also known as British system of units.

MKS System- (Meter-Kilogram-Second system) A metric system of measurement that uses the meter, kilogram, gram and second for length, mass and time. The units of force and energy are the "newton" and "joule."

Q)what are convex mirrors?​

Answers

Answer:

A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex or concave. Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices.

A convex mirror (or lens) is one constructed so that it is thicker in the middle than it is at the edge.

A block of mass 2 kg is launched by compressing a spring of force constant 1200 N/m. The block slides on a frictionless surface, up a 1 meter tall ramp, then it enters a region of rough surface. It comes to a stop after traveling 3 meters over the rough surface. The coefficient of kinetic friction between the block and the rough surface is 0.40.

Required:
a. How many forces end up doing work on the block from release to stop?
b. What is the total non-conservative work done on the block?
c. What is the change in the spring potential energy of the block?

Answers

Answer:

zzyibgsdwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwe

Explanation:

a point object is 10 cm away from a plane mirror while the eye of an observer(pupil diameter is 5.0 mm) is 28 cm a way assuming both eye and the point to be on the same line perpendicular to the surface find the area of the mirror used in observing the reflection of the point

Answers

Answer:

1.37 mm²

Explanation:

From the image attached below:

Let's take a look at the two rays r and r' hitting the same mirror from two different positions.

Let x be the distance between these rays.

[tex]d_o =[/tex] distance between object as well as the mirror

[tex]d_{eye}[/tex] = distance between mirror as well as the eye

Thus, the formula for determining the distance between these rays can be expressed as:

[tex]x = 2d_o tan \theta[/tex]

where; the distance between the eye of the observer and the image is:

[tex]s = d_o + d_{eye}[/tex]

Then, the tangent of the angle θ is:

[tex]tan \theta = \dfrac{R}{d_o+d_{eye}}[/tex]

replacing [tex]tan \theta = \dfrac{R}{d_o+d_{eye}}[/tex] into [tex]x = 2d_o tan \theta[/tex], we have:

[tex]x = 2d_o \Big( \dfrac{R}{d_o+d_{eye}}\Big)[/tex]

[tex]x = 2(10) \Big( \dfrac{0.25}{10+28}\Big)[/tex]

[tex]x = 20\Big( \dfrac{0.25}{38}\Big) cm[/tex]

x = (0.13157 × 10) mm

x = 1.32 mm

Finally, the area A = π r²

[tex]A = \pi(\frac{x}{2})^2[/tex]

[tex]A = \pi(\frac{1.32}{2})^2[/tex]

A = 1.37 mm²

A friend lends you the eyepiece of his microscope to use on your own microscope. He claims that since his eyepiece has the same diameter as yours but twice the focal length, the resolving power of your microscope will be doubled. Is his claim valid? Explain.

Answers

Answer:

The resolving power remains same.

Explanation:

The resolving power of the lens is directly proportional to the diameter of the lens not on the focal length.

As the diameter is same but the focal length is doubled so the resolving power remains same.

on a horizontal axis whose unit is the meter, a linear load ranging from 0 to 1 ma a linear load distribution = 2 nC / m.
determine the modulus of the electric field created by the previous loaded bar at the point A of abscissa 2m (we have to find the relation between l, which is the distance between the elementary bar and the point A and x which sweeps the segment [0: 1]

Answers

Answer:

The correct answer is - 8.99N/C

Explanation:

[tex]dE=k\dfrac{dq}{x^2}\\ dq=\lambda{dx}\\ \lambda=2nC/m\\ dq=2dxnC\\ dE=k\dfrac{2dx}{x^2}\\ E=2k\int_1^2\dfrac{dx}{x^2}\\ E=2k(\frac{-1}{x})_1^2=k\times10^{-9}N/C\\ E=8.99\times10^9\times10^{-9}N/C\\ E=8.99N/C\\dE=k[/tex]

19 point please please answer right need help

Block on an incline
A block of mass m1 = 3.9 kg on a smooth inclined plane of angle 38is connected by a cord over a small frictionless
pulley to a second block of mass m2 = 2.6 kg hanging vertically. Take the positive direction up the incline and use 9.81
m/s2 for g.
What is the tension in the cord to the nearest whole number?

