Name some real-life situations where graphing could be useful. Discuss your ideas. Name some real-life situations where finding the coordinates of the midpoint of a line segment could be useful.

Answers

Answer 1

Answer:

mapping an area

Step-by-step explanation:

One situation and probably the most common is mapping an area. Graphs are great for dividing a geographical location into various sections and creating a model representation of the area. The graph itself allows for specific directions to be shared using the x and y coordinates on the graph. The same applies for finding the midpoint of a line segment. For example, this is useful if you were trying to find a place to meetup with a friend that is an equal distance from where you are and from where your friend is currently located. Therefore, allowing you to meetup at the midpoint.


Related Questions

Estimate 620 / 17 by first rounding each number so that it has only 1 nonzero digit.

no links plz​

Answers

Step-by-step explanation:

620 / 17 =36.47058.. ≈ 36.5

Which expression is equivalent to -9x-1y-9/-15x5y-3?

Answers

Answer: -9x-1y-9/

Step-by-step explanation:

Answer: b

Step-by-step explanation:

I really dont like edge

Find the radius of a circle with a diameter whose endpoints are (-7,1) and (1,3).​

Answers

Answer:

r = 4.1231055

Step-by-step explanation:

So to do this, you need to find the distance between the two points:

(-7,1) and (1,3).

To do this, the distance or diameter (d) is equal to:

d = sqrt ((x2-x1)^2 + (y2-y1)^2)

In this case:

d = sqrt( (1 - (-7))^2 + (3 - 1)^2 )

d = sqrt( 8^2 + 2^2)

d = sqrt( 64 + 4)

d = sqrt( 68 )

The radius is half of the diameter, so:

r = 1/2 * d

r = 1/2 * sqrt( 68 )

r~ 4.1231055


Which statement is true regarding the functions on the
graph?

f(6) = g(3)
f(3) = g(3)
f(3) = g(6)
f(6) = g(6)

Answers

Answer:

f(3) = g(3)

Step-by-step explanation:

on the graph the only point, where both lines cross (both functions create the same functional value) is at x=3.

since both lines have the same y-value there, we express this in math by the "=" sign. and both functions have the same input value (x=3) there.

Which line is parallel to the line that passes through the points (1,7) and (-3, 4)? A. y=--x-5 B. y=+*+1 y=-x-8 O c. D. 11 v==x+3 4 ​

Answers

Answer:

B

Step-by-step explanation:

because

Young invested GH150,000 and 2.5% per annum simple interest. how long will it take this amount to. yield an interest of GH11,250,00​

Answers

Answer: 3 years

Step-by-step explanation:

Interest is calculated as:

= (P × R × T) / 100

where

P = principal = 150,000

R = rate = 2.5%.

I = interest = 11250

T = time = unknown.

I = (P × R × T) / 100

11250 = (150000 × 2.5 × T)/100

Cross multiply

1125000 = 375000T

T = 1125000/375000

T = 3

The time taken will be 3 years

Given the following numbers: a = 12500000 b = 0.00125 c = 1120000​
Calculate (ab)÷ (c) and write the answer in standard form. (2.5 marks)

d) Express the interval (-1.5, 4] as an inequality and then graph the interval.

Answers

Answer:

Answer to the following question is as follows.

Step-by-step explanation:

Given:

a = 12500000

b = 0.00125

c = 1120000​

Calculate (ab) ÷ (c)

Given:

d) Express the interval [-1.5, 4] as an inequality and then graph

Computation:

(ab) ÷ (c) = (a)(b) / c

(ab) ÷ (c) = (12500000)(0.00125) / (1120000​)

(ab) ÷ (c) = 25 / 1,792

Express the interval [-1.5, 4]

{x : -1.5 < x ≤ 4}

Graph.

._________._________.

