Step-by-step explanation:
Hi, there!!!
According to the question we must find the area of shaded region, but we must find area of circle and rectangle to find area of shaded region,
So, let's simply work with it,
Firstly, finding the area of rectangle,
length = 11cm.
breadth = 11cm.
now, area= length× breadth.
or, a = 11cm× 11cm.
a= 121cm^2
Now, let's work out the area of circle.
radius= 5cm
and pi. = 3.14 {using pi value as 3.14}
now,
area of a circle = pi× r^2
or, a= 3.14×5^2
or, a = 78.5 cm^2.
Therefore, The area of a circle is 78.5cm^2.
Now lastly finding the area of shadedregion,
area of shaded region = area of rectangle - area of circle.
or, area of shaded region = 121cm^2 - 78.5cm^2
Therefore, the area of shaded region is 42.5 cm^2.
Hope it helps...
find the value of X from the given picture
Answer:
x = 108
Step-by-step explanation:
The sum of a circle is 360
90 + x/2 + x+x = 360
Combine like terms
90 + 2x+x/2 = 360
90 + 5/2 x = 360
Subtract 90 from each side
5/2x = 270
Multiply each side by 2/5
5/2x * 2/5 = 270*2/5
x =108
please help me answer these questions :(
Answer:
a) ∠X = 67.4°
ii) ∠Y = 22.6°
b) Hypotenuse = 13 miles
ii) Length of each congruent = 4.33 miles
c) Distance of mall from point A = 5.21 miles
d) Distance os mall from point B = 8.17 miles
e) Difference = 2.96 miles
ii) Amount it will cost = $1,628,000
Step-by-step explanation:
Because of the length of the solution, I sent it as an attachment to this answer.
(1 point) Consider the function f(x)=2x3−9x2−60x+1 on the interval [−4,9]. Find the average or mean slope of the function on this interval. Average slope: By the Mean Value Theorem, we know there exists at least one value c in the open interval (−4,9) such that f′(c) is equal to this mean slope. List all values c that work. If there are none, enter none . Values of c:
Answer: c = 4.97 and c = -1.97
Step-by-step explanation: Mean Value Theorem states if a function f(x) is continuous on interval [a,b] and differentiable on (a,b), there is at least one value c in the interval (a<c<b) such that:
[tex]f'(c) = \frac{f(b)-f(a)}{b-a}[/tex]
So, for the function f(x) = [tex]2x^{3}-9x^{2}-60x+1[/tex] on interval [-4,9]
[tex]f'(x) = 6x^{2}-18x-60[/tex]
f(-4) = [tex]2.(-4)^{3}-9.(-4)^{2}-60.(-4)+1[/tex]
f(-4) = 113
f(9) = [tex]2.(9)^{3}-9.(9)^{2}-60.(9)+1[/tex]
f(9) = 100
Calculating average:
[tex]6c^{2}-18c-60 = \frac{100-113}{9-(-4)}[/tex]
[tex]6c^{2}-18c-60 = -1[/tex]
[tex]6c^{2}-18c-59 = 0[/tex]
Resolving through Bhaskara:
c = [tex]\frac{18+\sqrt{1740} }{12}[/tex]
c = [tex]\frac{18+41.71 }{12}[/tex] = 4.97
c = [tex]\frac{18-41.71 }{12}[/tex] = -1.97
Both values of c exist inside the interval [-4,9], so both values are mean slope: c = 4.97 and c = -1.97
if f(x)=3-2x and g(x)= 1/x+5 what is the value of (f/g) (8)
Answer:
Step-by-step explanation:
(f/g) = (3 - 2x ) / (1/x + 5) You could go to the trouble to simplify all of this, but the easiest way is to just put in the 8 where you see an x
(f/g)8 = (3 - 2*8) / (1/8 + 5)
(f/g)/8 = (3 - 16 / (5 1/8) 1/8 = 0.125
(f/g) 8 = - 13 / ( 5.125)
(f/g)8 = - 2.54
An inequality is shown: −np − 4 ≤ 2(c − 3) Which of the following solves for n?
Answer:
[tex]\huge\boxed{n\leq\dfrac{2-2c}{p}\ \text{for}\ p<0}\\\boxed{n\geq\dfrac{2-2c}{p}\ \text{for}\ p>0}[/tex]
Step-by-step explanation:
[tex]-np-4\leq2(c-3)\qquad\text{use the distributive property}\\\\-np-4\leq2c-6\qquad\text{add 4 to both sides}\\\\-np\leq2c-2\qquad\text{change the signs}\\\\np\geq2-2c\qquad\text{divide both sides by}\ p\neq0\\\\\text{If}\ p<0,\ \text{then flip the sign of inequality}\\\boxed{n\leq\dfrac{2-2c}{p}}\\\text{If}\ p>0 ,\ \text{then}\\\boxed{n\geq\dfrac{2-2c}{p}}[/tex]
1) Given P(A) = 0.3 and P(B) = 0.5, do the following.
(a) If A and B are mutually exclusive events, compute P(A or B).
(b) If P(A and B) = 0.2, compute P(A or B).
2) Given P(A) = 0.4 and P(B) = 0.2, do the following.
(a) If A and B are independent events, compute P(A and B).
(b) If P(A | B) = 0.7, compute P(A and B).
Answer:
1) a) 0.8
b) 0.6
2) a) 0.08
b) 0.14
Step-by-step explanation:
1) Given
[tex]P(A) = 0.3[/tex] and [tex]P(B) = 0.5[/tex]
Let us learn about a formula:
[tex]P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\OR\\P(A\cup B) = P(A) +P(B) -P(A\cap B)[/tex]
(a) If A and B are mutually exclusive i.e. no common thing in the two events.
In other words:
[tex]P(A\ and\ B)[/tex] = [tex]P(A \cap B)[/tex] = 0
Using above formula:
[tex]P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\\Rightarrow P(A\ or\ B) = 0.3 + 0.5 -0 = \bold{0.8}[/tex]
(b) P(A and B) = 0.2
Using above formula:
[tex]P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\\Rightarrow P(A\ or\ B) = 0.3 + 0.5 -0.2 = \bold{0.6}[/tex]
*************************************
1) Given
[tex]P(A) = 0.4[/tex] and [tex]P(B) = 0.2[/tex]
Let us learn about a formula:
[tex]P(A\ and\ B) = P(B) \times P(A/B)[/tex] for dependent events
[tex]P(A\ and\ B) = P(A) \times P(B)[/tex] for independent events.
(a) If A and B are independent events :
Using the above formula for independent events:
[tex]P(A\ and\ B) = 0.4 \times 0.2 = \bold{0.08}[/tex]
(b) [tex]P(A / B) = 0.7[/tex]
Using above formula:
[tex]P(A\ and\ B) = P(B) \times P(A/B) = 0.2 \times 0.7 = \bold{0.14}[/tex]
What would be the mass of a cube of tungsten (density of 19.3 g/cm), with sides of
3cm?
Answer:
M= 521.1 g
Step-by-step explanation:
1st. Find the volume of the cube: V=3³=27 cm³
As the weight of V= 1 cm³ cube is 19.3 g the weight of the cube=27 cm³ is
M=27*19.3= 521.1 g
The value of 3 in 783.97
Answer:
place value of 3 in 783.97 is 3
Step-by-step explanation:
Answer:
Units
Step-by-step explanation:
The units start counting from 3 because after the point that is the 9 start counting tenth
find the straight time pay $7.60 per hour x 40 hours
Answer:
The straight time pay for $ 7.60 per hour and 40 work hours per week is $ 304.
Step-by-step explanation:
Let suppose that worker is suppose to work 8 hours per day, so that he must work 5 days weekly. The straight time is the suppose work time in a week, the pay is obtained after multiplying the hourly rate by the amount of hours per week. That is:
[tex]C = \left(\$\,7,60/hour\right)\cdot (40\,hours)[/tex]
[tex]C = \$\,304[/tex]
The straight time pay for $ 7.60 per hour and 40 work hours per week is $ 304.
which of the following not between -10 and -8
-17/2
-7
-9
-8.5
Answer:
-7Step-by-step explanation:
This is best read on the number line.
Look at the picture.
[tex]-\dfrac{17}{2}=-8\dfrac{1}{2}=-8.5[/tex]
PLEASE HELP ! (4/5) - 50 POINTS -
Answer:
[tex]\large \boxed{\sf A) \ 12}[/tex]
Step-by-step explanation:
Frequency of a specific data value at an interval is the number of times the data value repeats in that interval.
Cumulative frequency is found by adding each frequency to the frequency that came before it.
cStep-by-step explanation:
Marking as brainyest PLEASE HELP
How does f(x) = 9x change over the interval from x = 3 to x = 4? A) f(x) increases by 100% B) f(x) increases by 800% C) f(x) increases by 900% D) f(x) increases by 1000%
Answer:
C) f(x) increases by 900%
Step-by-step explanation:
The rate of change is
f(4) - f(3)
---------------
4-3
f(4) = 9*4 = 36
f(3) = 9*3 = 27
36 -27
---------------
4-3
9
-----
1
The rate of change is 9
To change to a percent, multiply by 100%
9*100% = 900%
Answer:
Increases by 900%
Step-by-step explanation:
● f(x) = 9x
The rate of change is:
● r = (36-27)/(4-3) = 9
So the function increses nine times wich is equivalent to 900%
Answer two questions about Equations A and B:
A. 2x-1=5x
B. -1=3x
1) How can we get Equation B from Equation A?
Choose 1 answer:
Add/subtract the same quantity to/from both sides
Add/subtract a quantity to/from only one side
Rewrite one side (or both) by
combining like terms
Rewrite one side (or both) using the distributive property
NEXT QUESTION
based on the previous answer, are the equations equivalent? In other words, do they have the same solution?
A. Yes
B. No
Answer:
B: Add/subtract the same quantity to/from both sides
Next Question: Yes
Step-by-step explanation:
thats what the answer is dunno what else to tell you lol
Algebraic equations are mathematical equations that contain unknown variables.
To get Equation B from Equation A, we add/subtract the same quantity to/from both sides. Option A is the correct option. Equation A is equivalent to Equation BQuestion 1: We are given equation A as:2x - 1 = 5x .............Equation A
To get Equation B from A, we would subtract 2x from both sides of the equation.
2x - 2x - 1 = 5x - 2x
- 1 = 3x This is Equation B
Question 2: Based on the previous answer,2x - 1 = 5x is equal to -1 = 3x.
Hence, both Equation A and Equation B are equivalent expressions.
Therefore,
To get Equation B from Equation A, we add/subtract the same quantity to/from both sides. Option A is the correct option.Equation A is equivalent to Equation BTo learn more, visit the link below:
https://brainly.com/question/22299566
-50 POINTS- please help
Answer:
-13
-10
Step-by-step explanation:
A x = B
To find X
A ^ -1 A x = A ^ -1 B
x = A^ -1 B
x = -3/2 -5/2 2
-1 -2 4
Across times down
-3/2 * 2 + -5/2 *4 = -13
-1 *2 -2 * 4 = -10
The matrix is
-13
-10
Answer:
[tex]\Large \boxed{\bold{D.} \ \left[\begin{array}{ccc}-13\\ -10\end{array}\right]}[/tex]
Step-by-step explanation:
[tex]AX=B[/tex]
To find [tex]X[/tex]
[tex]X=A^{-1} \cdot B[/tex]
[tex]\displaystyle \left[\begin{array}{ccc}-\frac{3}{2} \cdot 2 + - \frac{5}{2} \cdot 4\\ -1 \cdot 2 + -2 \cdot 4\end{array}\right][/tex]
[tex]\displaystyle \left[\begin{array}{ccc}-3 + - 10\\ -2 + -8\end{array}\right][/tex]
[tex]\displaystyle \left[\begin{array}{ccc}-13\\ -10\end{array}\right][/tex]
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis. Suppose you wish to test the claim that , the mean value of the differences d for a population of paired data, is greater than 0. Given a sample of n15 and a significance level of 0.01, what criterion would be used for rejecting the null hypothesis?
Answer:
reject null hypothesis if calculated t value > 2.624
Step-by-step explanation:
n = 15
To calculate degree of freedom, n -1 = 14
The claim says ud>0
The decision rule would be to reject this null hypothesis if the test statistics turns out to be greater than the critical value.
With df =14
Confidence level = 0.01
Critical value = 2.624 (for a one tailed test)
If the t value calculated is > 2.624, we reject null hypothesis.
Using the t-distribution and it's critical values, the decision rule is:
t < 2.624: Do not reject the null hypothesis.t > 2.624: Reject the null hypothesis.At the null hypothesis, we test if the mean is not greater than 0, that is:
[tex]H_0: \mu \leq 0[/tex]
At the alternative hypothesis, we test if the mean is greater than 0, that is:
[tex]H_1: \mu > 0[/tex].
We then have to find the critical value for a right-tailed test(test if the mean is more than a value), with 15 - 1 = 14 df and a significance level of 0.01. Using a t-distribution calculator, it is [tex]t^{\ast} = 2.624[/tex].
Hence, the decision rule is, according to the test statistic t:
t < 2.624: Do not reject the null hypothesis.t > 2.624: Reject the null hypothesis.A similar problem is given at https://brainly.com/question/13949450
what is sum of all palindromic numbers from 1 to 100
Answer:
540
Step-by-step explanation:
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99
Answer:
540
Step-by-step explanation:
Hey there!
Well we need to first find all the palindromic numbers,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99
Add
= 540
Hope this helps :)
Please help with this
Answer:
A
Step-by-step explanation:
● first one:
The diagonals of a rhombus are perpendicular to each others wich means that they form four right angles.
STP is one of them so this statement is true.
● second one:
If ST and PT were equal this would be a square not a rhombus.
● third one:
If SPQ was a right angle, this woukd be a square.
● fourth one:
Again if the diagonals SQ and PR were equal, this would be a square.
What is the radius of the circle whose center is the
origin and that passes through the point (5,12)?
Answer:
13 units
Step-by-step explanation:
Use the equation of a circle, (x - h)² + ( y - k )² = r², where (h, k) is the center and r is the radius.
Plug in the values and solve for r:
(5 - 0)² + (12 - 0)² = r²
25 + 144 = r²
169 = r²
13 = r
Suppose we randomly selected 250 people, and on the basis of their responses to a survey we assigned them to one of two groups: high-risk group and low-risk group. We then recorded the blood pressure for the members of each group. Such data are called
Answer:
Matched or paired data
Step-by-step explanation:
In statistics the different types of study included experimental and observational with the matched or paired data.
The observational study is one in which there is no alteration in the obseravtions or any change. It is purely based on observations.
The experimental study is one in which some experiment or change is brought about to see the effects of the experiment and the results are recorded as before and after treatment etc.
The matched or paired study is one in which two or more groups are simultaneously observed , recorded to find the difference between them or other parameters which maybe useful for the differences or similarities.
will rate7 you brainliest
Answer:
[tex]\Large \boxed{\sf \bf \ \ \dfrac{x^2-x-6}{x^2-3x+2} \ \ }[/tex]
Step-by-step explanation:
Hello, first of all, we will check if we can factorise the polynomials.
[tex]\boxed{x^2+6x+8}\\\\\text{The sum of the zeroes is -6=(-4)+(-2) and the product 8=(-4)*(-2), so}\\\\x^2+6x+8=x^2+2x+4x+8=x(x+2)+4(x+2)=(x+2)(x+4)[/tex]
[tex]\boxed{x^2+3x-10}\\\\\text{The sum of the zeroes is -3=(-5)+(+2) and the product -10=(-5)*(+2), so}\\\\x^2+3x-10=x^2+5x-2x-10=x(x+5)-2(x+5)=(x+5)(x-2)[/tex]
[tex]\boxed{x^2+2x-15}\\\\\text{The sum of the zeroes is -2=(-5)+(+3) and the product -15=(-5)*(+3), so}\\\\x^2+2x-15=x^2-3x+5x-15=x(x-3)+5(x-3)=(x+5)(x-3)[/tex]
[tex]\boxed{x^2+3x-4}\\\\\text{The sum of the zeroes is -3=(-4)+(+1) and the product -4=(-4)*(+1), so}\\\\x^2+3x-4=x^2-x+4x-4=x(x-1)+4(x-1)=(x+4)(x-1)[/tex]
Now, let's compute the product.
[tex]\dfrac{x^2+6x+8}{x^2+3x-10}\cdot \dfrac{x^2+2x-15}{x^2+3x-4}\\\\\\=\dfrac{(x+2)(x+4)}{(x+5)(x-2)}\cdot \dfrac{(x+5)(x-3)}{(x+4)(x-1)}\\\\\\\text{We can simplify}\\\\=\dfrac{(x+2)}{(x-2)}\cdot \dfrac{(x-3)}{(x-1)}\\\\\\=\large \boxed{\dfrac{x^2-x-6}{x^2-3x+2}}[/tex]
So the correct answer is the first one.
Thank you.
A new fast-food firm predicts that the number of franchises for its products will grow at the rate dn dt = 6 t + 1 where t is the number of years, 0 ≤ t ≤ 15.
Answer:
The answer is "253"
Step-by-step explanation:
In the given- equation there is mistype error so, the correct equation and its solution can be defined as follows:
Given:
[tex]\bold{\frac{dn}{dt} = 6\sqrt{t+1}}\\[/tex]
[tex]\to dn= 6\sqrt{t+1} \ \ dt.....(a)\\\\[/tex]
integrate the above value:
[tex]\to \int dn= \int 6\sqrt{t+1} \ \ dt \\\\\to n= \frac{(6\sqrt{t+1} )^{\frac{3}{2}}}{\frac{3}{2}}+c\\\\\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}+c\\\\[/tex]
When the value of n=1 then t=0
[tex]\to 1= \frac{12(0+1)^{\frac{3}{2}}}{3}+c\\\\ \to 1= \frac{12(1)^{\frac{3}{2}}}{3}+c\\\\\to 1-\frac{12}{3}=c\\\\\to \frac{3-12}{3}=c\\\\\to \frac{-9}{3}=c\\\\\to c=-3\\[/tex]
so the value of n is:
[tex]\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}-3\\\\[/tex]
when we put the value t= 15 then,
[tex]\to n= \frac{(12\sqrt{15+1} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\sqrt{16} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\times 64)}{3}-3\\\\\to n= (4\times 64)-3\\\\\to n= 256-3\\\\\to n= 253[/tex]
The quotient of 8 and the difference of three and a number.
Answer: 8÷(3-x)
Answer:
Below
Step-by-step explanation:
● 8 ÷ (3-x)
Dividing by 3-x is like multiplying by 1/(3-x)
● 8 × (1/3-x)
● 8 /(3-x)
Solve for W.
W/9 = g
Answer:
W = 9 * g
Step-by-step explanation:
W/9 = g
W = 9 * g
The expression W/9 = g can be written as W = 9g after cross multiplication.
What is an expression?It is defined as the combination of constants and variables with mathematical operators.
We have an expression:
W/9 = g
To solve for W
Make subject as W:
W = 9g
By cross multiplication.
Thus, the expression W/9 = g can be written as W = 9g after cross multiplication.
Learn more about the expression here:
brainly.com/question/14083225
#SPJ2
In a lottery game, a player picks 6 numbers from 1 to 50. If 5 of the 6 numbers match those drawn, the player wins second prize. What is the probability of winning this prize
Answer:
1/254,251,200 Or 0.000000003933118
Step-by-step explanation:
1/50x1/49x1/48x1/47x1/46=1/254,251,200
For each ordered pair, determine whether it is a solution to y=-9.
Is it a solution?
Yes or No
(1, -9)
(7,3)
(-9,4)
(0, -9)
Answer:
(1, -9) yes
(7,3) no
(-9,4) no
(0, -9) yes
Step-by-step explanation:
The y value must be -9
The x value can be any value to satisfy the equation y = -9
What is the percentage of 204 over 1015, 1 over 8120, 1 over 5832, and 1 over 6?
Answer:
204/1015 (irreducible) = 20.1%
1/8120 (irreducible) = 0.01232%
1/5832 (irreducible) = 0.01715%
1/6 (irreducible) = 16.67%
Step-by-step explanation:
Solve for x: −3x + 3 −1 b. x −3
Answer:
2/3
Step-by-step explanation:
Your −3x + 3 −1 is not an equation and thus has no solution.
If, on the other hand, you meant
−3x + 3 = 1
then -3x = -2, and x = 2/3
Pimeter or area of a rectangle given one of these...
The length of a rectangle is three times its width.
If the perimeter of the rectangle is 48 cm, find its area.
Answer:
A=108 cm²
Step-by-step explanation:
length (l)=3w
perimeter=2l+2w
P=2(3w)+2w
48=6w+2w
width=48/8
w=6
l=3w=3(6)=18
l=18 cm , w=6 cmArea=l*w
A=18*6
A=108 cm²
Hayley bought a bike that was on sale with a 15% discount from the original price of $142. If there is a 6% sales tax to include after the discount, how much did Hayley pay for the bike?
Answer:
$12,78
Step-by-step explanation:
$142 × 0,15 = $21,3
$21,3 × 0,6 = $12,78
What is the rectangular form of the polar equation?
0=-
57
y=x
V3
Oy= 32
y=-3x
Answer:
Option (1)
Step-by-step explanation:
From the picture attached,
tanθ = [tex]\frac{y}{x}[/tex]
Given : Polar equation as 'θ' = [tex]-\frac{5\pi }{6}[/tex]
Therefore, [tex]\text{tan}(-\frac{5\pi }{6} )[/tex] = [tex]\frac{y}{x}[/tex]
[tex]-\text{tan}(\frac{5\pi }{6} )[/tex] = [tex]\frac{y}{x}[/tex] [Since tan(-θ) = -tanθ]
[tex]\text{tan}(\pi -\frac{5\pi }{6} )[/tex] = [tex]\frac{y}{x}[/tex] [Since -tanθ = tan(π - θ)]
[tex]\text{tan}\frac{\pi }{6}[/tex] = [tex]\frac{y}{x}[/tex]
[tex]\frac{y}{x}=\frac{\sqrt{3}}{3}[/tex]
y = [tex]\frac{\sqrt{3} }{3}x[/tex]
Therefore, y = [tex]\frac{\sqrt{3} }{3}x[/tex] will be the rectangular form of the polar equation.
Option (1) will be the correct option.