Answers

Explanation:

We can write Newton's 2nd law as applied to the sliding mass [tex]m_1[/tex] as

[tex]T - m_1g\sin38 = m_1a\:\:\:\:\:\:\:(1)[/tex]

For the hanging mass [tex]m_2,[/tex] we can write NSL as

[tex]T - m_2g = -m_2a\:\:\:\:\:\:\:(2)[/tex]

We need to solve for a first before we can solve the tension T. So combining Eqns(1) & (2), we get

[tex](m_1 + m_2)a = m_2g - m_1g\sin38[/tex]

or

[tex]a = \left(\dfrac{m_2 - m_1\sin38}{m_1 + m_2}\right)g[/tex]

[tex]\:\:\:\:= 0.30\:\text{m/s}^2[/tex]

Using this value for the acceleration on Eqn(2), we find that the tension T is

[tex]T = m_2(g - a) = (2.6\:\text{kg})(9.51\:\text{m/s}^2)[/tex]

[tex]\:\:\:\:=24.7\:\text{N}[/tex]

The armature of an AC generator has 200 turns, which are rectangular loops measuring 5 cm by 10 cm. The generator has a sinusoidal voltage output with an amplitude of 18 V. If the magnetic field of the generator is 300 mT, with what frequency does the armature turn

Answers

Answer:

[tex]f=9.55Hz[/tex]

Explanation:

From the question we are told that:

Number of Turns [tex]N=200[/tex]

Length [tex]l=5cm to 10cm[/tex]

Voltage [tex]V=18V[/tex]

Magnetic field [tex]B=300mT[/tex]

Generally, the equation for Frequncy of an amarture is mathematically given by

[tex]f =\frac{ V}{(N B A * 2 pi )}[/tex]

[tex]f =\frac{ 18}{(200 300*10^{-3} (10*10^-2)(5*10^{-2}) * 2 *3.142 )}[/tex]

[tex]f=9.55Hz[/tex]

If a jet travels 350 m/s, how far will it travel each second?

Answers

Answer:

It will travel 350 meters each second.

Explanation:

The unit rate, 350 m/s, tells us that the jet will travel 350 meters per every second elapsed.

Answer:

5.83 seconds

Explanation:

60 seconds in 1 minute

350 meters per second

350/60

=5.83

What type of wave is a microwave?
O heat
O longitudinal
sound
transverse

Answers

Answer:

Microwave is a types of a electromagnetic radiation

Answer:

Transvers

Explanation:

Because microwave is electromagnetic  waves and all electromagnetic waves are transvers.

I’m a photoelectric effect, which property of the incident light determines how much kinetic energy the ejected electrons have ?
A) brightness
B) frequency
C) size of the beam
D) none of the above

Answers

Answer:

b = frequency

An astronaut on the moon drops a rock from rest. The rock falls 0.8m in one second of falling time. If the dropped rock fell for a total of two seconds of time instead of 1 second, then the distance traveled would be:____.
A) The same.
B) Doubled.
C) Tripled.
D) Quadruple.
E) None of the above.

Answers

Answer:

D) Quadruple.

Explanation:

We will use the second equation of motion to solve this problem:

[tex]s = v_it + \frac{1}{2}gt^2[/tex]

where,

s = distance travelled by the rock

vi = initial speed of rock = 0 m/s

t = time taken

g = acceleration due to gravity on the surface of the moon

Therefore,

[tex]s = (0\ m/s)t+\frac{1}{2}gt^2\\\\s =\frac{1}{2}gt^2[/tex]----------- equation (1)

Now, we double the time:

[tex]s' = \frac{1}{2}g(2t)^2\\\\s' = 4(\frac{1}{2}gt^2)[/tex]

using equation (1):

s' = 4s

Hence, the correct option is:

D) Quadruple.

Suppose a 60-turn coil lies in the plane of the page in a uniform magnetic field that is directed out of the page. The coil originally has an area of 0.325 m2. It is stretched to have no area in 0.100 s. What is the magnitude (in V) and direction (as seen from above) of the average induced emf if the uniform magnetic field has a strength of 1.60 T

Answers

Answer:

 emf = 312 V

Explanation:

In this exercise the electromotive force is asked, for which we must use Faraday's law

           emf =  [tex]- N \frac{d \Phi }{dt}[/tex]- N dfi / dt

           Ф = B. A = B A cos θ

bold type indicates vectors.

They indicate that the magnetic field is constant, the angle between the normal to the area and the magnetic field is parallel by local cosine values ​​1

It also indicates that the area is reduced from  a₀ = 0.325 me² to a_f = 0 in a time interval of ΔT = 0.100 s, suppose that this reduction is linear

            emf = -N B [tex]\frac{dA}{dT}[/tex]

            emf = - N B (A_f - A₀) / Dt

we calculate

           emf = - 60 1.60 (0 - 0.325) /0.100

           emf = 312 V

The direction of this voltage is exiting the page

Open the sash half way up, take the beaker containing the dry ice / water out of the hood, and slowly move it from right in front of the hood all the way down to the floor. At what point do the fumes stop getting sucked up by the fume hood?

Answers

Answer:

The fumes stop getting sucked up by the fume hood once the beaker is pulled out of the hood.

A 0.160 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.710 m/s. It has a head-on collision with a 0.296 kg glider that is moving to the left with a speed of 2.23 m/s. Suppose the collision is elastic.

Required:
a. Find the magnitude of the final velocity of the 0.157kg glider.
b. Find the magnitude of the final velocity of the 0.306kg glider.

Answers

The masses of the gliders provided in the question differ from the masses mentioned in the "Required" section. I'll use the first masses throughout.

Momentum is conserved, so the total momentum of the system is the same before and after the collision:

m₁ v₁ + m₂ v₂ = m₁ v₁' + m₂ v₂'

==>

(0.160 kg) (0.710 m/s) + (0.296 kg) (-2.23 m/s) = (0.160 kg) v₁' + (0.296 kg) v₂'

==>

-0.546 kg•m/s ≈ (0.160 kg) v₁' + (0.296 kg) v₂'

where v₁' and v₂' are the gliders' respective final velocities. Notice that we take rightward to be positive and leftward to be negative.

Kinetic energy is also conserved, so that

1/2 m₁ v₁² + 1/2 m₂ v₂² = 1/2 m₁ (v₁' + 1/2 m₂ (v₂'

or

m₁ v₁² + m₂ v₂² = m₁ (v₁' + m₂ (v₂'

==>

(0.160 kg) (0.710 m/s)² + (0.296 kg) (-2.23 m/s)² = (0.160 kg) (v₁' + (0.296 kg) (v₂'

==>

1.55 kg•m²/s² ≈ (0.160 kg) (v₁' + (0.296 kg) (v₂'

Solve for v₁' and v₂'. Using a calculator, you would find two solutions, one of which we throw out because it corresponds exactly to the initial velocities. The desired solution is

v₁' ≈ -3.11 m/s

v₂' ≈ -0.167 m/s

and take the absolute values to get the magnitudes.

If you want to instead use the masses from the "Required" section, you would end up with

v₁' ≈ -3.18 m/s

v₂' ≈ -0.236 m/s

a vector starts at the point (0.0) and ends at (2,-7) what is the magnitude of the displacement

Answers

Answer:

|x| = √53

Explanation:

We are told that the vector starts at the point (0.0) and ends at (2,-7) .

Thus, magnitude of displacement is;

|x| = √(((-7) - 0)² + (2 - 0)²)

|x| = √(49 + 4)

|x| = √53

An electron is moving at speed of 6.3 x 10^4 m/s in a circular path of radius of 1.7 cm inside a solenoid the magnetic field of the solenoid is perpendicular to the plane of the electron's path. Find its relevatn motion.

Answers

Answer:

Here, m=9×10

−31

kg,

q=1.6×10

−19

C,v=3×10

7

ms

−1

,

b=6×10

−4

T

r=

qB

mv

=

(1.6×10

−19

)(6×10

−4

)

(9×10

−31

)×(3×10

7

)

=0.28m

v=

2πr

v

=

2πm

Bq

=

2×(22/7)×9×10

−31

(6×10

−4

)×(1.6×10

−19

)

=1.7×10

7

Hz

Ek=

2

1

mv

2

=

2

1

×(9×10

−31

)×(3×10

7

)

2

J

=40.5×10

−17

J=

1.6×10

−16

40.5×10

−17

keV

=2.53keV

S.I unit for distance =______

(A) m (B)cm

(c) km (d) mm

Answers

Answer:

opinion a

Explanation:

the si units of distance is metre (m)

Answer:

A

Explanation:

A object of mass 3.00 kg is subject to a force Fx that varies with position as in the figure below. A coordinate plane has a horizontal axis labeled x (m) and a vertical axis labeled Fx (N). There are three line segments. The first segment runs from the origin to (4,3). The second segment runs from (4,3) to (11,3). The third segment runs from (11,3) to (17,0). (a) Find the work done by the force on the object as it moves from x = 0 to x = 4.00 m. J (b) Find the work done by the force on the object as it moves from x = 4.00 m to x = 11.0 m. J (c) Find the work done by the force on the object as it moves from x = 11.0 m to x = 17.0 m. J (d) If the object has a speed of 0.450 m/s at x = 0, find its speed at x = 4.00 m and its speed at x = 17.0 m.

