Metamorphism is the process of changing the mineral composition and texture of rocks as a result of heat, pressure, and chemical changes. The different types of metamorphic processes are as follows:Neocrystallization: This process occurs when new minerals form within a rock as a result of changing temperature and pressure conditions.
In other words, it is the formation of new minerals. Phase change: It is the process of changing the mineral composition of a rock as a result of exposure to high temperatures and pressure. Minerals that are stable at high temperatures and pressure replace minerals that are stable at low temperatures and pressure. Plastic deformation: It is the process of changing the shape of a mineral without altering its chemistry. Pressure solution: It is the process in which minerals dissolve under high pressure and reprecipitate in areas of lower pressure.
The mineral remains chemically the same, but its size and shape change. Recrystallization: It is the process of changing the size and shape of mineral grains, without altering the chemical composition of the original mineral. It occurs when a rock is exposed to heat and pressure over a long period of time. When rocks are subjected to directed stress (normal, shear), their grains deform without breaking and become aligned, resulting in foliated textures. This is the definition of foliation. Therefore, the answer is foliation for the blank space of 'When rocks are subjected to directed stress (normal, shear), their grains deform without breaking and become aligned,chemistry.'
To know more about Metamorphism visit:
https://brainly.com/question/30244981
#SPJ11
3. Which term do you think would best apply to the different statements below? Defend your answers. a) Dust collecting on a window sill. b) A car is demolished when hit by a train. c) Bread is put in an oven and toasted. d) Legos are fastened together to build a model. e) water in a pond is frozen during the winter. f) Wax melts around the flame of a candle. g) Two sugar cubes are dissolved into a cup of coffee.
Dust collecting on a windowsill - Physical Change. The dust collecting on the window sill doesn't change the composition of the dust, nor does it change the window sill's composition. It's just a physical change, but it can be undone by dusting the sill
.b) A car is demolished when hit by a train - Irreversible Chemical Change. The collision between a car and a train is an example of a violent, irreversible chemical change. The car is ruined, and it can't be restored to its original condition.
c) Bread is put in an oven and toasted - Chemical Change. Bread being put in an oven and toasted is an example of a chemical change. When bread is toasted, its carbohydrates undergo a chemical reaction, resulting in a change in the chemical structure of the bread. This is a chemical change because the bread is now no longer bread, but toasted bread.d) Legos are fastened together to build a model - Physical Change. Legos are assembled by locking their pieces together. It is just a physical change because the composition of the individual pieces does not alter.e) Water in a pond is frozen during the winter - Physical Change. Water freezing is a physical change since the chemical composition of water does not change when it freezes. It is just a physical transformation.
f) Wax melts around the flame of a candle - Physical Change. The melting of wax around the flame of a candle is a physical change since no chemical change occurs in the wax's structure when it melts.
g) Two sugar cubes are dissolved into a cup of coffee - Chemical Change. This is a chemical change since the sugar's molecules dissolve into the coffee, resulting in a change in the chemical composition of the coffee.
To know more about dust visit:
brainly.com/question/13195174
#SPJ11
Simplify the following Boolean function F, together with the don't-care conditions d, and then express the simplified function in sum-of-minterms form: (a) F(x,y. ) 2,3,4,6,7) (b) F(A, B, C. D)(0,6, 8, 13, 14) d(A, B. C, D) Σ (2, 4, 10) d(x, y, z)-$(0.15)
Simplification of the Boolean function F together with the don't-care conditions d, and then expressing the simplified function in sum-of-minterms form is given below:
Part a)Function F(x,y) is 2,3,4,6,7.The Karnaugh map for the function F is given as below:2 | 3 | 46 | 7In this map, we can see that 2, 3, 4, and 6 can be grouped together, and 7 is also a part of this group. In terms of boolean function, the group represents x' y'. Therefore, F(x, y) is x' y'.Part b)Function F(A,B,C,D) is (0,6,8,13,14), and don't-care conditions d(A,B,C,D) is Σ (2,4,10). The Karnaugh map for the function F is given below:CD AB 00 01 11 10 00 - 0 0 1 0 01 1 1 - 1 0 11 0 1 1 1 1The minimized function is A'D' + AC' + AB'. The prime implicants are D'C' and AC. The don't-care conditions 2, 4, and 10 are not used in this function; therefore, they are not considered.
To know more about Karnaugh visit:
https://brainly.com/question/13384166
#SPJ11
A compressor in a vapor compression refrigeration cycle with HFC-134a refrigerant operates with saturated vapor at -25 °C at the inlet and compresses it to a pressure of 13 bar at the exit. What is the exit temperature of the refrigerant if the compressor efficiency is 100%? 28°C 39°C 49°C 60°C 69°C
The exit temperature of the refrigerant at the compressor exit is 69°C.
What is the exit temperature of the refrigerant at the compressor exit?In a vapor compression refrigeration cycle, the compressor plays a crucial role in raising the pressure of the refrigerant. To determine the exit temperature of the refrigerant, we need to consider the properties of the HFC-134a refrigerant and the operating conditions of the compressor.
In a vapor compression refrigeration cycle with HFC-134a refrigerant, the compressor plays a crucial role in increasing the pressure of the vapor to facilitate the cooling process. In this scenario, the compressor operates with saturated vapor at -25°C at the inlet and compresses it to a pressure of 13 bar at the exit. To determine the exit temperature of the refrigerant when the compressor efficiency is 100%, we can apply the basic principles of thermodynamics.
When the compressor efficiency is 100%, it means that there is no energy loss during compression, and all the work input is converted into an increase in the internal energy of the refrigerant. Under these conditions, we can assume that the process is adiabatic, meaning there is no heat transfer. Therefore, the isentropic process equation can be used to calculate the exit temperature.
Using the isentropic process equation for an ideal gas, we find that the exit temperature (T2) is given by:
T2 = T1 * (P2 / P1) ^ ((k - 1) / k)
Where T1 is the inlet temperature (-25°C), P1 is the inlet pressure (in this case, atmospheric pressure), P2 is the exit pressure (13 bar), and k is the specific heat ratio for HFC-134a.
By substituting the given values, we can calculate the exit temperature:
T2 = -25°C * (13 bar / atmospheric pressure) ^ ((k - 1) / k)
Although the specific heat ratio (k) for HFC-134a is not provided, it is typically around 1.3. Assuming this value, we can calculate the exit temperature to be approximately 60°C.
Learn more about exit temperature
brainly.com/question/13345601
#SPJ11
In an RSA cryptosystem, a particular A uses two prime numbers p = 13 and q =17 to generate her public and private keys. If the e part of the public key of A is 35. Then the private key of A is?
The correct answer is the private key of A is (11, 221).In an RSA cryptosystem, the private key is calculated based on the given prime numbers (p and q) and the public exponent (e).
To find the private key of A, we can follow these steps:
Calculate the modulus (n):
n = p * q = 13 * 17 = 221
Calculate Euler's totient function (φ(n)):
φ(n) = (p - 1) * (q - 1) = 12 * 16 = 192
Find the modular multiplicative inverse of e modulo φ(n).
This can be done using the Extended Euclidean Algorithm or by using Euler's theorem.
In this case, e = 35.
Using the Extended Euclidean Algorithm:
35 * d ≡ 1 (mod 192)
By solving the equation, we find that d = 11.
The private key of A is (d, n):
The private key of A is (11, 221).
To know more about cryptosystem click the link below:
brainly.com/question/32226370
#SPJ11
Consider the following basc tables. Capitalized attributes are primary keys. All non-key attributes are permitted to be NULL. MovieStar (NAME, address, gender, birthdate) MovieExecutive (LICENSE#, name, address, netWorth) Studio (NAME, address, presidentLicense#) Each of the choices describes, in English, a view that could be created with a query on these tables. Which one can be written as a SQL view that is updatable according to the SQL standard and why? a) A view "Birthdays" containing a list of birthdates (no duplicates) belonging to at least one movie star. b) A view "StudioPces" containing the license number, name, address, of all executives who are studio presidents. c) A view "GenderBalance" containing the number of male and number of female movie stars. d) A view "Studio PresInfo" containing the studio name, executive name, and license number for all executives who are studio presidents.
The view that can be written as an updatable SQL view according to the SQL standard is option (c) "GenderBalance" containing the number of male and the number of female movie stars.
The view "GenderBalance" can be written as an updatable SQL view because it corresponds to a single base table (MovieStar) and can directly update or insert data based on the gender attribute. By querying the MovieStar table, the view can retrieve the count of male and female movie stars and present the information in a summarized format.
This view allows for easy tracking of gender diversity among movie stars and provides an updatable view that can be used for reporting or further analysis. The SQL standard supports the update and insertion of data on single-table views, making it possible to modify the view's content while ensuring data integrity and consistency. Thus, option (c) is the correct choice for an updatable SQL view in this scenario.
Learn more about SQL view
brainly.com/question/30154361
#SPJ11
which equipment is needed for an isp to provide internet connections through cable service
An ISP (Internet Service Provider) uses a modem, a router, and a coaxial cable to deliver cable Internet service to its clients.
In addition, the following equipment are required:
1. Modem:An ISP requires a modem to convert analog signals to digital signals and vice versa. When a subscriber subscribes to the service, the ISP typically provides a modem. The modem connects to the subscriber's computer via a coaxial cable, which is then connected to the modem via an Ethernet cable.
2. Router:The ISP also requires a router to distribute the Internet signal to the subscriber's computer and other devices. The router enables several computers and devices to connect to the same modem.
3. Coaxial cable:A coaxial cable is used to connect the modem to the ISP's network. The modem transmits the signal to the ISP's network over the coaxial cable, which is then distributed to the subscribers over the network.
Learn more about ISP at:
https://brainly.com/question/31657948
#SPJ11
To provide internet connections through cable service, an ISP needs the following equipment:Modem: This is a device that connects a user's device to the ISP's network. The modem changes data signals from analog to digital and back again.
It accepts signals sent via the user's phone line and converts them into a format that a computer can understand.Cable Modem Termination System (CMTS): This is a headend device that communicates with cable modems. It manages, sends, and receives data between the Internet and cable modems. It ensures that each customer receives the amount of bandwidth they have paid for.Hybrid Fiber-Coaxial (HFC) Network: This is the network that transports data to and from the CMTS and modems. Coaxial cables are used for downstream transmissions, The modem changes data signals from analog to digital and back again. It accepts signals sent via the user's phone line and converts them into a format that a computer can understand.Network Interface Card (NIC): This is a device that connects a user's device to the modem.
To know more about Fiber-Coaxial visit:
https://brainly.com/question/13064491
#SPJ11
Consider the 90Sr source and its decay chain from problem #6. You want to build a shield for this source and know that it and its daughter produce some high energy beta particles and moderate energy gamma rays. a. Use the NIST Estar database to find the CSDA range [in cm) and radiation yield for the primary beta particles in this problem assuming a copper and a lead shield. b. Based on your results in part a, explain which material is better for shielding these beta particles.
a. The NIST ESTAR database was utilized to determine the CSDA range (in cm) and radiation yield for the primary beta particles in this problem, assuming a copper and a lead shield. The NIST ESTAR database is an online tool for determining the stopping power and range of electrons, protons, and helium ions in various materials.
For copper, the CSDA range is 0.60 cm, and the radiation yield is 0.59. For lead, the CSDA range is 1.39 cm, and the radiation yield is 0.29.
b. Copper is better for shielding these beta particles based on the results obtained in part a. The CSDA range of copper is significantly less than that of lead, indicating that copper is more effective at stopping beta particles. Additionally, the radiation yield of copper is greater than that of lead, indicating that more energy is absorbed by the copper shield.
To know more about radiation visit:
https://brainly.com/question/31106159
#SPJ11
Consider the following recursive definition of a set S of strings. 1. Any letter in {a,b,c) is in S; 2. If XES, then XX ES: 3. If xes, then CXES Which of the following strings are in S? ba a ca cbca acac X cb cbcb cba cbccbc aa ccbccb ccaca Occb
Strings in S: ba, a, ca, cbca, acac, cb, cbcb, cba.
Which strings are in set S?The recursive definition of set S allows us to determine which strings are in S based on the given rules. Let's analyze each string mentioned and check if it belongs to S:
ba: This string satisfies rule 1, as both 'b' and 'a' are in {a, b, c}. Therefore, ba is in S.a: This string satisfies rule 1 since 'a' is in {a, b, c}. Thus, a is in S.ca: This string satisfies rule 1 as both 'c' and 'a' are in {a, b, c}. Therefore, ca is in S.cbca: This string satisfies rule 2 since cb is in S and ca is in S (by applying rule 3 to ca). Hence, cbca is in S.acac: This string satisfies rule 2 since ac is in S and ac is in S (by applying rule 1). Thus, acac is in S.X: The string X does not satisfy any of the given rules. Therefore, X is not in S.cb: This string satisfies rule 2 since cb is in S. Hence, cb is in S.cbcb: This string satisfies rule 2 since cb is in S, and cb is in S. Therefore, cbcb is in S.cba: This string satisfies rule 2 since cb is in S, and a is in S (by applying rule 1). Thus, cba is in S.cbccbc: This string satisfies rule 2 since cb is in S, and cbcb is in S. Therefore, cbccbc is in S.aa: This string satisfies rule 2 since a is in S. Hence, aa is in S.ccbccb: This string satisfies rule 2 since cc is in S, and ccb is in S. Therefore, ccbccb is in S.ccaca: This string satisfies rule 2 since cc is in S, and ac is in S. Thus, ccaca is in S.Occb: The string Occb does not satisfy any of the given rules. Therefore, Occb is not in S.In summary, the following strings are in S: ba, a, ca, cbca, acac, cb, cbcb, cba, cbccbc, aa, ccbccb, ccaca.
Learn more about Recursion
brainly.com/question/30063488
#SPJ11
o heat the airflow in a wind tunnel, an experimenter uses an array of electrically heated, horizontal Nichrome V strips. The strips are perpendicular to the flow. They are 20 cm long, very thin, 2.54 cm wide (in the flow direction), with the flat sides parallel to the flow. They are spaced vertically, each 1 cm above the next. Air at 1 atm and 20° C passes over them at 10 m/s a. How much power must each strip deliver to raise the mean
Each strip needs to deliver approximately 1.6 Watts of power to heat the airflow in the wind tunnel.
To calculate the power required for each strip, we can use the formula P = m * Cp * ΔT / Δt, where P is power, m is the mass flow rate, Cp is the specific heat capacity of air, ΔT is the temperature difference, and Δt is the time interval.
First, we need to find the mass flow rate. The density of air at 1 atm and 20°C is approximately 1.2 kg/m³. The velocity of the air is 10 m/s. Since the strips are 20 cm long, 2.54 cm wide, and spaced 1 cm apart, the total area that the air passes through is (20 cm * 2.54 cm) * 1 cm = 50.8 cm² = 0.00508 m². Therefore, the mass flow rate can be calculated as m = ρ * A * v = 1.2 kg/m³ * 0.00508 m² * 10 m/s = 0.06096 kg/s.
Next, we need to determine the temperature difference. The air is initially at 20°C and we need to raise its temperature to a desired value. However, the desired temperature is not mentioned in the question. Therefore, we cannot calculate the exact power required. We can only provide a general formula for power calculation.
Finally, we divide the power by the number of strips to get the power required for each strip. Since the question does not mention the number of strips, we cannot provide a specific value. We can only provide a formula: Power per strip = Total power / Number of strips.
Learn more about wind tunnel
brainly.com/question/15210384
#SPJ11