Answer:
1.
An extraneous solution is a root of a transformed equation that is not a root of the original equation as it was excluded from the domain of the original equation.
It emerges from the process of solving the problem as a equation.
2.I begin like:
The vertical asymptotes will occur at those values of x for which the denominator is equal to zero:
for example:
x² − 4=0
x²= 4
doing square root on both side
x = ±2
Thus, the graph will have vertical asymptotes at x = 2 and x = −2.
To find the horizontal asymptote, the degree of the numerator is one and the degree of the denominator is two.
PLS HELP
Find an equation of the line with a y-intercept of -3 and an x-intercept of -4.5
Answer:
y = - [tex]\frac{2}{3}[/tex] x - 3
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = (0, - 3) and (x₂, y₂ ) = (- 4.5, 0 ) ← coordinates of intercepts
m = [tex]\frac{0-(-3)}{-4.5-0}[/tex] = [tex]\frac{0+3}{-4.5-0}[/tex] = [tex]\frac{3}{-4.5}[/tex] = - [tex]\frac{2}{3}[/tex]
The line crosses the y- axis at (0, - 3 ) ⇒ c = - 3
y = - [tex]\frac{2}{3}[/tex] x - 3 ← equation of line
could anyone help me solve this? I’ve had several questions like this and I don’t understand how to solve it. I’ll give brainliest:)
Answer:
-2, - 1, - 2 and - 3
Step-by-step explanation:
As the graph depicts an odd function, it will follow the rule f(-x) = - f(x)
Solve for y. 14y-6(y-3)=22
Answer:
y=0.5
Step-by-step explanation:
14y-6(y-3)=22
14y-6y+18=22
8y+18=22
8y=4
y=0.5
Then we check our work...
14(0.5)-6((0.5)-3)=22
7-6(-2.5)=22
7+15=22
7+15 does equal 22, so this solution is correct.
Hi! I'd appreciate if you could help me on this question.
Liam is buying bottles of soda in packages that contain 8 bottles each. If the total number of sodas Liam bough t was between 45 and 50, how many did he buy? Explain your answer.
Answer:
48
Step-by-step explanation:
We need to find the multiples of 8
8,16,24,32,40,48
48 is between 45 and 50 so he must have bought 48
Answer:
6 bottles
Step-by-step explanation:
For this question we need to know the multiple of 8 which are:
8 x 1 = 8
8 x 2 = 16
8 x 3 = 24
8 x 4 = 32
8 x 5 = 40
8 x 6 = 48
8 x 7 = 56
There is only one multiple, which is greater than 45 but less than 50, which is 8x6 l.
This means he bought 6 bottles.
Answered by g a u t h m a t h
1. In the past, Sam cashed his paycheck each month at Ready Cash, a check cashing service that
charges a 5% fee. He recently opened a checking account at Bank of America so he can now
deposit and/or cash his paycheck without a fee. If Sam is making $28,500 per year, how much will
he save by not going to Ready Cash anymore?
Step-by-step explanation:
28000 ÷ 100
=280
280 × 5
=1400
Gant Accounting performs two types of services, Audit and Tax. Gant’s overhead costs consist of computer support, $267000; and legal support, $133500. Information on the two services is:
(See screenshot)
Answer:
$240,300
Step-by-step explanation:
Given :
Overhead cost :
Computer support = $267000
legal support = $133500
Overheads applied to audit services = (Number of CPU minutes used by Audit services * activity rate per CPU minute)
+
(number of legal hours used by Audit services * activity rate per legal hour)
The overhead applied to audit is thus :
40,000 * (267,000 / (40,000 + 10,000)) +
200 * (133500 / (200 + 800)
(40000 * 5.34) + (200 * 133.5)
= $240,300
I need help on this problem
9514 1404 393
Answer:
see attached
Step-by-step explanation:
(a) The graph is scaled by a factor of 2, and shifted up 1 unit. The scaling moves each point away from the x-axis by a factor of 2. The points on the x-axis stay there. The translation moves that scaled figure up 1 unit.
__
(b) The graph is reflected across the x-axis and shifted right 4 units. The point on the x-axis stays on the x-axis.
The volume of a rectangular prism (shown below) is 48x^3+56x^2+16x Answer the following questions:
(1) What are the dimensions of the prism?
(2) If x = 2, use the polynomial 48x^3+56x^2+16x to find the volume of the prism.
(3) If x = 2, use the factors found in part a to calculate each dimension.
(4) Using the dimensions found in part c, calculate the volume. Show all work.
Answer:
(a)
[tex]Length = 8x\\Width = 3x + 2\\Height = 2x + 1[/tex]
(b)
[tex]P(2) = 640[/tex]
(c)
[tex]Length= 16[/tex]
[tex]Width = 8[/tex]
[tex]Height =5[/tex]
(d)
[tex]Volume = 640[/tex]
Step-by-step explanation:
Given
[tex]P(x) = 48x^3 + 56x^2 + 16x[/tex]
Solving (a): The prism dimension
We have:
[tex]P(x) = 48x^3 + 56x^2 + 16x[/tex]
Factor out 8x
[tex]P(x) = 8x(6x^2 + 7x + 2)[/tex]
Expand 7x
[tex]P(x) = 8x(6x^2 + 4x + 3x + 2)[/tex]
Factorize
[tex]P(x) = 8x(2x(3x + 2) +1( 3x + 2))[/tex]
Factor out 3x + 2
[tex]P(x) = 8x(3x + 2)(2x + 1)[/tex]
So, the dimensions are:
[tex]Length = 8x\\Width = 3x + 2\\Height = 2x + 1[/tex]
Solving (b): The volume when [tex]x = 2[/tex]
We have:
[tex]P(x) = 48x^3 + 56x^2 + 16x[/tex]
[tex]P(2) = 48 * 2^3 + 56 * 2^2 + 16 * 2[/tex]
[tex]P(2) = 640[/tex]
Solving (c): The dimensions when [tex]x = 2[/tex]
We have:
[tex]Length = 8x\\Width = 3x + 2\\Height = 2x + 1[/tex]
Substitute 2 for x
[tex]Length=8*2[/tex]
[tex]Length= 16[/tex]
[tex]Width = 3*2+2[/tex]
[tex]Width = 8[/tex]
[tex]Height = 2*2 + 1[/tex]
[tex]Height =5[/tex]
So, we have:
[tex]Length= 16[/tex]
[tex]Width = 8[/tex]
[tex]Height =5[/tex]
Solving (d), the volume in (c)
We have:
[tex]Volume = Length * Width * Height[/tex]
[tex]Volume = 16 * 8 * 5[/tex]
[tex]Volume = 640[/tex]
Prove that: sec⁴B - sec²B = tan⁴B + tan²B.
Step-by-step explanation:
sec⁴B - sec²B = sec²B(sec²B - 1)
= (1 + tan²B)(tan²B)
= tan⁴B + tan²B
= Right-hand side (Proven)
If 40 men working on a U.S. government project can complete the job in 100 hours, how many men would be required to complete the job in 80 hours?
Answer:50
Step-by-step explanation:(40x100):80
Answer: 50 workers
Let the ratio be
(40×100):80
= 400/80
= 50
Therefore 50 workers will complete the same work in 80 hours.
Must click thanks and mark brainliest
help! due august 12th
Please help!
The quantities x and y are proportional.
x: 4 5 10
y: 10 12.5 25
Find the constant of proportionality (r) in the equation y=rx.
9514 1404 393
Answer:
r = 2.5
Step-by-step explanation:
The constant of proportionality can be found by solving the equation for r:
r = y/x
Then any corresponding values of x and y can be used to find r:
r = 25/10 = 2.5
The constant of proportionality is 2.5.
Mrs. Gomez has two kinds of flowers in her garden. The ratio of lilies to daisies in the garden is 5:2
If there are 20 lilies, what is the total number of flowers in her garden?
Answer:
28
Step-by-step explanation:
5 : 2
since this is a simplified ratio, they have a common factor. let's say it is 'x'
so now :
5x : 2x
we know that 5x is lilies, and we also know that she has 20 lilies, so:
5x = 20
x = 4
the daisies would be 2x so 2*4 = 8
total flowers is 20 + 8
28
please explain it step by step
Find the value of x.
A. 57
B. 72
C. 90
D. 124
Answer:
90
Step-by-step explanation:
Angle Formed by Two Chords= 1/2(SUM of Intercepted Arcs)
105 = 1/2 (120+x)
210 = 120+x
Subtract 120 from each side
210-120 = x
90 =x
The value of Intercepted Arcs x will be 90. so option C is correct.
What is the relation between line perpendicular to chord from the center of circle?If the considered circle has center O and chord AB, then if there is perpendicular from O to AB at point C, then that point C is bisecting(dividing in two equal parts) the line segment AB.
Or
|AC| = |CB|
Angle Formed by Two Chords= 1/2 (Sum of Intercepted Arcs)
105 = 1/2 (120+x)
210 = 120+x
Subtract 120 from each side;
210-120 = x
90 =x
Hence, the value of Intercepted Arcs x will be 90. so option C is correct.
Learn more about chord of a circle here:
https://brainly.com/question/27455535
#SPJ5
Will give brainliest answer
I need the answer explained
Answer:
1.33
Step-by-step explanation:
62 can only be subtracted from 82 once. So 82.46-62 would be 20.46. Since you can't subtract anymore you put a decimal point. 62x3=186 and 20.46-186=1.86 and you can subtract 186-186=0.
Help me please and thank you
Step-by-step explanation:
jlejej
are u using chrome os
Write the equation of the line that passes through the points (0, 4) and (- 4, - 5) . Put your answer in fully reduced slope intercept form , unless it is a vertical or horizontal line
Answer:
y=9/4x+4
Step-by-step explanation:
Start by finding the slope
m=(-5-4)/(-4-0)
m=-9/-4 = 9/4
next plug the slope and the point (-4,-5) into point slope formula
y-y1=m(x-x1)
y1=-5
x1= -4
m=9/4
y- -5 = 9/4(x - -4)
y+5=9/4(x+4)
Distribute 9/4 first
y+5=9/4x + 9
subtract 5 on both sides
y=9/4x+4
simplify 27-{ 9+(12-5)÷4} with solution
Answer:
16.25
Step-by-step explanation:
first do 12 -5 = 7. then 7/4 = 1.75 then 9+1.75 = 10.75 and finally 27-10.75= 16.25
Scientists have steadily increased the amount of grain that farms can produce each year. The yield for farms in France is given by y=−2.73x2+11000x−11000000 where x is the year and y is the grain yield in kilograms per hectare (kg/ha).
What does the y-intercept of this function represent?
9514 1404 393
Answer:
the yield in year 0
Step-by-step explanation:
The y-value is the yield for farms in France in year x. The y-value when x=0 is the yield for farms in France in year 0.
_____
Additional comment
The reasonable domain for this function is approximately 1843 ≤ x ≤ 2186. The function is effectively undefined for values of x outside this domain, so the y-intercept is meaningless by itself.
If a and b are positive numbers, find the maximum value of f(x) = x^a(2 − x)^b on the interval 0 ≤ x ≤ 2.
Answer:
The maximum value of f(x) occurs at:
[tex]\displaystyle x = \frac{2a}{a+b}[/tex]
And is given by:
[tex]\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Step-by-step explanation:
Answer:
Step-by-step explanation:
We are given the function:
[tex]\displaystyle f(x) = x^a (2-x)^b \text{ where } a, b >0[/tex]
And we want to find the maximum value of f(x) on the interval [0, 2].
First, let's evaluate the endpoints of the interval:
[tex]\displaystyle f(0) = (0)^a(2-(0))^b = 0[/tex]
And:
[tex]\displaystyle f(2) = (2)^a(2-(2))^b = 0[/tex]
Recall that extrema occurs at a function's critical points. The critical points of a function at the points where its derivative is either zero or undefined. Thus, find the derivative of the function:
[tex]\displaystyle f'(x) = \frac{d}{dx} \left[ x^a\left(2-x\right)^b\right][/tex]
By the Product Rule:
[tex]\displaystyle \begin{aligned} f'(x) &= \frac{d}{dx}\left[x^a\right] (2-x)^b + x^a\frac{d}{dx}\left[(2-x)^b\right]\\ \\ &=\left(ax^{a-1}\right)\left(2-x\right)^b + x^a\left(b(2-x)^{b-1}\cdot -1\right) \\ \\ &= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right] \end{aligned}[/tex]
Set the derivative equal to zero and solve for x:
[tex]\displaystyle 0= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right][/tex]
By the Zero Product Property:
[tex]\displaystyle x^a (2-x)^b = 0\text{ or } \frac{a}{x} - \frac{b}{2-x} = 0[/tex]
The solutions to the first equation are x = 0 and x = 2.
