Answer:
x=80
Step-by-step explanation:
I need help I’ll mark u as brainlest
Answer:
105 in³
Step-by-step explanation:
Volume of triangular prism = base area * height
here
base area = (10*7)/2 = 35
height = 3
Volume = 35* 3 = 105
Which additional facts prove that RST and
WXY are congruent? (Geometry)
Answer:
Option C
Step-by-step explanation:
In the given triangles ΔRSW and ΔWXY,
m(∠S) = m(∠X) = 60° [Given]
Properties of congruence of two triangles applicable in this question,
SAS or ASA
For the congruence of two triangles by the property SAS,
"Two corresponding sides and the included angle should be congruent"
RS ≅ WX, ST ≅ XY and ∠S ≅ ∠X
Which is not given in any option.
For the congruence of two triangles by the property ASA,
"Two consecutive angles and the side having these angles should be congruent"
∠R ≅ ∠W, ∠S ≅ ∠X and RS ≅ XY
Option C will be the correct option.
Given:
p: 2x = 16
q: 3x – 4 = 20
RE
Which is the converse of p - q?
ООО
If 2x + 16, then 3x - 47 20.
If 3x - 420, then 2x + 16.
If 2x = 16, then 3x – 4 = 20.
If 3x - 4 = 20, then 2x = 16
Given:
The given statements are:
[tex]p:2x=16[/tex]
[tex]q:3x-4=20[/tex]
To find:
The converse of [tex]p\to q[/tex].
Solution:
The statement [tex]p\to q[/tex] means if p, then q and the converse of this statement is [tex]q\to p[/tex].
[tex]q\to p[/tex] means if q , then p.
We have, [tex]p:2x=16[/tex] and [tex]q:3x-4=20[/tex].
So, the converse of given statement is:
[tex]q\to p:[/tex] If [tex]3x-4=20[/tex], then [tex]2x=16[/tex].
Therefore, the correct option is D.
Answer: Therefore, the correct option is D.
Step-by-step explanation:
Given:
p: 2x = 16
q: 3x – 4 = 20
RE
Which is the converse of p - q?
ООО
If 2x + 16, then 3x - 47 20.
If 3x - 420, then 2x + 16.
If 2x = 16, then 3x – 4 = 20.
If 3x - 4 = 20, then 2x = 16
To find:
The converse of .
Solution:
The statement means if p, then q and the converse of this statement is .
means if q , then p.
We have, and .
So, the converse of given statement is:
If , then .
Therefore, the correct option is D.
Workers employed in a large service industry have an average wage of $9.00 per hour with a standard deviation of $0.50. The industry has 64 workers of a certain ethnic group. These workers have an average wage of $8.85 per hour. Calculate the probability of obtaining a sample mean less than or equal to $8.85 per hour. (Round your answer to four decimal places.)
Answer:
The probability of obtaining a sample mean less than or equal to $8.85 per hour=0.0082
Step-by-step explanation:
We are given that
Average wage, [tex]\mu=[/tex]$9.00/hour
Standard deviation,[tex]\sigma=[/tex]$0.50
n=64
We have to find the probability of obtaining a sample mean less than or equal to $8.85 per hour.
[tex]P(\bar{x} \leq 8.85)=P(Z\leq \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}})[/tex]
Using the values
[tex]P(\bar{x}\leq 8.85)=P(Z\leq \frac{8.85-9}{\frac{0.50}{\sqrt{64}}})[/tex]
[tex]P(\bar{x}\leq 8.85)=P(Z\leq \frac{-0.15}{\frac{0.50}{8}})[/tex]
[tex]P(\bar{x}\leq 8.85)=P(Z\leq -2.4)[/tex]
[tex]P(\bar{x}\leq 8.85)=0.0082[/tex]
Hence, the probability of obtaining a sample mean less than or equal to $8.85 per hour=0.0082
what are the first five terms of the recursive sequence
Answer: Choice D
9, 30, 93, 282, 849
============================================================
Explanation:
The notation [tex]a_1 = 9[/tex] tells us that the first term is 9
The notation [tex]a_n = 3*(a_{n-1})+3[/tex] says that we multiply the (n-1)st term by 3, then add on 3 to get the nth term [tex]a_n[/tex]
So if we wanted the second term for instance, then we'd say
[tex]a_n = 3*(a_{n-1})+3\\\\a_2 = 3*(a_{2-1})+3\\\\a_2 = 3*(a_{1})+3\\\\a_2 = 3*(9)+3\\\\a_2 = 27+3\\\\a_2 = 30\\\\[/tex]
If we want the third term, then,
[tex]a_n = 3*(a_{n-1})+3\\\\a_3 = 3*(a_{3-1})+3\\\\a_3 = 3*(a_{2})+3\\\\a_3 = 3*(30)+3\\\\a_3 = 90+3\\\\a_3 = 93\\\\[/tex]
and so on.