-1.5              0                  4

Problem: The height, X, of all 3-year-old females is approximately normally distributed with mean 38.72
inches and standard deviation 3.17 inches. Compute the probability that a simple random sample of size n=
10 results in a sample mean greater than 40 inches. That is, compute P(mean >40).
Gestation period The length of human pregnancies is approximately normally distributed with mean u = 266
days and standard deviation o = 16 days.
Tagged
Math
1. What is the probability a randomly selected pregnancy lasts less than 260 days?
2. What is the probability that a random sample of 20 pregnancies has a mean gestation period of 260 days
or less?
3. What is the probability that a random sample of 50 pregnancies has a mean gestation period of 260 days
or less?
4. What is the probability a random sample of size 15 will have a mean gestation period within 10 days of
the mean?
Know
Learn
Booste
V See

Answers

Answer:

0.1003 = 10.03% probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

Gestation periods:

1) 0.3539 = 35.39% probability a randomly selected pregnancy lasts less than 260 days.

2) 0.0465 = 4.65% probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less.

3) 0.004 = 0.4% probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less.

4) 0.9844 = 98.44% probability a random sample of size 15 will have a mean gestation period within 10 days of the mean.

Step-by-step explanation:

To solve these questions, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The height, X, of all 3-year-old females is approximately normally distributed with mean 38.72 inches and standard deviation 3.17 inches.

This means that [tex]\mu = 38.72, \sigma = 3.17[/tex]

Sample of 10:

This means that [tex]n = 10, s = \frac{3.17}{\sqrt{10}}[/tex]

Compute the probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

This is 1 subtracted by the p-value of Z when X = 40. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{40 - 38.72}{\frac{3.17}{\sqrt{10}}}[/tex]

[tex]Z = 1.28[/tex]

[tex]Z = 1.28[/tex] has a p-value of 0.8997

1 - 0.8997 = 0.1003

0.1003 = 10.03% probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

Gestation periods:

[tex]\mu = 266, \sigma = 16[/tex]

1. What is the probability a randomly selected pregnancy lasts less than 260 days?

This is the p-value of Z when X = 260. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{260 -  266}{16}[/tex]

[tex]Z = -0.375[/tex]

[tex]Z = -0.375[/tex] has a p-value of 0.3539.

0.3539 = 35.39% probability a randomly selected pregnancy lasts less than 260 days.

2. What is the probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less?

Now [tex]n = 20[/tex], so:

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{260 - 266}{\frac{16}{\sqrt{20}}}[/tex]

[tex]Z = -1.68[/tex]

[tex]Z = -1.68[/tex] has a p-value of 0.0465.

0.0465 = 4.65% probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less.

3. What is the probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less?

Now [tex]n = 50[/tex], so:

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{260 - 266}{\frac{16}{\sqrt{50}}}[/tex]

[tex]Z = -2.65[/tex]

[tex]Z = -2.65[/tex] has a p-value of 0.0040.

0.004 = 0.4% probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less.

4. What is the probability a random sample of size 15 will have a mean gestation period within 10 days of the mean?

Sample of size 15 means that [tex]n = 15[/tex]. This probability is the p-value of Z when X = 276 subtracted by the p-value of Z when X = 256.

X = 276

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{276 - 266}{\frac{16}{\sqrt{15}}}[/tex]

[tex]Z = 2.42[/tex]

[tex]Z = 2.42[/tex] has a p-value of 0.9922.

X = 256

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{256 - 266}{\frac{16}{\sqrt{15}}}[/tex]

[tex]Z = -2.42[/tex]

[tex]Z = -2.42[/tex] has a p-value of 0.0078.

0.9922 - 0.0078 = 0.9844

0.9844 = 98.44% probability a random sample of size 15 will have a mean gestation period within 10 days of the mean.

The radius of a sphere is increasing at a rate of 2 mm/s. How fast is the volume increasing (in mm3/s) when the diameter is 100 mm

Answers

Answer:

The radius is increasing at a rate of 62832 cubic millimeters per second when the diameter is of 100 mm.

Step-by-step explanation:

Volume of a sphere:

The volume of a sphere of radius r is given by:

[tex]V = \frac{4\pi r^3}{3}[/tex]

How fast is the volume increasing:

To find this, we have to differentiate the variables of the problem, which are V and r, implicitly in function of time. So

[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]

The radius of a sphere is increasing at a rate of 2 mm/s.

This means that [tex]\frac{dr}{dt} = 2[/tex]

How fast is the volume increasing (in mm3/s) when the diameter is 100 mm?

Radius is half the diameter, so [tex]r = \frac{100}{2} = 50[/tex]

Then

[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt} = 4\pi (50)^2(2) = 62832[/tex]

The radius is increasing at a rate of 62832 cubic millimeters per second when the diameter is of 100 mm.

Find m < A
Round to the nearest degree.
CA = 6
CB = 13
AB = 10

Answers

Answer:

CA=6 is 6.0
CB= 13 is 13.0
AB= 10 is 10.0

A wooden log 10 meters long is leaning against a vertical wall with its other end on the ground. The top end of the log is sliding down the wall. When the top end is 6 meters from the ground, it slides down at 2m/sec. How fast is the bottom moving away from the wall at this instant?

Answers

Answer:

Step-by-step explanation:

This is a related rates problem from calculus using implicit differentiation. The main equation is Pythagorean's Theorem. Basically, what we are looking for is [tex]\frac{dx}{dt}[/tex] when y = 6 and [tex]\frac{dy}{dt}=-2[/tex].

The equation for Pythagorean's Theorem is

[tex]x^2+y^2=c^2[/tex] where x and y are the legs and c is the hypotenuse. The length of the hypotenuse is 10, so when we find the derivative of this function with respect to time, and using implicit differentiation, we get:

[tex]2x\frac{dx}{dt}+2y\frac{dy}{dt}=0[/tex] and divide everything by 2 to simplify:

[tex]x\frac{dx}{dt}+y\frac{dy}{dt}=0[/tex]. Looking at that equation, it looks like we need a value for x, y, [tex]\frac{dx}{dt}[/tex] and [tex]\frac{dy}{dt}[/tex].

Since we are looking for [tex]\frac{dx}{dt}[/tex], that can be our only unknown and everything else has to have a value. So what do we know?

If we construct a right triangle with 10 as the hypotenuse and use 6 for y, we can solve for x (which is the only unknown we have, actually). Using Pythagorean's Theorem to solve for x:

[tex]x^2+6^2=10^2[/tex] and

[tex]x^2+36=100[/tex] and

[tex]x^2=64[/tex] so

x = 8.

NOW we can fill in the derivative and solve for [tex]\frac{dx}{dt}[/tex].

Remember the derivative is

[tex]x\frac{dx}{dt}+y\frac{dy}{dt}=0[/tex] so

[tex]8\frac{dx}{dt}+6(-2)=0[/tex] and

[tex]8\frac{dx}{dt}-12=0[/tex] and

[tex]8\frac{dx}{dt}=12[/tex] so

[tex]\frac{dx}{dt}=\frac{12}{8}=\frac{6}{4}=\frac{3}{2}=1.5 m/sec[/tex]

If V= {i}, subset of V are? ​

Answers

Answer:

Defintion. A subset W of a vector space V is a subspace if

(1) W is non-empty

(2) For every v, ¯ w¯ ∈ W and a, b ∈ F, av¯ + bw¯ ∈ W.

Expressions like av¯ + bw¯, or more generally

X

k

i=1

aiv¯ + i

are called linear combinations. So a non-empty subset of V is a subspace if it is

closed under linear combinations. Much of today’s class will focus on properties of

subsets and subspaces detected by various conditions on linear combinations.

Theorem. If W is a subspace of V , then W is a vector space over F with operations

coming from those of V .

In particular, since all of those axioms are satisfied for V , then they are for W.

We only have to check closure!

Examples:

Defintion. Let F

n = {(a1, . . . , an)|ai ∈ F} with coordinate-wise addition and scalar

multiplication.

This gives us a few examples. Let W ⊂ F

n be those points which are zero except

in the first coordinate:

W = {(a, 0, . . . , 0)} ⊂ F

n

.

Then W is a subspace, since

a · (α, 0, . . . , 0) + b · (β, 0, . . . , 0) = (aα + bβ, 0, . . . , 0) ∈ W.

If F = R, then W0 = {(a1, . . . , an)|ai ≥ 0} is not a subspace. It’s closed under

addition, but not scalar multiplication.

We have a number of ways to build new subspaces from old.

Proposition. If Wi for i ∈ I is a collection of subspaces of V , then

W =

\

i∈I

Wi = {w¯ ∈ V |w¯ ∈ Wi∀i ∈ I}

is a subspace.

Proof. Let ¯v, w¯ ∈ W. Then for all i ∈ I, ¯v, w¯ ∈ Wi

, by definition. Since each Wi

is

a subspace, we then learn that for all a, b ∈ F,

av¯ + bw¯ ∈ Wi

,

and hence av¯ + bw¯ ∈ W. ¤

Thought question: Why is this never empty?

The union is a little trickier.

Proposition. W1 ∪ W2 is a subspace iff W1 ⊂ W2 or W2 ⊂ W1.

i hope this helped have a nice day/night :)

Find the Taylor series for f(x) centered at the given value of a. (Assume that f has a power series expansion. Do not show that Rn(x)→0 . f(x)=lnx, a=

Answers

Answer:

Here we just want to find the Taylor series for f(x) = ln(x), centered at the value of a (which we do not know).

Remember that the general Taylor expansion is:

[tex]f(x) = f(a) + f'(a)*(x - a) + \frac{1}{2!}*f''(a)(x -a)^2 + ...[/tex]

for our function we have:

f'(x) =  1/x

f''(x) = -1/x^2

f'''(x) =  (1/2)*(1/x^3)

this is enough, now just let's write the series:

[tex]f(x) = ln(a) + \frac{1}{a} *(x - a) - \frac{1}{2!} *\frac{1}{a^2} *(x - a)^2 + \frac{1}{3!} *\frac{1}{2*a^3} *(x - a)^3 + ....[/tex]

This is the Taylor series to 3rd degree, you just need to change the value of a for the required value.

This graph shows the solution to which inequality?
(32)
(-3.-6);
A ys 1/x - 2
B. y> fx-2
C. yzfx-2
***-2

Answers

So clearly the line shows y=4/3x-2, and you can see that the blue region is strictly above the line, so the answer is B:

y>4/3x-2
Yep yep looks about right

question:

A sequence is defined by the recursive function f(n + 1) = –10f(n).

If f(1) = 1, what is f(3)?


3

–30

100

–1,000


the answer is 100

Answers

Answer:

100

Step-by-step explanation:

f(1) = 1

f(2) = -10×f(1) = -10 × 1 = -10

f(3) = -10×f(2) = -10 × -10 × f(1) = -10 × -10 × 1 = 100

f(n) = -10 to the power of n-1

Answer:

c - 100

Step-by-step explanation:

Student received 10 different resistors for a laboratory setup with five slots to attach resistors, where each slot can accommodate only one resistor. In how many ways those 10 resistors can be attached to the laboratory setup?

Answers

Answer:

The number of ways of attaching the 10 resistors = 5¹⁰ = 9,765,625 ways

Step-by-step explanation:

Given;

total number of resistors, n = 10

number of slots available, = 5

The first resistor can be attached in 5 ways,

The second resistor can also be attached in 5 ways,

The third resistor can also be attached in 5 ways, etc

Each of the resistors can be attached in 5 different ways;

The number of ways of attaching the 10 resistors = 5¹⁰ = 9,765,625 ways

What is the value of x?

Answers

The value of x is 2 because we can compare like terms


An initial deposit of $212 is placed in
a bank account and left to grow, with
interest compounded continuously.
what will it be after 6 years?
Round your answer to the nearest dollar.

Answers

Answer:

$224.932

Step-by-step explanation:

Note: The question is not complete

say the rate is 10%

Given data

Initial depostite= $212

TIme= 6years

rate= 10%

the expression for the compound interest is given as

A=P(1+r)^t

substitute

A=212(1+0.1)^6

A=212(1.01)^6

A=212*1.061

A= $224.932

Hence the final amount at the rate of 10% is $224.932

Decide which of the two given prices is the better deal and explain why.
You can buy shampoo in a ​5-ounce bottle for ​3,89$ or in a 14​-ounce bottle for 11,99$.
Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice.
A.The ​-ounce bottle is the better deal because the cost per ounce is ​$
nothing per ounce while the ​-ounce bottle is ​$
nothing per ounce.
B.The ​-ounce bottle is the better deal because the cost per ounce is ​$
nothing per ounce while the ​-ounce bottle is ​$
nothing per ounce.
​(Round to the nearest cent as​ needed.)

Answers

Answer:

The 14-ounce bottle is the better deal

Step-by-step explanation:

I know this beause inorder to figure out which one is better you have to make them the same price and then see which bottle has more ounces. So I made each price 1$ so there is 1.58-ounces per dollar in the 5-ounce bottle and 1.17 -ounces per dollar in the 14-ounce bottle.

A professor is interested in whether or not college students have a preference (indicated by a satisfaction score) for reading a textbook that has a layout of one column or layout of two columns. In the above experiment, what is the dependent variable

Answers

Answer:

Satisfaction score

Step-by-step explanation:

The dependent variable may be described as the variable which is being measured in a research experiment. In the scenario described above, the dependent variable is the satisfaction score which is used to measure preference for a one or two column textbook. The dependent variable can also seen as the variable which we would like to predict, also called the predicted variable . The predicted variable here is the satisfaction score.

what is the greatest common factor of 160 and 198?

Answers

Hey there!

[tex]\large\textsf{FACTORS OF 160: 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, \& 160}[/tex]

[tex]\large\textsf{FACTORS OF 198: 1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, \& 198}[/tex]

[tex]\large\text{Go through the factors to see if there’s any like terms and if you find any,} \\\large\text{look for the greatest one the numbers share together.}[/tex]

[tex]\large\text{Like terms: \boxed{\textsf{\bf 1 \& 2}}}[/tex]

[tex]\large\checkmark\boxed{\large\text{GCF: \bf 2 }}\large\checkmark[/tex]

[tex]\boxed{\boxed{\large\textsf{Answer: \huge the GCF \underline{G}reatest \underline{C}ommon \underline{F}actor is \bf 2}}}\huge\checkmark[/tex]

[tex]\large\textsf{Good luck on your assignment and enjoy your day!}[/tex]

~[tex]\frak{Amphitrite1040:)}[/tex]

Find the equation of the line passing through (3,5) with a slope of 1

WILL GIVE BRAINLIEST

Answers

Slope-intercept form:

y = x + 2

Point-slope form:

y − 5 = 1 ⋅ ( x − 3 )

I hope this is correct and helps!

Find the union {6, 11, 15} U Ø​

Answers

Answer:  {6, 11, 15}

Explanation:

The Ø​ means "empty set". It's the set with nothing inside it, not even 0.

We can write Ø​ as { } which is a pair of curly braces with nothing between them.

The rule is that if we union any set A with Ø​, then we'll get set A

A U Ø​ = A

Ø​ U A = A

In a sense, it's analogous to adding 0. So it's like saying A+0 = A and 0+A = A.

So that's why {6, 11, 15} U Ø​ = {6, 11, 15}

There's nothing to add onto the set {6, 11, 15}, so we just get the same thing back again.

You own a small storefront retail business and are interested in determining the average amount of money a typical customer spends per visit to your store. You take a random sample over the course of a month for 12 customers and find that the average dollar amount spent per transaction per customer is $116.194 with a standard deviation of $11.3781. Create a 90% confidence interval for the true average spent for all customers per transaction.1) ( 114.398 , 117.99 )2) ( 112.909 , 119.479 )3) ( -110.295 , 122.093 )4) ( 110.341 , 122.047 )5) ( 110.295 , 122.093 )

Answers

Answer:

(110.295, 122.093).

Step-by-step explanation:

We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.

The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So

df = 12 - 1 = 11

90% confidence interval

Now, we have to find a value of T, which is found looking at the t table, with 11 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95[/tex]. So we have T = 1.7959

The margin of error is:

[tex]M = T\frac{s}{\sqrt{n}} = 1.7959\frac{11.3781}{\sqrt{12}} = 5.899[/tex]

In which s is the standard deviation of the sample and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 116.194 - 5.899 = 110.295

The upper end of the interval is the sample mean added to M. So it is 116.194 + 5.899 = 122.093

So

(110.295, 122.093).

If f(x)=5x and g(x)=2x-1, what is the composition f(g(x))?

Answers

Answer:

10x-5

Step-by-step explanation:

f(x)=5x

g(x)=2x-1

To create a composite function, replace x in f(x) with g(x)

f(g(x)) = 5(g(x) = 5(2x-1) = 10x-5

Find the point P along the directed line segment from point A(–9, 5) to point B(11, –2) that divides the segment in the ratio 4 to 1.

Answers

Answer:

[tex]P = (7, -\frac{3}{5})[/tex]

Step-by-step explanation:

Given

[tex]A = (-9,5)[/tex]

[tex]B = (11,-2)[/tex]

[tex]m : n = 4 : 1[/tex]

Required

Point P

This is calculated as:

[tex]P = (\frac{m * x_2 + n * x_1}{m + n}, \frac{m * y_2 + n * y_1}{m + n})[/tex]

So, we have:

[tex]P = (\frac{4 * 11 + 1 * -9}{4 + 1}, \frac{4 * -2 + 1 * 5}{4+1})[/tex]

[tex]P = (\frac{35}{5}, \frac{-3}{5})[/tex]

[tex]P = (7, -\frac{3}{5})[/tex]

HELP HELP HELPPPP
ILL GIVE BRAINLIEST HELPPPPPPPPP
100 POINTSSS

Answers

Answer:

C. 0.48

Step-by-step explanation:

Probability = number of required outcome

_______________________

number of possible outcome

= total volleyball game events

_______________________

total sophomore + junior

= 66/137

= 0.48

Answer: D) 0.31

Step-by-step explanation:

Let A denote the event that a person is a sophomore.

Let B denote the event that a person has attended volleyball game.

A∩B denote the event that a person is a sophomore and attend volleyball game.

Let P denote the probability of an event.

We are asked to find:

P(A∩B)

From the table provided to us we see that:

A∩B=42

Hence,

P(A∩B)=42/137=0.3065 which is approximately equal to 0.31. Therefore ur answer will be 0.31.

express the ratio as a fraction in the lowest term.3600s:2hours​

Answers

Step-by-step explanation:

3600s=1hr

so, 1hr:1hr

1:1

Based on the concept of fractions and the information in the question, the fraction form in the lowest term is 1/2.

What is Fraction?

Fraction is a term that is used to describe the portion/part of the whole thing. It represents the equal parts of the whole.

Generally, the term fraction has two parts, namely numerator and denominator.

Hence, in this case, to express the ratio as a fraction in its lowest term, convert both units to the same unit of time.

1 hour is equal to 3600 seconds so 2 hours is equal to 2 * 3600 = 7200 seconds.

Now the ratio is 3600 seconds to 7200 seconds.

To simplify this ratio we can divide both terms by their greatest common divisor which is 3600.

So the simplified ratio is 1:2.

Therefore, in this case, it is concluded that the fraction form in the lowest term is 1/2.

Learn more about fraction here: https://brainly.com/question/30154928

#SPJ2

what’s the answer to this problem please and thank you

Answers

Answer:

1.8574 hours

Step-by-step explanation:

Solve for t.

Take the natural log of both sides.

[tex] 3000 = 75000e^{-1.733t} [/tex]

[tex] 1 = 25e^{-1.733t} [/tex]

[tex] \dfrac{1}{25} = e^{-1.733t} [/tex]

[tex] \ln \dfrac{1}{25} = \ln (e^{-1.733t}) [/tex]

[tex] -3.218875 = -1.733t [/tex]

[tex] t = 1.8574[/tex]

according to byu idaho enrollment statisct there are 1200 femaile studnet here on campus during any given semester of those 3500 have serced a msion what is the probability that a radnoly selcted femal studne ton cmapus wil have served a mission g

Answers

Answer:

0.2917 = 29.17% probability that a randomly selected female student on campus will have served a mission.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

In this question:

1200 female students, out of them, 350 have served a mission. So

[tex]p = \frac{350}{1200} = 0.2917[/tex]

0.2917 = 29.17% probability that a randomly selected female student on campus will have served a mission.

Other Questions
plz help asap help me plzUnderline the self-names in the following sentences, and write them with a uppercase letter.The children will climb table mountain because they visit Cape Town and want to eat ola ice cream at lekkersmul restaurant. Solve d85=p for d . which choice is equivalent to the expression 20 + 80 Which word doesnt have a syllabic consonant?a.tremendousb.couplec.fastend.wonderful Trong cc x nghip khng phi c quyn, ti sao phn ln cc nh t bn cngnghip phi nhng mt phn gi tr thng d cho nh t bn thng nghip nht bn thng nghip thc hin chc nng lu thng? "Bile is produced by the liver and travels through the cystic duct to be stored in the gallbladder. It is then released from the gallbladder's ducts into the small intestine."Based on this information, the gallbladder could be classified as which of the following, and why? Exocrine gland, because bile is delivered through a duct Endocrine gland, because bile is delivered through a duct Endocrine gland, because bile does not travel through the blood Exocrine system, because bile travels through the blood what is the hcf of 40,50??? Why did Adolf Hitler and the Nazis persecute Jewish Germans? what do you understand by empathy ?: Empathy is the ability and quality of a person to understand another person's thoughts, feeling, experience or state,etc in almost the same way that the way they feel You are standing 186 feet away from the base of a building and your clinometermeasures 23 when it's looking at the top of the building. (This angle is the one betweenthe ground and the top of the building). Please calculate the height of the building. Given that the two triangles are similar, solve for x if AU = 20x + 108, UB = 273, BC = 703, UV = 444, AV = 372 and AC = 589. You must show all of your work to receive credit.PLSSS SHOW WORK I need help on this A box contains 3 red, 4 green, and 3 yellow balls. If a ball is drawn at random, find the probability that the ball is red. Two motors in a factory are running at slightly different rates. One runs at 825.0 rpm and the other at 786.0 rpm. You hear the sound intensity increase and then decrease periodically due to wave interference. How long does it take between successive instances of the sound intensity increasing -8n+34=6(5+4n) help please Tet in Viet Nam starts with the first new moon, usually in late January or early February. The celebrations usually last for three days. The Vietnamese celebrate Tet with family gatherings, wonderful foods and lion dances. Let"s take a look at some of the traditions linked to Tet, the most popular festival in Viet Nam.Red is a bright, happy colour that keeps away bad spirits. That"s why people decorate their homes with red and yellow to bring good luck fen the next year. Also, parents and grandparents give children special lucky money in red envelopes.One thing people avoid during Tet is sweeping the house . Before Tet, the Vietnamese clean their houses to clear out any bad luck from the previous year. People finish cleaning before New Year"s Day because they believe you"ll brush away your good luck if you sweep the house during Tet. People also buy branches of apricot blossom or peach blossom, which symbolise a long life, to decorate their houses.Traditionally, people travel back to their hometowns to celebrate Tet with their family. During their stay, they visit relatives and have large meals together. They wear colourful new clothes to bring them good luck for the coming new year. They also visit flower fairs and calligraphy(n) ngh thut vit ch - markets where calligraphers can write poems on ""giay do. , wood or stone for them.According to the passage, how long does Tet usually last? A.In late January B.For three days. C.In early February D.For a long time. Rewrite the following expressions using the distributive property.1. 5(3x - 2)2. 2x(6x + 5)3.2x(9x + 6)32 Help with this question please! Find the area of the triangle The net force determines how and if and object will Find the function G defined by G(x) =5x+3 find G(-1)