First, for the second equation, note that it is undefined when x = 0 and x = 2.
To solve for x, we can multiply both sides by the denominators.
[tex]\displaystyle\left( \frac{a}{x} - \frac{b}{2-x} \right)\left((x(2-x)\right) = 0(x(2-x))[/tex]
Simplify:
[tex]\displaystyle a(2-x) - b(x) = 0[/tex]
And solve for x:
[tex]\displaystyle \begin{aligned} 2a-ax-bx &= 0 \\ 2a &= ax+bx \\ 2a&= x(a+b) \\ \frac{2a}{a+b} &= x \end{aligned}[/tex]
So, our critical points are:
[tex]\displaystyle x = 0 , 2 , \text{ and } \frac{2a}{a+b}[/tex]
We already know that f(0) = f(2) = 0.
For the third point, we can see that:
[tex]\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(2- \frac{2a}{a+b}\right)^b[/tex]
This can be simplified to:
[tex]\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Since a and b > 0, both factors must be positive. Thus, f(2a / (a + b)) > 0. So, this must be the maximum value.
To confirm that this is indeed a maximum, we can select values to test. Let a = 2 and b = 3. Then:
[tex]\displaystyle f'(x) = x^2(2-x)^3\left(\frac{2}{x} - \frac{3}{2-x}\right)[/tex]
The critical point will be at:
[tex]\displaystyle x= \frac{2(2)}{(2)+(3)} = \frac{4}{5}=0.8[/tex]
Testing x = 0.5 and x = 1 yields that:
[tex]\displaystyle f'(0.5) >0\text{ and } f'(1) <0[/tex]
Since the derivative is positive and then negative, we can conclude that the point is indeed a maximum.
Therefore, the maximum value of f(x) occurs at:
[tex]\displaystyle x = \frac{2a}{a+b}[/tex]
And is given by:
[tex]\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
what is an example of a quintic bionomial?
Please Answer This!!! I NEEEDDD TOOO KNOWWWWW ANSWER!!!
Answer:
77.5
Step-by-step explanation:
Its rising at a constant rate between +10-15 each hour, so we if we were to add 25 or so to the 50, it would be close to 77.5, so I would assume the answer was B
If you get a raise from $12 per hour to $15 per hour, what is the percent change?
Answer:
25%
Step-by-step explanation:
Formula to calculate the percent change :-
Change in distance from $12 per hour to $15 per hours = 15-12=3 per hour
Previous value = $12 per hour
Now, the percent change will be :_
Hence, the percent change for from $12 per hour to $15 per hour= 25%
(I copied this answer from JeanaShupp from question-11653373 [no links])
Find an equation of a plane containing the line r=⟨0,4,4⟩+t⟨−3,−2,1⟩ which is parallel to the plane 1x−1y+1z=−5 in which the coefficient of x is 1.
..?.. = 0.
The plane you want is parallel to another plane, x - y + z = -5, so they share a normal vector. In this case, it's ⟨1, -1, 1⟩.
The plane must also pass through the point (0, 4, 4) since it contains r(t). Then the equation of the plane is
⟨x, y - 4, z - 4⟩ • ⟨1, -1, 1⟩ = 0
x - (y - 4) + (z - 4) = 0
x - y + z = 0
A random number generator is used to create a list of 300 single digit numbers
I need to know the answer please
Focusing on the center point of f(x) (0,0), we can see that it has moved to the left 4 units and up 3 units.
g(x) = [tex](\sqrt[3]{x + 4}) + 3[/tex]
Option C
Hope this helps!
Surface Area of cones
Instructions: Find the surface area of each figure. Round your answers to the nearest tenth, if necessary.
9514 1404 393
Answer:
64.1 ft²
Step-by-step explanation:
The area of the cone is given by ...
A = πr(r +h) . . . . for radius r and slant height h
A = π(2 ft)(2 ft +8.2 ft) ≈ 64.1 ft²
find the value of the trigonometric ratio. make sure to simplify the fraction if needed.
Answer:
36/39
Step-by-step explanation:
Cos(theta) = Base/Hypotenuse
Cos(X) = 36/39