Answers

Answer:

Explanation:

An impulse results in a change of momentum.

The impulse is the product of a force and a distance. This will be represented by the area under the curve

a) W = ½(4.00)(3.00) = 6.00 J

b) W = (11.0 - 4.00)(3.00) = 21.0 J

c) W = ½(17.0 - 11.0)(3.00) = 9.00 J

d) ASSUMING the speed at x = 0 is in the direction of applied force

½(3.00)(v₄²) = ½(3.00)(0.450²) + 6.00

v₄ = 2.05 m/s

½(3.00)(v₁₇²) = ½(3.00)(0.450²) + 6.00 + 21.0 + 9.00

v₁₇ = 4.92 m/s

If the initial speed is NOT in the direction of applied force, the final speed will be slightly less in both cases.

Good evening everyone Help me i n my hw ,The wall of cinema hall are covered with sound absorbing materials. Why?Answer it ASAP.Good day ​

Answers

what do you mean about it

Explain how blood circulation takes place in humans?​

Answers

Blood comes into the right atrium from the body, moves into the right ventricle and is pushed into the pulmonary arteries in the lungs. After picking up oxygen, the blood travels back to the heart through the pulmonary veins into the left atrium, to the left ventricle and out to the body's tissues through the aorta.

Hope it helps you

Mark my answer as brainlist

have a nice day

A man standing in an elevator holds a spring scale with a load of 5 kg suspended from it. What would be the reading of the scale, if the elevator is accelerating downward with an acceleration 3.8 m/s?.

Answers

Answer:

3.1 kg

Explanation:

Applying,

R = m(g-a)..................... Equation 1

Where R = weight of the scale when the elevator is coming down, a = acceleration of the elevator, g = acceleration due to gravith.

From the question,

Given: m = 5 kg, a = 3.8 m/s²

Constant: g = 9.8 m/s²

Substitute these values into equation 1

R = 5(9.8-3.8)

R = 5(6)

R = 30 N

Hence the spring scale is

m' = R/g

m' = 30/9.8

m' = 3.1 kg

calculate the length of wire.

Answers

Answer:

L = 169.5 m

Explanation:

Using Ohm's Law:

V = IR

where,

V = Voltage = 1.5 V

I = Current = 10 mA = 0.01 A

R = Resistance = ?

Therefore,

1.5 V = (0.01 A)R

R = 150 Ω

But the resistance of a wire is given by the following formula:

[tex]R = \frac{\rho L}{A}[/tex]

where,

ρ = resistivity = 1 x 10⁻⁶ Ω.m

L = length of wire = ?

A = cross-sectional area of wire = πr² = π(0.6 mm)² = π(0.6 x 10⁻³ m)²

A = 1.13 x 10⁻⁶ m²

Therefore,

[tex]150\ \Omega = \frac{(1\ x\ 10^{-6}\ \Omega .m)L}{1.13\ x\ 10^{-6}\ m^2}\\\\L = \frac{150\ \Omega(1.13\ x\ 10^{-6}\ m^2)}{1\ x\ 10^{-6}\ \Omega .m}\\\\[/tex]

L = 169.5 m

A spring whose stiffness is 3500 N/m is used to launch a 4 kg block straight up in the classroom. The spring is initially compressed 0.2 m, and the block is initially at rest when it is released. When the block is 1.3 m above its starting position, what is its speed

Answers

Answer:

the speed of the block at the given position is 21.33 m/s.

Explanation:

Given;

spring constant, k = 3500 N/m

mass of the block, m = 4 kg

extension of the spring, x = 0.2 m

initial velocity of the block, u = 0

displacement of the block, d =1.3 m

The force applied to the block by the spring is calculated as;

F = ma = kx

where;

a is the acceleration of the block

[tex]a = \frac{kx}{m} \\\\a = \frac{(3500) \times (0.2)}{4} \\\\a = 175 \ m/s^2[/tex]

The final velocity of the block at 1.3 m is calculated as;

v² = u² + 2ad

v² = 0 + 2ad

v² = 2ad

v = √2ad

v = √(2 x 175 x 1.3)

v = 21.33 m/s

Therefore, the speed of the block at the given position is 21.33 m/s.

