Answer:
6.14 inches
Step-by-step explanation:
The one side of the dollar bill is 6.14 inch. The 6.14 inches of the dollar approximates the 156.1 mm. When Malia measures the longer side of a dollar bill from her rule it will be approximately 6.14 inches in length. The ruler normally has inches and cm sides. Very few rulers have mm scales. The most probable scale that malia would have measure is in inches.
#2. Given the following conditional statement; which answer is
represents the biconditional statement: "If Mr. Anderson is a ninja, then
he can run like Naruto."
Mr. Anderson is a ninja iff he can run like Naruto.
Mr. Anderson can run like Naruto iff he is a ninja.
Mr. Anderson is Naruto iff he can run like a ninja.
Answer:
Mr. Anderson can run like Naruto iff he is a ninja.
Step-by-step explanation:
This is because, in the statement "If Mr. Anderson is a ninja, then he can run like Naruto.", the sub-statement, "he can run like Naruto.", depends on the sub-statement 'If Mr Anderson is a Ninja'. This means that although Mr. Anderson is a Ninja, he can only run like Naruto if and only if he is a Ninja implying that if Mr Anderson is not a Ninja, he cannot run like Naruto.
So, Mr Anderson can run like Naruto iff he is a Ninja is the correct answer
Answer:
1
Step-by-step explanation:
Round 3.1 to the nearest whole number
Answer:
3.1 rounded off to the nearest whole number is 3.
Step-by-step explanation:
The circumference of a sphere was measured to be 82 cm with a possible error of 0.5 cm.
A. Use differentials to estimate the maximum error in the calculated volume.
What is the relative error?
B. Use differentials to estimate the maximum error in the calculated volume.
What is the relative error?
Answer:
A) Maximum error = 170.32 cm³
B)Relative error = 0.0575
Step-by-step explanation:
A) Formula for circumference is: C = 2πr
Differentiating with respect to r, we have;
dC/dr = 2π
r is small, so we can write;
ΔC/Δr = 2π
So, Δr = ΔC/2π
We are told that ΔC = 0.5.
Thus; Δr = 0.5/2π = 0.25/π
Now, formula for Volume of a sphere is;
V(r) = (4/3)πr³
Differentiating with respect to r, we have;
dV/dr = 4πr²
Again, r is small, so we can write;
ΔS/Δr = 4πr²
ΔV = 4πr² × Δr
Rewriting, we have;
ΔV = ((2πr)²/π) × Δr
Since C = 2πr, we now have;
ΔV = (C²/π)Δr
ΔV will be maximum when Δr is maximum
Thus, ΔV = (C²/π) × 0.25/π
C = 82 cm
Thus;
ΔV = (82²/π) × 0.25/π
ΔV = 170.32 cm³
B) Formula for relative error = ΔV/V
Relative error = 170.32/((4/3)πr³)
Relative error = 170.32/((4/3)C³/8π³)
Relative errror = 170.32/((4/3)82³/8π³)
Relative error = 170.32/2963.744
Relative error = 0.0575
PLEASE HELP ! (2/4) - 50 POINTS -
Answer:
The correct answer would be 15.5 or C.
A speedboat moves at a rate of 25 km/hr in still water. How long will it take
someone to ride the boat 87 km downstream if the river's current moves at a rate of
4 km/hr?
Answer:
3 hours
Step-by-step explanation:
Downstream, the speeds add up:
25 + 4 = 29 km/hIt will take:
87/29= 3 hrsTo ride 87 km.
Find an equation of the tangent plane to the given surface at the specified point. z = ln(x − 8y), (9, 1, 0)
Answer:
x - 8y - z = 1
Step-by-step explanation:
Data provided according to the question is as follows
f(x,y) = z = ln(x - 8y)
Now the equation for the tangent plane to the surface
For z = f (x,y) at the point P [tex](x_0,y_0,z_0)[/tex] is
[tex]z - z_0 = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)\\[/tex]
Now the partial derivatives of f are
[tex]f_x(x,y) = \frac{1}{x-8y} \\\\f_y(x,y) = \frac{8}{x-8y} \\\\P(x_0,y_0,z_0) = (9,1,0)\\\\f_z(9,1,0) = (\frac{1}{x-8y})_^{(9,1,0)}[/tex]
[tex]\\\\=\frac{1}{9-8}[/tex]
= 1
Now
[tex]f_y(9,1,0)=(\frac{8}{x-8y})_{(9,1,0)}\\\\ = -\frac{8}{9 - 8}[/tex]
= -8
So, the tangent equation is
[tex]z - 0 = 1\times (x - 9) -8\times (y - 1)[/tex]
Now after solving this, the following equation arise
z = x - 9 - 8y + 8
z = x - 8y - 1
Therefore
x - 8y - z = 1
The equation of the tangent plane is [tex]x-8y-z=1[/tex]
Tangent Plane:An equation of the tangent plane to the given surface at the point [tex]P(x_0,y_0,z_0)[/tex] is,
[tex]z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)[/tex]
The function is,
[tex]z = ln(x-8y)[/tex]
And the point is (9,1,0)
Now, calculating [tex]f_x,f_y[/tex]
[tex]f_x(x,y)=\frac{1}{x-8y}\\ f_y(x,y)=\frac{x-8}{x-8y}[/tex]
Now, substituting the given points into the above functions we get,
[tex]f_x(9,1)=\frac{1}{9-8(1)}=1\\ f_y(x,y)=\frac{-8}{9-8(1)}=-8[/tex]
So, the equation of the tangent plane is,
[tex]z-0=1(x-9)-8(y-1)\\z=x-8y-1\\x-8y-z=1[/tex]
Learn more about the topic tangent plane:
https://brainly.com/question/14850585
An experimental probability is ______ likely to approach the theoretical probability if the number of trials simulated is larger. A. as B. more C. less D. not
Answer:
I believe your answer is b. the more trials you conduct, the more information you have
An experimental probability is more likely to approach the theoretical probability if the number of trials simulated is larger. Then the correct option is B.
What is probability?Its basic premise is that something will almost certainly happen. The percentage of favorable events to the total number of occurrences.
Experimental probability: A probability that is established from the findings of several iterations of a test.
Theoretical probability: The proportion of positive consequences to all potential outcomes. The ratio of the favorable event to the total event.
An experimental probability is more likely to approach the theoretical probability if the number of trials simulated is larger.
Then the correct option is B.
More about the probability link is given below.
https://brainly.com/question/795909
#SPJ2
If we were to make a poset of the form (A, |), where is the symbol for divisibility, which of the following sets A would yield a poset that is a total ordering?
I. A- (1, 4, 16, 64)
II. A- (1.2,3, 4, 6, 12)
III. A 1,2,3, 4, 6, 12, 18, 24)
IV. A+{1 , 2, 3, 6, 12)
Answer:
IV. A+{1, 2, 3, 6, 12}
Step-by-step explanation:
The set of natural numbers form a poset number under relation of > or =. The discrete variables are used to form a poset. The symbols for divisibility in poset form are when an integer is divided by the variable without integer. The correct answer is therefore 4th option.
Quick! Andrew has to play 15 games in a chess tournament. At some point during the tournament he has won half of the games he has played, he has lost one-third of the games he has played and two have ended in a draw. How many games has Andrew still to play?
[tex]x[/tex] - the number of the games he played
[tex]\dfrac{x}{2}[/tex] - the number of the games he won
[tex]\dfrac{x}{3}[/tex] - the number of the games he lost
[tex]x=\dfrac{x}{2}+\dfrac{x}{3}+2\Big|\cdot6\\6x=3x+2x+12\\x=12[/tex]
[tex]15-12=3[/tex]
so, he has still 3 games to play
Please help me!!Which of the following functions shows the linear parent function, Fx) = X,
shifted right?
5
F(x) = x
5
A. G(x) = x + 2
B. G(x) = 4x
C. G(x) = x - 9
D. G(x) = -x
Answer:
C. G(x) = x - 9
Step-by-step explanation:
You know that the transformation ...
g(x) = f(x -h) +k
causes parent function f(x) to be shifted right h units and up k units.
You're looking for a function that is shifted right, so you want something that looks like ...
g(x) = f(x -constant) = x - constant
Choice C has that form:
C. G(x) = x - 9
_____
A. the function is shifted up 2 units
B. the function is vertically expanded by a factor of 4 (no shift)
C. shifted right
D. the function is reflected over the y-axis (no shift)
Answer: C [G(x) = x-9]
Step-by-step explanation:
I got it right
Put the following equation of a line into slope-intercept form, simplifying all
fractions.
3x + 3y = -9
Answer:
[tex]y = -x - 3[/tex]
Step-by-step explanation:
We are trying to get the equation [tex]3x + 3y = -9[/tex] into the form [tex]y = mx+b[/tex], aka slope-intercept form.
To do this we are trying to isolate y.
[tex]3x + 3y = -9[/tex]
Subtract 3x from both sides:
[tex]3y = -9 - 3x[/tex]
Rearrange the terms:
[tex]3y = -3x - 9[/tex]
Divide both sides by 3:
[tex]y = -x - 3[/tex]
Hope this helped!
Determine whether the normal sampling distribution can be used. The claim is p < 0.015 and the sample size is n
Complete Question
Determine whether the normal sampling distribution can be used. The claim is p < 0.015 and the sample size is n=150
Answer:
Normal sampling distribution can not be used
Step-by-step explanation:
From the question we are told that
The null hypothesis is [tex]H_o : p = 0.015[/tex]
The alternative hypothesis is [tex]H_a : p < 0.015[/tex]
The sample size is n= 150
Generally in order to use normal sampling distribution
The value [tex]np \ge 5[/tex]
So
[tex]np = 0.015 * 150[/tex]
[tex]np = 2.25[/tex]
Given that [tex]np < 5[/tex] normal sampling distribution can not be used
Based on the normal sampling assumption, the product of the sample size and the proportion must be greater than or equal to 5. Hence, since, the condition isn't met, then the normal sampling cannot be used.
Given the Parameters :
Proportion, p = 0.015Sample size, n = 150Test if np ≥ 5 :
(150 × 0.015) = 2.252.25 < 5
Hence, np < 5 ;
Hence, the normal sampling distribution cannot be used.
Learn more : https://brainly.com/question/19338417
A rectangular city is 3 miles long and 10 miles wide. What is the distance between opposite corners of the city? The exact distance is ______ miles How far is it to the closest tenth of a mile? Answer: The distance is approximately ______ miles.
Answer:
The exact distance is [tex]\sqrt{109}[/tex] miles.
The distance is approximately 10.4 miles.
Step-by-step explanation:
It is given that a rectangular city is 3 miles long and 10 miles wide. So,
Length = 3 miles
Width = 10 miles
We need to find the distance between opposite corners of the city. It means, we need to find the length of the diagonal of the rectangle.
Using Pythagoras theorem, the length of diagonal is
[tex]d=\sqrt{l^2+w^2}[/tex]
where, l is length and w is width.
Substitute l=3 and w=10.
[tex]d=\sqrt{(3)^2+(10)^2}[/tex]
[tex]d=\sqrt{9+100}[/tex]
[tex]d=\sqrt{109}[/tex]
The exact distance is [tex]\sqrt{109}[/tex] miles.
Now,
[tex]d=\sqrt{109}[/tex]
[tex]d=10.4403065[/tex]
[tex]d\approx 10.4[/tex]
The distance is approximately 10.4 miles.
Musah stands at the centre of a rectangular field. He first takes 50 steps north, then 25 steps
west and finally 50 steps on a bearing of 3150
.
i. Sketch Musah’s movement [Mark 4]
ii. How far west is Musah’s final point from the centre?
Answer:
Inokkohgy8uokokj76899
Which of the following is the correct factorization of 64x³ + 8? (2x + 4)(4x² - 8x + 16) (4x + 2)(16x² - 8x + 4) (4x - 2)(16x² + 8x + 4) (2x - 4)(4x² + 8x + 16)
Answer:
work is pictured and shown
20,000 is 10 times as much as
Answer:
2000
Step-by-step explanation:
20,000 is 2000 times the number 10.