The terms so far are: 9, 30, 93
You should find the fourth and fifth terms are 282 and 849 respectively if you keep this pattern going.
Therefore, the answer is choice D
cos() =
O A. V
B.
173
2
OC.
OD.
-3
Answer:
-√3/2
Step-by-step explanation:
Given the expression:
Cos(7π/6)
Conver to degrees
= Cos(7(180)/6)
= cos 210
= -√3/2
Hence the value of cos(7π/6) is -√3/2
Choose the Athat seems to be congruent to the given one.
R.
F
D
B
AEGFA
OEGD
o CGD
BGC
Answer:
a. ∆EGF ≅ ∆EGD
Step-by-step explanation:
Congruent triangles would have the same side lengths and the same measure of angles.
From the figure given:
EG in ∆EGF ≅ EG in ∆EGD
GF in ∆EGF ≅ GD in ∆EGD, also
EF ≅ ED.
The three angles in ∆EFG are also congruent to the three angles in ∆EGD.
Therefore, ∆EGD is congruent to ∆EGF.
∆EGF ≅ ∆EGD
The figure below is made of 2 rectangular prisms.
What is the volume of this figure?
Answer:
6536 cubic in
Step-by-step explanation:
1. Split both the prisms apart- In doing so, you can simplify the problem.
2. Put in the #'s for the formula which in this case is V=L*W*H, we will start with the formula for the front one, V=7*8*1 or V=7*8
3. answer for the front is 56 cubic in, now we solve for the other half.
4. V=9*1*90 or V=9*90 which is 6480 cubic in.
5. add 6480 and 56 and your answer is 6536 cubic in as your answer.
Hope this helped ;D
help please step by step
Answer:
1. 33km
2. 1.2ft
3. 16in
4. 20.1ft
5. 7.2yd
6. 38mi
Step-by-step explanation:
1. 10+11+12=33km
2. 1/2(1.8+0.6)1=1.2ft
3. 5+5+3+3=16in
4. 4.1+2.7+5.4+7.9=20.1ft
5. 1.8+1.8+1.8+1.8=7.2yd
6. 12+7+12+7=38mi
How many solutions are there to the equation below?
4(x – 5) = 3x + 7
Answer:
one solution
Step-by-step explanation:
4(x - 5) = 3x + 7
4x - 20 = 3x + 7
4x - 3x = 7 + 20
x = 27
Answer:
1 solution
Step-by-step explanation:
x = 27
distribution of 4 into x and -5
4x-20 = 3x +7
-3x+20=-3x+20
x = 27
i already have A but I do not have B
Answer:
-4 , -1 , -2 , 0 , +1 , +3
Step-by-step explanation:
Answer:
the integers -4,-2,-1,0, +1, +3
Step-by-step explanation:
because when you put them in order you find which pairs are located between -5 and +5
-8,-4,-2,-1,0,+3,+8,+9
which tells you that
-4,-2,-1,0, +1, +3 are between -5 and +5
Which expression is equivalent to (st)(6)?
s(t(6))
s(x) × t(6)
s(6) × t(6)
6 × s(x) × t(x)
Answer:
A
Step-by-step explanation
Answer:
the answer is c
Step-by-step explanation:
distributive property
can anyone help???????????
Given:
The distance between the two buildings on a map = 14 cm
The scale is 1:35000.
To find:
The actual distance in km.
Solution:
The scale is 1:35000.
It means 1 cm on map = 35000 cm in actual.
Using this conversion, we get
14 cm on map = [tex]14\times 35000[/tex] cm in actual.
= [tex]490000[/tex] cm in actual.
= [tex]4.9\times 1000o0[/tex] cm in actual.
= [tex]4.9[/tex] km in actual. [tex][1\text{ km}=100000\text{ cm}][/tex]
Therefore, the actual distance between two buildings is 4.9 km.
Crystal left her running shoes at school yesterday. Today she walked 44 miles to school to get her shoes, she ran home along the same route, and the total time for both trips was 22 hours. Crystal walked and ran at constant speeds, and she ran 33 miles per hour faster than she walked.
What was Crystal’s walking speed in miles per hour?
Answer:
We can conclude that her walking speed is 2.1 miles per hour.
Step-by-step explanation:
We have the relation:
Speed = distance/time.
Here we know:
She walked for 44 miles.
And she ran along the same route, so she ran for 44 miles.
The total time of travel is 22 hours, so if she ran for a time T, and she walked for a time T', we must have:
T + T' = 22 hours.
If we define: S = speed runing
S' = speed walking
Then we know that:
"and she ran 33 miles per hour faster than she walked."
Then:
S = S' + 33mi/h
Then we have four equations:
S'*T' = 44 mi
S*T = 44 mi
S = S' + 33mi/h
T + T' = 22 h
We want to find the value of S', the speed walking.
To solve this we should start by isolating one of the variables in one of the equations.
We can see that S is already isoalted in the third equation, so we can replace that in the other equations where we have the variable S, so now we will get:
S'*T' = 44mi
(S' + 33mi/H)*T = 44mi
T + T' = 22h
Now let's isolate another variable in one of the equations, for example we can isolate T in the third equation to get:
T = 22h - T'
if we replace that in the other equations we get:
S'*T' = 44mi
(S' + 33mi/h)*( 22h - T') = 44 mi
Now we can isolate T' in the first equation to get:
T' = 44mi/S'
And replace that in the other equation so we get:
(S' + 33mi/h)*( 22h -44mi/S' ) = 44 mi
Now we can solve this for S'
22h*S' + (33mi/h)*22h + S'*(-44mi/S') + 33mi/h*(-44mi/S') = 44mi
22h*S' + 726mi - 44mi - (1,452 mi^2/h)/S' = 44mi
If we multiply both sides by S' we get:
22h*S'^2 + (726mi - 44mi)*S' - (1,425 mi^2/h) = 44mi*S'
We can simplify this to get:
22h*S'^2 + (726mi - 44mi - 44mi)*S' - (1,425 mi^2/h) = 0
22h*S'^2 + (628mi)*S' - ( 1,425 mi^2/h) = 0
This is just a quadratic equation, the solutions for S' are given by the Bhaskara's equation:
[tex]S' = \frac{-628mi \pm \sqrt{(628mi)^2 - 4*(22h)*(1,425 mi^2/h)} }{2*22h} \\S' = \frac{-628mi \pm 721 mi }{44h}[/tex]
Then the two solutions are:
S' = (-628mi - 721mi)/44h = -30.66 mi/h
But this is a negative speed, so this has no real meaning, and we can discard this solution.
The other solution is:
S' = (-628mi + 721mi)/44h = 2.1 mi/h
We can conclude that her walking speed is 2.1 miles per hour.
Find the constant of variation when t varies directly as s, and t =
260 when s = 65.
Answer:
4
Step-by-step explanation:
Use the direct variation equation, y = kx.
Replace y with t, and replace x with s:
y = kx
t = ks
Plug in 260 as k and 65 as s, then solve for k (the constant of variation):
t = ks
260 = k(65)
4 = k
So, the constant of variation is 4.
Were the Egyptian rulers' tombs built before or after they died?
Answer: I don't know the exact details but Egypt is home to some of the world's most famous tombs, among them the monumental pyramids. Egyptians built rectangular benches over graves during the fourth dynasty, which was known as the Masabas period. During this time period, pyramids were constructed by stacking square or rectangular tombs on top of one another.