The speed of the block at a height of 1.3 m above the starting position is 21.33 m/s

To solve this question, we'll begin by calculating the acceleration of the block.

How to determine the acceleration Spring constant (K) = 3500 N/m Mass (m) = 4 KgCompression (e) = 0.2 mAcceleration (a) =?

F = Ke

Also,

F = ma

Thus,

ma = Ke

Divide both side by m

a = Ke / m

a = (3500 × 0.2) / 4

a = 175 m/s²

How to determine the speed Initial velocity (u) = 0 m/sAcceleration (a) = 175 m/s²Distance (s) = 1.3 mFinal velocity (v) =?

v² = u² + 2as

v² = 0² + (2 × 175 × 1.3)

v² = 455

Take the square root of both side

v = √455

v = 21.33 m/s

Learn more about spring constant:

https://brainly.com/question/9199238

Chameleons catch insects with their tongues, which they can rapidly extend to great lengths. In a typical strike, the chameleon's tongue accelerates at a remarkable 220 m/s^2 for 20 msms, then travels at constant speed for another 30 ms.

Required:
During this total time of 50 ms, 1/20 of a second, how far does the tongue reach?

Answers

Solution :

We know,

Distance,

[tex]$S=ut+\frac{1}{2}at^2$[/tex]

[tex]$S=ut+0.5(a)(t)^2$[/tex]

For the first 20 ms,

[tex]$S=0+0.5(220)(0.020)^2$[/tex]

S = 0.044 m

In the remaining 30 ms, it has constant velocity.

[tex]$v=u+at$[/tex]

[tex]$v=0+(220)(0.020)[/tex]

v = 4.4 m/s

Therefore,

[tex]$S=ut+0.5(a)(t)^2$[/tex]

[tex]$S'=4.4 \times 0.030[/tex]

S' = 0.132 m

So, the required distance is = S + S'

                                              = 0.044 + 0.132

                                              = 0.176 m

Therefore, the tongue can reach = 0.176 m or 17.6 cm

Answer:

The total distance is 0.176 m.

Explanation:

For t = 0 s to t = 20 ms

initial velocity, u = 0

acceleration, a = 220 m/s^2

time, t = 20 ms

Let the final speed is v.

Use first equation of motion

v = u + at

v = 0 + 220 x 0.02 = 4.4 m/s

Let the distance is s.

Use second equation of motion

[tex]s = u t + 0.5 at^2\\\\s = 0 + 0.5 \times 220 \times 0.02\times 0.02\\\\s = 0.044 m[/tex]

Now the distance is

s' = v x t

s' = 4.4 x 0.03 = 0.132 m

The total distance is

S = s + s' = 0.044 + 0.132 = 0.176 m

Other Questions
Simplify the following expression: It is ____________ that this lockdown will be extended another week. order the following expressions by their values from least to greatest Execute the following 18/3+2*8-5. Aakash, Bao Ying, Chris and Donna all live on the same street as their school, whichruns from east to west. Aakash lives 5 blocks to the west. Bao Ying lives 4 blocks to the east. Chris lives 2: blocks to the west. . Donna lives 61 blocks to the east.a. Draw a picture that represents the positions of their houses along the street.b. Find how far is each house from every other house?c. Represent the relative position of the houses on a number line, with the school atzero, points to the west represented by negative numbers, and points to the eastrepresented by positive numbers.d. How can you see the answers to part (b) on the number line? Using the numbers(some of which are positive and some negative) that label the positions of houses onthe number line, represent these distances using sums or differences.ko Which of the following is true? A. A strong argumentative essay should contain secondary sources and not primary sources. B. A strong argumentative essay should contain primary sources and not secondary sources. C. A strong argumentative essay should contain primary and secondary sources. D. A strong argumentative essay should never contain primary and secondary sources. I'm stuck on here, please, someone help me. name all the sections in a library and state their purpose Add a subordinate clause in these sentences to make them complex sentences. Add the type of clause that is in parenthesis.1. I have met the president of the company, __________.(adjective)2. I want _______________.(noun) Tm cc cm ch-v m rng trong cc v d di y v cho bit cc cm ch-v m rng cho thnh phn no trong cu/trong cm t?a) Oan-i-xny tng b ton son sa thi v thiu tng.b) Ch Cc trng thy D Chot ang loay hoay trc ca hang. (T Hoi)c) D Chot l ci tn ti t mt cch ch giu v trnh thng. (T Hoi)d) Ti ch thy ngi trong sch i li, ni chuyn vi nhau thi.e) Khi ti i ng ri, bc lao cng vn ang qut rc trn ng ph The lines below are perpendicular. If the slope of the green line is , what isthe slope of the red line?-55m = Read the entry on Jonas Salk from Compton's Encyclopedia/The Britannica School Edition, and answer the question beneath the text.Compton's EncyclopediaJonas Salk (1914-1995). For the first half of the 20th century, poliomyelitis, also known as infantile paralysis, was one of the most dreaded diseases to attack young people. By 1955 American physician and researcher Jonas Salk had developed a vaccine that almost eradicated the disease in the United States and other developed countries.Jonas Edward Salk was born in New York City on October 28, 1914. He graduated from the City College of New York in 1934 and earned his doctorate in medicine from New York University's College of Medicine in 1939. While in medical school he had worked with Thomas Francis Jr. on killed-virus immunology studies. In 1942 he joined a group at the University of Michigan working on a vaccine against influenza. The vaccine was perfected in 1953.In 1947 Salk became associate professor of bacteriology and head of the Virus Research Laboratory at the University of Pittsburgh School of Medicine. There he began working on the polio vaccine. Three viruses caused polio, and a vaccine had to be effective against all of them. By 1952 Salk had developed such a vaccine and conducted field tests on children. His findings were published in 1953, and a mass field test was done the next year.On April 12, 1955, the vaccine was released for use in the United States. In 1957 Salk was named professor of experimental medicine at Pittsburgh, and in 1963 he went to San Diego as head of the Institute (later named the Salk Institute) for Biological Studies. In 1977 Salk was awarded the Presidential Medal of Freedom. He died on June 23, 1995, in La Jolla, California.Answer the following question based on the Compton's Encyclopedia reading:Which choice best describes the reasons behind Jonas Salk's decision to search for a cure for poliomyelitis? The disease affected children in the United States all of Salk's life. The disease became an epidemic shortly after Salk became a doctor. Jonas Salk's own child contracted poliomyelitis as an infant. Jonas Salk suffered from poliomyelitis as a young child. Identify a key concept or foundational theory from the first four weeks of class and in half a page discuss how it applies to your current work environment or a recent social, political or business event. Include the chapter and sub topic from your textbook. g Suppose the demand for cherries sold from roadside stands in Michigan is perfectly elastic. The owner of one roadside stand raises the price of cherries by 10%, as a result 1 point A. Zero cherries are sold at this stand. B. No change in the quantity demanded at this stand. C. A 10% decrease in the quantity demanded at this stand. D. A 10% increase in the quantity demanded at this stand. E. All available cherries will be sold. [CASSIUS.] Now could I, Casca, name to thee a manMost like this dreadful nightThat thunders, lightens, opens graves, and roarsAs doth the lion in the Capitol:A man no mightier than thyself, or me,In personal action, yet prodigious grownAnd fearful, as these strange eruptions are.The Tragedy of Julius Caesar,William ShakespeareWhat is the effect of Cassiuss speech that compares Caesar to a dangerous storm?Casca is persuaded to tell Caesar of the conspiracy.Casca is persuaded to join the conspiracy against Caesar.Casca is persuaded to leave the country to protect himself.Casca is persuaded to kill Brutus for not joining the conspiracy. Durante la Convencin Constitucional de 1787, el mayor desacuerdoentre los estados grandes y pequeos se produjo sobre el tema de? esclavitudgaranta de los derechos de los Estadosrepresentacin en el Congresocontrol del comercio interestatal Problem 2 Find the mBC. A property line conflict between neighbors Prakhash and Elliott escalated as the years went on. The police were called frequently to deal with loud arguments and acts of vandalism between the two until Officer Graves referred them to a community mediation center. In the two weeks since the mediation, the number of calls to police had dropped. Officer Graves contacted Martin, the mediator, and asked if she should consider the conflict resolved. Martin replied that the parties had agreed to meet again for another mediation session, but that the matter of the property line remained a point of tension. Amanda teaches the art of quilling to 4 students. These students each teach the art of quilling to 4 other students. This process continues through 3 more generations. who was benjamin davis