What is an expression?Expression in maths is defined as the collection of numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.
Given numbers are 20000 and 10. The number 20000 is how many times the number 10 will be calculated by dividing the number 20000 by 10.
E = 20000 / 10 = 2000
Therefore, the number 20,000 is 2000 times the number 10.
To know more about an expression follow
https://brainly.com/question/20066515
#SPJ2
The expression (x - 4)2 is equivalent to which expression
Answer:
8-2x
Step-by-step explanation:
2 distributed over the entire expression equals 8-2x
Answer:
the answer is b
Step-by-step explanation:
How many solutions does the system have? x+2y=2 2x+4y=−8
Answer:
Step-by-step explanation:
x + 2y = 2
2x + 4y = -8
-2x - 4y = -4
2x + 4y = -8
0 not equal to -12
no solution
. line containing ( −3, 4 ) ( −2, 0)
Answer:
The equation is y= -4x -8
Step-by-step explanation:
The -4 is the slope and the -8 is the y intercept
Answer:
Slope: -4
Line type: Straight and diagonal from left to right going down.
Rate of change: a decrease by 4 for every x vaule
y-intercept is: (0,-8)
x-intercept is: (-2,0)
Step-by-step explanation:
Slope calculations:
y2 - y1 over x2 - x1
0 - 4
-2 - ( -3) or -2 + 3
=
-4/1 =
-4
More slope info on my answer here: https://brainly.com/question/17148844
Hope this helps, and have a good day.
Giving a test to a group of students, the grades and gender are summarized below
A B C Total
Male 19 4 12 35
Female 3 13 5 21
Total 22 17 17 56
Let pp represent the percentage of all male students who would receive a grade of A on this test. Use a 99.5% confidence interval to estimate p to three decimal places.
Enter your answer as a tri-linear inequality using decimals (not percents).
< p
Answer:
Using Anova for a tri linear probability at ∝= 0.005
Step-by-step explanation:
Here simple probability cannot be used because we want to enter your answer as a tri-linear inequality using decimals (not percents).
So we can use ANOVA
Null hypothesis
H0: µA = µB=µC
all the means are equal
Alternative hypothesis
H1: Not all means are equal.
The significance level is set at α-0.005
The test statistic to use is
F = sb²/ sw²
Which if H0 is true has an F distribution with v₁=k-1 and v₂= n-k degrees of freedom .
The computations are as follows
XA (XA)² XB (XB)² XC (XC)² Total ∑X²
Male 19(361) 4(16) 12(144) 35 521
Female 3(9) 13 (169) 5 (25) 21 203
TotalTj 22 17 17 56 724
T²j (22)(22)
484 289 289 1062
∑X² 370 285 169
Correction Factor = CF = Tj²/n = (56)²/6= 522.67
Total SS ∑∑X²- C. F = 724- 522.67= 201.33
Between SS ∑T²j/r - C.F = 1062/ 2 - 522.877 =8.33
Within SS = Total SS - Between SS
=201.33- 8.33= 193
The Analysis of Variance Table is
Source Of Sum of Mean Computed
Variation d.f Squares Squares F
Between
Samples 1 8.33 8.33 8.33/ 48.25= 0.1726
Within
Samples 4 193 48.25
The critical region is F >F ₀.₀₀₅ (1,4) = 31.3328
Calculated value of F = 0.1726
Since it is smaller than 5 % reject H0.
However the decimal probability will be
Male 19 4 12 35
Female 3 13 5 21
Total 22 17 17 56
There are total 22 people who get an A but only 19 males who get an A
So the probability that a male gets an A is = 19/22= 0.8636
Assume that random guesses are made for multiple-choice questions on a test with choices for each question, so that there are n trials, each with probability of success (correct) given by p. Find the probability of no correct answers
Complete Question
Assume that random guesses are made for 7 multiple-choice questions on a test with 5 choices for each question, so that there are n=7 trials, each with probability of success (correct) given by p=0.20. Find the probability of no correct answers.
Answer:
The probability is [tex]P(X = 0 ) = 0.210[/tex]
Step-by-step explanation:
From the question we are told that
The number of trial is n = 7
The probability of success is p = 0.20
Generally the probability of failure is
[tex]q = 1- 0.20[/tex]
[tex]q = 0.80[/tex]
Given that this choices follow a binomial distribution as there is only two probabilities i.e success or failure
Then the probability is mathematically represented as
[tex]P(X = 0 ) = \left n} \atop {}} \right. C_0 * p^{0} * q^{n- 0}[/tex]
[tex]P(X = 0 ) = \left 7} \atop {}} \right. C_0 * (0.2)^{0} * (0.8)^{7- 0}[/tex]
Here [tex]\left 7} \atop {}} \right. C_0 = 1[/tex]
=> [tex]P(X = 0 ) = 1 * 1* (0.8)^{7- 0}[/tex]
=> [tex]P(X = 0 ) = 0.210[/tex]
if it can be assumed that the population is normal, then what is the probability that one man sampled from this population has a weight between 72kg and 88kg
Answer:
The probability that one man sampled from this population has a weight between 72kg and 88kg is 0.6826.
Step-by-step explanation:
The complete question has the data of mean = 80 kg and standard deviation = 8kg
We have to find the probability between 72 kg and 88 kg
Since it is a normal distribution
(x`- u1 / σ/ √n) < Z >( x`- u2 / σ/ √n)
P (72 <x>88) = P ( 72-80/8/√1) <Z > ( 88-80/8/√1)
= P (-1<Z> 1) = 1- P (Z<1) - P (Z<-1)
= 1- 0.8413- (- 0.8413)= 1- 1.6826= 0.6826
So the probability that one man sampled from this population has a weight between 72kg and 88kg is 0.6826.
pt 2 4-7 please helppp
Answer:
f = 16
Step-by-step explanation:
8
8 x 2 = _f_ x
8
f = 16
Hi there! Hopefully this helps!
-----------------------------------------------------------------------------------------------------
Answer: f = 16~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[tex]2 = \frac{f}{8}[/tex]
Multiply both sides by 8.
[tex]2 \times 8 = f[/tex]
Multiply 2 and 8 to get 16.
[tex]16 = f[/tex]
Swap sides so that all variable terms are on the left hand side.
[tex]f = 16[/tex]
What is the solution to X+9 = 24?
A. x = 33
B. x= 15
C. x= 18
D. x= 9
Answer:
X+9=24
Or,x=24-9
:.x=15
Step-by-step explanation:
Answer:
B. x=15
Step-by-step explanation:
To find the solution to the equation, we must get x by itself on one side of the equation.
[tex]x+9=24[/tex]
9 is being added to x. The inverse of addition is subtraction. Subtract 9 from both sides of the equation.
[tex]x+9-9=24-9[/tex]
[tex]x=24-9[/tex]
[tex]x=15[/tex]
Let's check our solution. Plug 15 in for x.
[tex]x+9=24 (x=15)[/tex]
[tex]15+9=24[/tex]
[tex]24=24[/tex]
This checks out, so we know our solution is correct. The answer is B. x=15
-7y=-91 show your work
Answer:
[tex] \boxed{ \bold{\sf{y = 13}}}[/tex]Step-by-step explanation:
[tex] \sf{ - 7y = - 91}[/tex]
Divide both sides of the equation by -7
⇒[tex] \sf{ \frac{ - 7y}{ - 7} = \frac{ - 91}{ - 7} }[/tex]
Calculate
⇒[tex] \sf{y = 13}[/tex]
Hope I helped!
Best regards!!
Answer:
[tex] \boxed{\sf y = 13} [/tex]
Step-by-step explanation:
Solve for y:
[tex] \sf \implies - 7y = - 91[/tex]
Divide both sides of -7y = -91 by -7:
[tex] \sf \implies \frac{ - 7y}{ - 7} = \frac{ - 91}{ - 7} [/tex]
[tex] \sf \frac{ - 7}{ - 7} = 1 : [/tex]
[tex] \sf \implies y = \frac{ - 91}{ - 7} [/tex]
[tex] \sf \implies y = \frac{ \cancel{ - 7} \times 13}{ \cancel{ - 7}} [/tex]
[tex] \sf \implies y = 13[/tex]
The number of chocolate chips in a bag of chocolate chip cookies is approximately normally distributed with a mean of 1262 chips and a standard deviation of 118 chips.
Required:
a. Determine the 26th percentile for the number of chocolate chips in a bag.
b. Determine the number of chocolate chps in a bag that make up the middle 96% of bags.
Answer:
(a) The 26th percentile for the number of chocolate chips in a bag is 1185
(b) The number of chocolate chips in a bag that makes up the middle 96% of the bags is between 1020 and 1504
Step-by-step explanation:
From the question, we have the following values:
μ =1262 and σ =118
(a) Let the value of x represents the 26th percentile. So the 26th percentile means 26% data is less than x. We can use the standard normal table to get the particular z-value that corresponds to this percentile.
P( Z<-0.65 )=0.2578 which is approximately 0.26
So for 26th percentile z-score will be -0.65.
Mathematically;
z-score = (x-mean)/SD
-0.65 = (x-1262)/118
-76.7 = x -1262
x = 1262-76.7 = 1185.3
This value is approximately 1,185
(b) Using a graph of standard normal distribution curve, if middle is 96% , then at both tails 2% each.
From z-table, we can find the closest probability;
P(-2.05<z<2.05) = 0.96
So we have two x values to get from the individual z-scores
-2.05 = (x-1262)/118
x = 1020(approximately)
For 2.05, we have
2.05 = (x-1262)/118
x = 1262 + 2.05(118) = 1504 (approximately)
Find the total surface area of the farm silo in a farmer's field. Use π = 3.14. pls help asap uwu
Answer:
A) 1236 units²
Step-by-step explanation:
Cylinder = 2[tex]\pi[/tex]h+2[tex]\pi[/tex]r²
2(3.14)(7.5)(15)+2(3.14)(7.5x7.5)
706.5+353.25=1059.75
1/2 Sphere = 1/2(4)[tex]\pi[/tex]r²
2(3.14)(7.5)(7.5)
353.25
TOTAL: 1059.75+353.25=1413
HOWEVER...you need to subtract the top of the cylinder ([tex]\pi[/tex]r²) 176.625
1413-176.625=1236.375
So the answer would be A. (Silo’s do have a bottom, or else the answer would be D)
Answer:
1,236 units²
Step-by-step explanation:
I got it correct on founders edtell and screenshot below as proof
In determining your group’s estimate, what mathematical model of a tennis ball did you use? What model of the classroom did you use? Did you make other simplification or assumptions?
Answer:
bro ur question is not understandable
60 is x% of 12. Find the value of x.
Answer:
20
Step-by-step explanation:
We can set up a percentage proportion to find the value of x.
[tex]\frac{12}{x} = \frac{60}{100}[/tex]
Now we cross multiply:
[tex]100\cdot12=1200\\\\1200\div60=20[/tex]
Hope this helped!
In the diagram, XY bisects ZWXZ.
1
z
2
w
(5x + 3)
(7x - Y
х
mWYZ
type your answer.
In provided diagram angle WXY = angle YXZ
Angle WXY =( 7x-7)°
Angle YXZ = ( 5x +3)°
We have to find out the value of Angle WXZ
→ 7x-7 = 5x +3
→ 7x - 5x = 7+3
→ 2x = 10
→ x = 10/2
→ x = 5 .
Putting the value of x .
→ Angle WXY = 7(2)-7
→ 14-7 = 7°
→ Angle YXZ = 5(2)+3
→ 10+3 = 13°
Angle WXZ = 13° + 7 ° → 20°
So 20° is the required answer .
Answer:
SI
Step-by-step explanation: