Answer:
her salary will increase by $ 145 for every week
Step-by-step explanation:
x=1st paycheck (integer).
weekly raise = $ 145.
After completing the 1st week she will get $ (x+145).
Similarly after completing the 2nd week she will get
$ (x + 145) + $ 145.
= $ (x + 145 + 145)
= $ (x + 290)
So in this way end of every week her salary will increase by $ 145.
Find the perimeter of a football field which measures 90m by 60m
Hello!
[tex]\large\boxed{P = 300m}[/tex]
Use the following formula for the perimeter:
P = 2l + 2w, where:
l = length
w = width
Therefore:
P = 2(90) + 2(60)
Simplify:
P = 180 + 120 = 300 m
Answer:
well how about you use common sense 100 yards long on each side 200 yards then add 5o yards since the the that is how wide it is then add another 50 and you get 300 yards then convert that to meters
The total mass of 8 identical dictionaries is 9.92 kilograms. What is the mass, in kilograms, of one dictionary? Enter your answer in the space provided
giving brainiest Elinor solved this problem. Is her answer correct?
8.93 times 0.15 = 4465. 4465 + 8930 = 13.395
No, Elinor should have placed the decimal point between the 1 and the 3.
No, she should have placed the decimal point between the 3 and the 9.
No, she did not align the place values in the partial products correctly.
Yes. Elinor did not make an error. giving Branniest
Answer:
its a
Step-by-step explanation:
trust did test
HELP ASAP PLS Select the correct answer.
A light bulb's brightness is reduced when placed behind a screen. The amount of visible light produced by the light bulb decreases by 25% with
each additional layer that is added to the screen. With no screen, the light bulb produces 750 lumens. The lumen is a unit for measuring the total
quantity of visible light emitted by a source,
Select the correct equation that can be used to represent the lumens, L, after x screen layers are added.
Answer:
D. 750(0.75)ˣ
Step-by-step explanation:
Let the new brightness be L'. Since our initial brightness L₀ reduces by 25 %, we have that L' = L₀ - 25% of L₀
L' = L₀ - 0.25L₀
L' = 0.75L₀
Adding the second screen, the new intensity is L" = L' - 25 % of L'
L" = L' - 0.25 L'
L" = 0.75L'.
Since L' = 0.75L₀,
L" = 0.75L' = 0.75(0.75L₀) = 0.75²L₀
Adding the third screen, the new intensity is L"' = L'' - 25 % of L''
L'" = L" - 0.25 L"
L"' = 0.75L".
Since L" = 0.75L' = 0.75²L₀
L"' = 0.75L" = 0.75(0.75²L₀) = 0.75³L₀
So, we see a pattern here.
The intensity after x screens is L = (0.75)ˣL₀
Since L₀ = 750 lumens,
L = 750(0.75)ˣ
For this problem what I did was add all the measurements and I got 48 m. However, it is wrong. How do I go about solving the perimeter then?
9514 1404 393
Answer:
66 m
Step-by-step explanation:
The perimeter is the sum of the measures of all of the sides. There are two side measures that are missing from the diagram.
The missing horizontal measure is ...
17 m - 8 m = 9 m
The missing vertical measure is ...
16m -7 m = 9 m.
If you add these to the sum you already calculated, you will get the correct answer:
48 m + 9 m + 9 m = 66 m . . . perimeter of the figure
_____
If you're paying attention, you see that the sum of the measures of the two shorter horizontal segments is the same as the measure of the longer horizontal segment. Likewise, the sum of the measurements of the two shorter vertical segments is the same as that of the longer vertical segment.
In other words, the perimeter of this (and any) L-shaped figure is the same as the perimeter of a rectangle having the same horizontal and vertical dimensions as the long sides of the figure.
P = 2(17 m +16 m) = 2(33 m) = 66 m
need help now!!! Please and thanks
Answer:
the answer of r is 8 i hope it will help
Please help me in this question
Answer:
3/8
Step-by-step explanation:
the total number of possible results is 4×4=16.
out of these 16 only the results
1 2
1 3
1 4
2 2
2 3
3 2
are desired results. these are 6.
so the probability of a desired result is 6/16 = 3/8
Suppose f(x,y,z) = x2 + y2 + z2 and W is the solid cylinder with height 7 and base radius 2 that is centered about the z-axis with its base at z = −2. Enter θ as theta.
A) As an iterated integral, ∭WfdV = ∫BA∫DC∫FE dzdrdθ with limits of integration.
B) Evaluate the integral.
In cylindrical coordinates, W is the set of points
W = {(r, θ, z) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π and -2 ≤ z ≤ 5}
(A) Then the integral of f(x, y, z) over W is
[tex]\displaystyle\iiint_W(x^2+y^2+z^2)\,\mathrm dV = \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
(B)
[tex]\displaystyle \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta = 2\pi \int_0^2\int_{-2}^5(r^3+rz^2)\,\mathrm dz\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(zr^3+\frac13rz^3\right)\bigg|_{z=-2}^{z=5}\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(\frac{133}3r+7r^3\right)\,\mathrm dr \\\\\\= 2\pi \left(\frac{133}6r^2+\frac74r^4\right)\bigg|_{r=0}^{r=2} \\\\\\= 2\pi \left(\frac{110}3\right) = \boxed{\frac{220\pi}3}[/tex]
²/₃ + ¹/₃ please answer
FINAL ANSWER:
1
Step-by-step explanation:
[tex]\frac{2}{3} +\frac{1}{3}[/tex]
the denominators are the same so all we need to do is add.
[tex]\frac{2}{3} + \frac{1}{3} =\frac{3}{3}[/tex]
[tex]\frac{3}{3} =[/tex] 1 whole
final answer: 1
hope this answer helps you :)
have a great day and may God Bless You!
Need the answers from a - e
Answer:
10
Step-by-step explanation:
Sorry. I needed to answer this question to get access.
John's age 4 years ago, if he will be y years old in 5 years
9514 1404 393
Answer:
y -9
Step-by-step explanation:
From 4 years ago until 5 years from now, John will age 9 years. That is, his age 4 years ago is 9 years less than it will be in 5 years.
John's age 4 years ago is y-9 years.
Identify the domain of the table of values shown
Answer:
{-6,0,2,4}
Step-by-step explanation:
The frequency distribution below summarizes the home sale prices in the city of Summerhill for the month of June. Determine the lower class limits.
Answer:
79.5, 110.5, 141.5, 172.5, 203.5, 234.5
Step-by-step explanation:
Given
The attached distribution
Required
The lower class limits
To do this, we simply subtract 0.5 from the lower interval
From the attached distribution, the lower intervals are:
80.0, 111.0, 142.0, 173,0 .......
So, the lower class limits are:
[tex]80.0-0.5 = 79.5[/tex]
[tex]111.0-0.5 = 110.5[/tex]
[tex]142.0-0.5 = 141.5[/tex]
[tex]173.0-0.5 = 172.5[/tex]
[tex]204.0-0.5 = 203.5[/tex]
[tex]235.0-0.5 = 234.5[/tex]
PLEASE HELP!!! Which number is a solution of the inequality x less-than negative 4? Use the number line to help answer the question. A number line going from negative 9 to positive 1.
Answer:
is it going to be 10.5
Step-by-step explanation:
I do not have any explanation
Answer: 0 (zero)
Step-by-step explanation:
Start Learning & start growing! edge2023
*DROPS THE MIC*
What are the domain and range of the function represented by the set of
ordered pairs?
{(-16, 0), (-8, -11), (0, 12), (12,4)}
Answer:
domain:-16,-8,0,12
range:0,-11,12,14
The asymptote of the function f(x) = 3x + 1 – 2 is . Its y-intercept is
Answer:
-1
Step-by-step explanation:
1-2=-1
y=mx+b
b= y intercept
Answer:
-1
Step-by-step explanation:
We want to know if money affects happiness. We surveyed 20 people one week before they were notified of winning a large publishers clearing house sweepstakes and then again one month after they recieved their prize. What test would we use to compare their previous scores with their current scores
Answer:
Dependent Samples t test
Step-by-step explanation:
The dependent samples t test also called the paired t test are employed in statistical analysis when sample measurement in a certain group is to be paired with the sample measurement on the other group. This is possible because the samples used in the two groups are usually the same. Hence, pairing the samples is feasible in this case. This is different from independent t test as the samples in the groups are entirely different and distinct. Hence, giving no chance to match the samples together. In the scenario described above, the same 20 people(samples) formed the same group of measurement.
Plz help. I’m finding surface area. I need the answer in units. Thank you.
Answer:
C. 17 units
Step-by-step explanation:
Surface area of rectangular prism is given as:
A = 2lw + 2lh + 2wh
A = 930 square units
l = 12 units
h = 9 units
w = ? (We're to find the width)
Plug in the value into the formula
930 = 2*12*w + 2*12*9 + 2*w*9
930 = 24w + 216 + 18w
Add like terms
930 - 216 = 42w
714 = 42w
Divide both sides by 42
714/42 = 42w/42
17 = w
w = 17 units
Answer pls:) I would really appreciate it
Answer:
1. C
2. B
3 A
4. A
Step-by-step explanation:
#1
Brady starts off with 12 coins
And buys 6 more coins every year
So add 6 to find number of coins he will have the next year until we've done it five times ( because we want to find how many he will have after 5 years )
12 ( 1st year )
Add 6
12 + 6 = 18 ( 2nd year )
Add 6
18 + 6 = 24 ( 3rd year )
Add 6
24 + 6 = 30 ( 4th year )
Add 6
30 + 6 = 36 ( 5th year )
By the fifth year he will have 36 coins and the sequence would be
12, 18, 24, 30, 36
Which corresponds with answer choice C
2
15, 19, 23, 27, ?
We want to find the next term
To do so we must find the common difference
We can do this by subtracting the last given term by the term before it
27 - 23 = 4
Just to clarify we can do the terms before those
19 - 15 = 4
So the common difference is 4
Now to find the next term we simply add 4 to the last given term
27 + 4 = 31
The next term would be 31
3. Cumulative property of addition states that you can add any 3 numbers in a different order and they will be the same
a + b + 2 = 2 + a + b
Same variables and numbers just different order
Therefore this is an example of cumulative property of addition
4. The GCF ( greatest common factor ) is the greatest number that the two numbers can be divided by
18a and 24ab
Factors of 18
2 , 9 , 6, 3 , 1 and 18
Factors of 24
24, 1, 2, 12, 6, 4, 3 and 8
The greatest factor that both 18 and 24 have is 6
The GCF would be 6a ( not 6 ) because both numbers share a common variable (a) ( 18a , 24ab )
The mean age of 5 people in a room is 27 years.
A person enters the room.
The mean age is now 35.
What is the age of the person who entered the room?
Answer:
main age = total age/total people
if Main age is = 27
[tex]27 = \frac{ \times }{5} [/tex]
and x = 135
Total age is = 135
then main age is 35
[tex][35 = \frac{y}{6} [/tex]
and y = 210
first main age - second main age = age of the person participating
210 - 135 = 75
the age is = 75HAVE A NİCE DAY
Step-by-step explanation:
GREETINGS FROM TURKEY
In your office desk drawer you have 10 different flavors of fruit leather. How many distinct flavor groupings can you make with your fruit leather stash?
Roulette is a casino game that involves spinning a ball on a wheel that is marked with numbered squares that are red, black, or green. Half of the numbers 1 - 36 are colored red and half are black and the numbers 0 and 00 are green. Each number occurs only once on the wheel. What is the probability of landing on an even number and a number greater than 17? (A number is even if it is divisible by 2. 0 and 00 are considered even as well.)
Answer:
the wording (punctuation) of the question can lead to different interpretations....
I assume that the question was >17 & even which is "5/19",
BUT... it can also be read as two questions
first >17 which is "10/19"
and second an even number which is "9/19"
BUT !!! I think that the question answer is 5/19
Step-by-step explanation:
Even Number = 18/38 = 9/19
greater 17 = 20/38 = 10/19
Even & greater 17 = 10/38 = 5/19
Q.1 Determine whether y = (c - e ^ x)/(2x); y^ prime =- 2y+e^ x 2x is a solution for the differential equation Q.2 Solve the Initial value problem ln(y ^ x) * (dy)/(dx) = 3x ^ 2 * y given y(2) = e ^ 3 . Q.3 Find the general solution for the given differential equation. (dy)/(dx) = (2x - y)/(x - 2y)
(Q.1)
[tex]y = \dfrac{C - e^x}{2x} \implies y' = \dfrac{-2xe^x-2C+2e^x}{4x^2} = \dfrac{-xe^x-C+e^x}{2x^2}[/tex]
Then substituting into the DE gives
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = -\dfrac{2\left(\dfrac{C-e^x}{2x}\right) + e^x}{2x}[/tex]
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = -\dfrac{C-e^x + xe^x}{2x^2}[/tex]
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = \dfrac{-C+e^x - xe^x}{2x^2}[/tex]
and both sides match, so y is indeed a valid solution.
(Q.2)
[tex]\ln\left(y^x\right)\dfrac{\mathrm dy}{\mathrm dx} = 3x^2y[/tex]
This DE is separable, since you can write [tex]\ln\left(y^x\right)=x\ln(y)[/tex]. So you have
[tex]x\ln(y)\dfrac{\mathrm dy}{\mathrm dx} = 3x^2y[/tex]
[tex]\dfrac{\ln(y)}y\,\mathrm dy = 3x\,\mathrm dx[/tex]
Integrate both sides (on the left, the numerator suggests a substitution):
[tex]\dfrac12 \ln^2(y) = \dfrac32 x^2 + C[/tex]
Given y (2) = e ³, we find
[tex]\dfrac12 \ln^2(e^3) = 6 + C[/tex]
[tex]C = \dfrac12 \times3^2 - 6 = -\dfrac32[/tex]
so that the particular solution is
[tex]\dfrac12 \ln^2(y) = \dfrac32 x^2 - \dfrac32[/tex]
[tex]\ln(y) = \pm\sqrt{3x^2 - 3}[/tex]
[tex]\boxed{y = e^{\pm\sqrt{3x^2-3}}}[/tex]
(Q.3) I believe I've already covered in another question you posted.
Find a power series representation for the function. (Assume a>0. Give your power series representation centered at x=0 .)
f(x)=x2a7−x7
Answer:
Step-by-step explanation:
Given that:
[tex]f_x = \dfrac{x^2}{a^7-x^7}[/tex]
[tex]= \dfrac{x^2}{a^7(1-\dfrac{x^7}{a^7})}[/tex]
[tex]= \dfrac{x^2}{a^7}\Big(1-\dfrac{x^7}{a^7} \Big)^{-1}[/tex]
since [tex]\Big((1-x)^{-1}= 1+x+x^2+x^3+...=\sum \limits ^{\infty}_{n=0}x^n\Big)[/tex]
Then, it implies that:
[tex]\implies \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\Big(\dfrac{x}{a} \Big)^{^7} \Big)^n[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x}{a} \Big)^{^{7n}}[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x^{7n}}{a^{7n}} \Big)}[/tex]
[tex]\mathbf{= \sum \limits ^{\infty}_{n=0} \dfrac{x^{7n+2}}{a^{7n+7}} }}[/tex]
Question 2
A force F=5i+3j-2k is applied to move a block of cement from A(0,1,1) to B(4.-1,3).
Determine the work done by the force.
The work is simply the dot product of the force and displacement (which I assume are given in Newtons and meters, respectively):
W = F • d
W = (5i + 3j - 2k) N • ((4i - j + 3k) m - (j + k) m)
W = (5i + 3j - 2k) • (4i - 2j + 2k) Nm
W = (20 - 6 - 4) Nm
W = 10 J
the cost of 7 shirts is $63. find the cost of 5 shirts
1. $35
2. $45
3. $52
4. $70
Help me with moth of these questions please
Answer:
10. CD + DE = CE
11. BC + CE = BE
Step-by-step explanation:
10. CD and DE lie on a straight line, therefore, CD + DE = CE based on the segment addition postulate.
11. BC and CE lie on a straight line, therefore, BC + CE = BE based on the segment addition postulate.
If P = (2,-1), find the image
of P under the following rotation.
270° counterclockwise about the origin
([?], [])
Enter the number that belongs in
the green box.
9514 1404 393
Answer:
P'(-1, -2)
Step-by-step explanation:
The transformation for 270° CCW rotation is ...
(x, y) ⇒ (y, -x)
Then the image of the given point is ...
P(2, -1) ⇒ P'(-1, -2)
I WILL MARK BRAINLIEST PLEASE HELP! This graph represents f(x), and g(x) = -7x + 8.
Which statement about these functions is true?
A.
Function f(x) is increasing, and g(x) is decreasing.
B.
Function f(x) is decreasing, and g(x) is increasing.
C.
Functions f(x) and g(x) are both decreasing.
D.
Functions f(x) and g(x) are both increasing.
Answer:
A
Step-by-step explanation:
ITS OPTION (A)
PLZ MARK ME BRAINLIEST..
The polynomial 3x² + mx? - nx - 10 has a factor of (x - 1). When divided by x + 2, the remainder is 36. What are
the values of m and n?
Answer:
[tex]m = 12[/tex]
[tex]n =3[/tex]
Step-by-step explanation:
Given
[tex]P(x) = x^3 + mx^2 - nx - 10[/tex]
Required
The values of m and n
For x - 1;
we have:
[tex]x - 1 = 0[/tex]
[tex]x=1[/tex]
So:
[tex]P(1) = (1)^3 + m*(1)^2 - n*(1) - 10[/tex]
[tex]P(1) = 1 + m*1 - n*1 - 10[/tex]
[tex]P(1) = 1 + m - n - 10[/tex]
Collect like terms
[tex]P(1) = m - n + 1 - 10[/tex]
[tex]P(1) = m - n -9[/tex]
Because x - 1 divides the polynomial, then P(1) = 0;
So, we have:
[tex]m - n -9 = 0[/tex]
Add 9 to both sides
[tex]m - n = 9[/tex] --- (1)
For x + 2;
we have:
[tex]x + 2 = 0[/tex]
[tex]x = -2[/tex]
So:
[tex]P(-2) = (-2)^3 + m*(-2)^2 - n*(-2) - 10[/tex]
[tex]P(-2) = -8 + 4m + 2n - 10[/tex]
Collect like terms
[tex]P(-2) = 4m + 2n - 10 - 8[/tex]
[tex]P(-2) = 4m + 2n - 18[/tex]
x + 2 leaves a remainder of 36, means that P(-2) = 36;
So, we have:
[tex]4m + 2n - 18 = 36[/tex]
Collect like terms
[tex]4m + 2n = 36+18[/tex]
[tex]4m + 2n = 54[/tex]
Divide through by 2
[tex]2m + n=27[/tex] --- (2)
Add (1) and (2)
[tex]m + 2m - n + n = 9 +27[/tex]
[tex]3m =36[/tex]
Divide by 3
[tex]m = 12[/tex]
Substitute [tex]m = 12[/tex] in (1)
[tex]m - n =9[/tex]
Make n the subject
[tex]n = m - 9[/tex]
[tex]n = 12 - 9[/tex]
[tex]n =3[/tex]