Step-by-step explanation:
If you were given a fractional strip, that did not have any subdivisions marked like this one pictured below, how would you determine the fractional amount of the bar that is shaded?
9514 1404 393
Answer:
it depends on the accuracy and resolution required of the answer
Step-by-step explanation:
The shaded portion appears to be about half the length of the unshaded portion, suggesting the shaded amount is 1/3.
__
Using a pair of dividers, one could determine the number of times the shaded portion fits into the whole bar. Depending on how much is left over, the process could repeat to determine the approximate size of the remaining fraction relative to the bar or to the shaded portion. (Alternatively, one could replicate the length of the bar to see what integer number of shaded lengths fit into what integer number of whole lengths.)
One could measure the shaded part and the whole bar with a ruler, then determine the relative size of the shaded part by dividing the first measurement by the second. The finer the divisions on the ruler, the better the approximation will be.
This question difficult and i need some help would anyone please help me
Answer:
x = 30
F = 130
G = 50
Step-by-step explanation:
f and g are supplementary which means they add to 180
5x-20 + 3x - 40 = 180
Combine like terms
8x - 60 = 180
Add 60 to each side
8x-60+60 = 180+60
8x = 240
Divide by 8
8x/8 = 240/8
x = 30
F = 5x -20 = 5*30 -20 = 150 -20 = 130
G = 3x-40 = 3*30 -40 = 90-40 = 50
Answer:
Because a straight line = 180, we can find x like this :
(5x - 20) + (3x - 40) = 180
Step 1 - collect like terms
8x - 60 = 180
Step 2 - Move terms around to isolate x
8x = 180 + 60
Step 3 - Divide both sides by 8
x = 30
Now you can find the value of the angles by plugging in x
∠f = (5 x 30) - 20
= 130 degrees
∠g = (3 x 30) - 40
= 50 degrees
We can check to see if this works by adding them up
130 + 50 = 180, so this is correct
Hope this helps! I would really appreciate a brainliest if possible :)
Kyle buys a bag of cookies that contains 4 chocolate chip cookies, 9 peanut butter cookies, 9 sugar cookies and 7 oatmeal cookies. What is the probability that Kyle randomly selects a sugar cookie from the bag, eats it, then randomly selects a peanut butter cookie
Suppose that IQ scores have a bell-shaped distribution with a mean of 97 and a standard deviation of 17. Using the empirical rule, what percentage of IQ scores are between 46 and 148
Answer:
99.7% of IQ scores are between 46 and 148.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 97, standard deviation of 17.
What percentage of IQ scores are between 46 and 148?
97 - 3*17 = 46
97 + 3*17 = 148
Within 3 standard deviations of the mean, so:
99.7% of IQ scores are between 46 and 148.
20. Find the measure of < DEG. (G.CO.C.10)
4
E
A. 25
B. 8
(3y + 4) A (5y-10)
C. 30
水
D
F
Click to add speaker notes
e here to search
O
c
3
PO
.
a
Answer:
A. 25
Step-by-step explanation:
From the diagram given, we can deduce that <D EG = <F EG
Therefore:
3y + 4 = 5y - 10
Collect like terms and solve for y
3y - 5y = -4 - 10
-2y = -14
Divide both sides by -2
y = -14/-2
y = 7
✔️m<D EG = 3y + 4
Plug in the value of y
m<D EG = 3(7) + 4
m<D EG = 25°
A rectangular storage container with an open top is to have a volume of 14 cubic meters. The length of its base is twice the width. Material for the base costs 10 dollars per square meter. Material for the sides costs 8 dollars per square meter. Find the cost of materials for the cheapest such container.
Answer:
C(min) = 277.95 $
Container dimensions:
x = 2.822 m
y = 1.411 m
h = 3.52 m
Step-by-step explanation:
Let´s call x and y the sides of the rectangular base.
The surface area for a rectangular container is:
S = Area of the base (A₁) + 2 * area of a lateral side x (A₂) + 2 * area lateral y (A₃)
Area of the base is :
A₁ = x*y we assume, according to problem statement that
x = 2*y y = x/2
A₁ = x²/2
Area lateral on side x
A₂ = x*h ( h is the height of the box )
Area lateral on side y
A₃ = y*h ( h is the height of the box )
s = x²/2 + 2*x*h + 2*y*h
Cost = Cost of the base + cost of area lateral on x + cost of area lateral on y
C = 10*x²/2 + 8* 2*x*h + 8*2*y*h
C as function of x is:
The volume of the box is:
V(b) = 14 m³ = (x²/2)*h 28 = x²h h = 28/x²
C(x) = 10*x²/2 + 16*x*28/x² + 16*(x/2)*28/x²
C(x) = 5*x² + 448/x + 224/x
Taking derivatives on both sides of the equation we get:
C´(x) = 10*x - 448/x² - 224/x²
C´(x) = 0 10x - 448/x² - 224/x² = 0 ( 10*x³ - 448 - 224 )/x² = 0
10*x³ - 448 - 224 = 0 10*x³ = 224
x³ =22.4
x = ∛ 22.4
x = 2.822 m
y = x/2 = 1.411 m
h = 28/x² = 28 /7.96
h = 3.52 m
To find out if the container of such dimension is the cheapest container we look to the second derivative of C
C´´(x) = 10 + 224*2*x/x⁴
C´´(x) = 10 + 448/x³ is positive then C has a minimum for x = 2.82
And the cost of the container is:
C = 10*(x²/2) + 16*x*h + 16*y*h
C = 39.82 + 158.75 + 79.38
C = 277.95 $
please help me please help me please help me please help me please help me please help me please
Answer:
1. -4
2(12,35,37). hope helpful answerAnswer:
Question 1 = 256
Question 2 = ( 7, 8, 12)
Solve for 5x + 11 ≤ 67 = ?
9I will give brainliest.)
Answer:
x ≤ 11.20
Step-by-step explanation:
solve it like a regular equation
5x ≤ 67 - 11
5x ≤ 56
x ≤ 11 1/5
x ≤ 11.20
if $1995 .00 is Shared equally among 7 men, how much would each get?
Anwer:$285
Explaination: Division method
$1995.00÷7=$285
Razon trigonometría que se requiere para calcular la altura de la torre si desde una distancia de 50 m se observa su punto mas alto con un ángulo de 48
Answer:
se supone que debes usar el SINE RATIO ya que se trata del lado opuesto y la hipotenusa.
Write the phrase as an algebraic expression and simplify if possible. Let x represent the unknown number
Three times a number, decreased by five
(Simplify your answer.)
To express the phrase "Three times a number, decreased by five" as an algebraic expression, we can use the variable x to represent the unknown number: 3x - 5
Now, let's simplify this expression: Given that the unknown number is represented by x, we can substitute it into the expression above. Substituting x into the expression, we have: [tex]3(x) - 5 3x - 5[/tex] Therefore, the algebraic expression representing "Three times a number, decreased by five" is [tex]3x - 5.[/tex] At this point, there is no further simplification possible since the expression is already in its simplest form.
For example, let's assume the unknown number x is 7. We can plug in this value to evaluate the expression: [tex]3(7) - 5 = 21 - 5 = 16[/tex] Similarly, if x is -2, the calculation would be: [tex]3(-2) - 5 = -6 - 5 = -11[/tex] In conclusion, the algebraic expression 3x - 5 represents the phrase "Three times a number, decreased by five."
To know more about algebraic expression visit:
https://brainly.com/question/953809
#SPJ2
HCF of the numbers divisible be
3 between 21 and 30 is ___
Answer:
3
Step-by-step explanation:
Numbers between 21 and 30 divisible by 3 are 24 and 27. so you get the HCF of the two.
the average score on mid term examination of 25 students was 78.8 out 100
after the mid term exam, however, a student whose score was 41 out of 100 dropped the course. what is the average (mean) score amount of the 24 students?
Is 256.78 power by 10 100 or 1000
Answer:
I would say 100 since 256.78 is closer to 100 then 1000 or 10
Step-by-step explanation: