On a particle level, what happens when thermal conduction occurs within a
solid?

Answers

Answer 1
Within a solid, faster particles bump into slower particles

Related Questions

A gymnast of mass 70.0 kgkg hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume that the rope does not stretch. Use the value 9.81m/s29.81m/s2 for the acceleration of gravity.
PART A Calculate the tension T in the rope if the gymnast climbs the rope at a constant rate.
PART B Calculate the tension TTT in the rope if the gymnast climbs up the rope with an upward acceleration of magnitude 1.00 m/s2
PART C Calculate the tension TTT in the rope if the gymnast slides down the rope with a downward acceleration of magnitude 1.00 m/s2m/s2 .

Answers

Answer:

43994

Explanation:

Hope this helps!

a 2100-kg car drives with a speed of 18 m/s onb a flat road around a curve that has a radius of curvature of 83m. The coefficient of static friction between the car and the road is 0.78. What is the magnitude of the force of static friction acting on the car

Answers

Answer:

The magnitude of the friction force is 8197.60 N

Explanation:

Using the definition of the centripetal force we have:

[tex]\Sigma F=ma_{c}=m\frac{v^{2}}{R}[/tex]

Where:

m is the mass of the carv is the speed R is the radius of the curvature

Now, the force acting in the motion is just the friction force, so we have:

[tex]F_{f}=m\frac{v^{2}}{R}[/tex]

[tex]F_{f}=2100\frac{18^{2}}{83}[/tex]

[tex]F_{f}=8197.60 \: N[/tex]

Therefore the magnitude of the friction force is 8197.60 N

I hope it helps you!

two particles woth each charge magnitude 2.0×10^-7 c but opposite signs are held 15cm apart.what are the magnitude and direction of the electric field E at tge point midway between charges​

Answers

Answer:

The magnitude of the electric field strength is 6.4 x 10⁵ N/C, directed from positive particle to negative particle.

Explanation:

Given;

charge of each particle, Q = 2 x 10⁻⁷ C

distance between the two charges, r = 15 cm = 0.15 m

distance midway between the charges = 0.075 m

The magnitude of the electric field is calculated as;

[tex]E_{net} = E_{+q} + E_{-q}\\\\E_{net} = \frac{kQ}{r_{1/2}^2} + \frac{kQ}{r_{1/2}^2}\\\\E_{net} = 2(\frac{kQ}{r_{1/2}^2})\\\\E_{net} = 2 (\frac{9\times 10^9 \ \times 2\times 10^{-7}}{0.075^2} )\\\\E_{net} = 6.4\times 10^5 \ N/C[/tex]

The direction of the electric field is from positive particle to negative particle.

Electromagnetic radiation from a 8.25 mW laser is concentrated on a 1.23 mm2 area. Suppose a 1.12 nC static charge is in the beam, and moves at 314 m/s. What is the maximum magnetic force it can feel

Answers

Answer:

The maximum magnetic force is 2.637 x 10⁻¹² N

Explanation:

Given;

Power, P = 8.25 m W = 8.25 x 10⁻³ W

charge of the radiation, Q = 1.12 nC = 1.12 x 10⁻⁹ C

speed of the charge, v = 314 m/s

area of the conecntration, A = 1.23 mm² = 1.23 x 10⁻⁶ m²

The intensity of the radiation is calculated as;

[tex]I = \frac{P}{A} \\\\I = \frac{8.25 \times 10^{-3} \ W}{1.23 \ \times 10^{-6} \ m^2} \\\\I = 6,707.32 \ W/m^2[/tex]

The maximum magnetic field is calculated using the following intensity formula;

[tex]I = \frac{cB_0^2}{2\mu_0} \\\\B_0 = \sqrt{\frac{2\mu_0 I}{c} } \\\\where;\\\\c \ is \ speed \ of \ light\\\\\mu_0 \ is \ permeability \ of \ free \ space\\\\B_0 \ is \ the \ maximum \ magnetic \ field\\\\B_0 = \sqrt{\frac{2 \times 4\pi \times 10^{-7} \times 6,707.32 }{3\times 10^8} } \\\\B_0 = 7.497 \times 10^{-6} \ T[/tex]

The maximum magnetic force is calculated as;

F₀ = qvB₀

F₀ = (1.12 x 10⁻⁹) x (314) x (7.497 x 10⁻⁶)

F₀ = 2.637 x 10⁻¹² N

Using pascals principle, F1/A1=F2/A2, solve this like a proportion.
A force of 50 N is applied to an area of 200 sq feet, how much force will be applied of the area to be covered is 50 sq feet?

Answers

Answer:

NO CLUE

Explanation:

GOOD LUCK THOUGH

A pressure sensor was used to measure the unsteady pressure in a cylinder. The sensor output was acquired for 15 seconds at a rate of 202 Hz and spectral analysis was performed using FFT. What is the maximum frequency that will be displayed on the power spectrum plot

Answers

Answer:

Maximum frequency on power spectrum plot = 101 Hz

Explanation:

Given:

Time taken for output = 15 seconds

Frequency rate = 202 Hz

Find:

Maximum frequency on power spectrum plot

Computation:

Maximum frequency = Given frequency rate / 2

Maximum frequency on power spectrum plot = Frequency rate / 2

Maximum frequency on power spectrum plot = 202 / 2

Maximum frequency on power spectrum plot = 101 Hz

A tennis ball of mass of 0.06 kg is initially traveling at an angle of 47o to the horizontal at a speed of 45 m/s. It then was shot by the tennis player and return horizontally at a speed of 35 m/s. Find the impulse delivered to the ball.

Answers

Answer:

The impulse delivered to the ball is [tex]Imp = \left(-3.941, 1.975\right)\,\left[\frac{kg\cdot m}{s} \right][/tex].

Explanation:

By Impulse Theorem, the motion of the tennis ball is modelled after the following expression:

[tex]Imp = m\cdot (\vec v_{f} - \vec v_{o})[/tex] (1)

Where:

[tex]m[/tex] - Mass of the ball, in kilograms.

[tex]\vec v_{o}[/tex] - Vector of the initial velocity, in meters per second.

[tex]\vec v_{f}[/tex] - Vector of the final velocity, in meters per second.

[tex]Imp[/tex] - Impulse, in meters per second.

If we know that [tex]m = 0.06\,kg[/tex], [tex]\vec v_{o} = \left(45\,\frac{m}{s} \right)\cdot (\cos 47^{\circ}, \sin 47^{\circ})[/tex] and [tex]\vec v_{f} = \left(35\,\frac{m}{s} \right)\cdot (-1, 0)[/tex], then the impulse delivered to the ball is:

[tex]Imp = (0.06\,kg)\cdot \left[\left(35\,\frac{m}{s} \right)\cdot (-1,0) -\left(45\,\frac{m}{s} \right)\cdot (\cos 47^{\circ}, \sin 47^{\circ})\right][/tex]

[tex]Imp = (0.06\,kg)\cdot (-65.670, -32.911)\,\left[\frac{m}{s} \right][/tex]

[tex]Imp = \left(-3.941, 1.975\right)\,\left[\frac{kg\cdot m}{s} \right][/tex]

The impulse delivered to the ball is [tex]Imp = \left(-3.941, 1.975\right)\,\left[\frac{kg\cdot m}{s} \right][/tex].

At 20 ◦C a copper wire has a resistance of 4×10−3 Ω and a temperature coefficient of resistivity of 3.9×10−3 (C◦)−1, its resistance at 100 ◦C is

A.
52.5 × 10-3 Ω
B.
5.25 × 10-3 Ω
C.
5.25 × 10-4 Ω
D.
5.25 × 10-2 Ω


E.
25.5 × 10-3 Ω

Answers

Answer:

[tex]R _{t} = R _{0}( \alpha t + 1) \\ = 4 \times {10}^{ - 3} (3.9 \times {10}^{ - 3} \times 20 + 1) \\ = 4 \times {10}^{ - 3} (1.078) \\ = 4.312 \times {10}^{ - 3} \: Ω[/tex]

B. Complete the lists:
Things that I must do for my family
Things I must never do to my family
1.
2.
2.
3.
3.
4.
5.
5.​

Answers

Answer:

Things you should do for your family

help your parentstreat them kindlylisten and obey themappreciate them for anything they do for you talk softly

things you shouldn't

backanswering them Disobey And anything that's harsh or make it parents sad

A 45-kg skydiver jumps out of an airplane and falls 450 m, reaching a maximum speed of 51 m/s before opening her parachute. How much work, in joules, did air resistance do on the skydiver before she opened her parachute

Answers

Answer:

The work done by the friction force is - 139927.5 J.

Explanation:

mass of diver, m = 45 kg

distance falls, h = 450 m

initial speed, u = 0 m/s

final speed = 51 m/s

According to the work energy theorem,

Work done by the gravity + work done by the friction force = change in kinetic energy

[tex]m g h + W' = 0.5 m ()v^2 - u^2)\\\\45\times 9.8\times 450 + W' = 0.5\times 45\times (51^2 - 0)\\\\198450 + W' = 58522.5\\\\W' = - 139927.5 J[/tex]

Which statement describes an action-reaction pair?
O A. You push on a car, and the car pushes back on you.
B. A book pushes down on a table, and the table pushes down on the
Earth.
C. The Moon pulls on Earth, and Earth pulls on the Sun.
D. You push down on your shoe, and Earth's gravity pulls down on the
shoe.

Answers

Answer:

A

Explanation:

a pex

A spring with a 10-kg mass and a damping constant 15 can be held stretched 2 meters beyond its natural length by a force of 6 newtons. Suppose the spring is stretched 4 meters beyond its natural length and then released with zero velocity. Suppose the spring is stretched 4 meters beyond its natural length and then released with zero velocity.

Required:
Find the position of the mass at any time t.

Answers

Answer:

Explanation:

Given that:

mass = 10kg

damping constant C = 15 kg/s

length = 2 m

Force F = 6N

Using the Hooke's law:

F = kx

6 = 15x

k = 6 N /2 m

spring constant k = 3 N/m

For the critical damping

C² - 4k*m= 0

m = C²/4k

m = (15)²/4(3) kg

m = 225/12 kg

m = 18.75 kg

A lumberjack is trying to drag a small tree that he cut down. If the static
coefficient of friction of the tree on the ground is 0.5 and the tree weighs 430
N, what is the minimum amount of horizontal force that he will need to apply
so that the tree will start moving?
A. 215 N
B. 430 N
C. 365 N
D. 500 N

Answers

Answer:

A

Explanation:

weight of the tree =normal force

Horizontal force =coefficient of friction x Fnormal

0.5×430=215


How much power does it take to lift 70.0 N to 5.0 m high in 5.00 s?

Answers

Answer:

Power = 70 W

Explanation:

Given that,

Force, F = 70 N

Height, h = 5 m

Time, t = 5 s

We need to find the power of the object. We know that,

Power = work done/time

Put all the values,

[tex]P=\dfrac{Fd}{t}\\\\P=\dfrac{70\times 5}{5}\\\\P=70\ W[/tex]

So, the required power is 70 W.

The food calorie, equal to 4186 J, is a measure of how much energy is released when food is metabolized by the body. A certain brand of fruit-and-cereal bar contains 160 food calories per bar.
Part A
If a 67.0 kg hiker eats one of these bars, how high a mountain must he climb to "work off" the calories, assuming that all the food energy goes only into increasing gravitational potential energy?
Express your answer in meters.
Part B
If, as is typical, only 20.0 % of the food calories go into mechanical energy, what would be the answer to Part A? (Note: In this and all other problems, we are assuming that 100% of the food calories that are eaten are absorbed and used by the body. This is actually not true. A person's "metabolic efficiency" is the percentage of calories eaten that are actually used; the rest are eliminated by the body. Metabolic efficiency varies considerably from person to person.)
Express your answer in meters.

Answers

It’s definitely gonna be A

You throw a football straight up. Air resistance can be neglected. When the football is 4.00 mm above where it left your hand, it is moving upward at 0.500 m/sm/s. What was the speed of the football when it left your hand

Answers

Answer:

u=8.868 m/s

Explanation:

The displacement of the ball is 4 meters

The final speed of the ball is 0.5 m/s

The initial speed of the ball is to be calculated. Using the equation of the rectilinear motion,

[tex]v^{2} =u^{2} +2as[/tex]

Plugging the values in the above expression,

[tex]\\0.5^{2} =u^{2} +2*(-9.8)*4\\\\u^{2} =78.4+0.25\\\\u^{2} =78.65\\\\u=8.868 m/s[/tex]

what is the difference between VELOCITY and SPEED?​

Answers

Answer:

Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Put another way, speed is a scalar value, while velocity is a vector. ... In its simplest form, average velocity is calculated by dividing change in position (Δr) by change in time (Δt).

Explanation:

PLEASE HELP ME WITH THIS ONE QUESTION
Given the atomic mass of Boron-9 is 9.0133288 u, what is the nuclear binding energy of Boron-9? (Mproton = 1.0078251, Mneutron = 1.0086649, c^2 = 931.5 eV/u)

A) 59 eV

B) 58 eV

C) 57 eV

D) 56 eV

Answers

Answer:

a. 59 ev. helpful answer

Find the ratio of speeds of a proton and an alpha particle accelerated through the same voltage, assuming nonrelativistic final speeds. Take the mass of the alpha particle to be 6.64 ✕ 10−27 kg.

Answers

Answer:

The required ratio is 1.99.

Explanation:

We need to find the atio of speeds of a proton and an alpha particle accelerated through the same voltage.

We know that,

[tex]eV=\dfrac{1}{2}mv^2[/tex]

The LHS for both proton and an alpha particle is the same.

So,

[tex]\dfrac{v_p}{v_a}=\sqrt{\dfrac{m_a}{m_p}} \\\\\dfrac{v_p}{v_a}=\sqrt{\dfrac{6.64\times 10^{-27}}{1.67\times 10^{-27}}} \\\\=1.99[/tex]

So, the ratio of the speeds of a proton and an alpha particle is equal to 1.99.


how to calculate sound of an echo ​

Answers

by an echo meter

please flw me and thank my answers

#Genius kudi

A ball is thrown vertically upward at 24.0 ms can reach a height of 28.8m ( neglecting air resistance).The speed,in m/s,when it is halfway to its highest point is (using g= 10 ms ^2)

Answers

Answer:

The answer is "[tex]16.79\ \frac{m}{s}[/tex]"

Explanation:

In this question, the halfway indicates the height that is [tex]\frac{28.8}{2}=14.4 \ m[/tex]

Using formula:

[tex]v^2=u^2+2as\\\\v^2=24^2+2(-10)(14.4)\\\\[/tex]

[tex]v^2=576-288\\\\v^2=288\\\\v=\sqrt{288}\\\\v=16.97 \ \frac{m}{s}[/tex]

With neat circuit diagrams where possible show any two (2) ways of direct current motor
excitations,

Answers

Mainly there are two types of DC Motors. One is Separately Excited DC Motor and other is Self-excited DC Motor. The self-excited motors are further classified as Shunt wound or shunt motor, Series wound or series motor and Compound wound or compound motor. The dc motor converts electrical power into mechanical power.

A 35 kg child slides down a playground slide at a constant speed. The slide has a height of 3.8 m and is 8.0 m long. Find the magnitude of the kinetic friction force acting on the child.

Answers

Answer:

The magnitude of the kinetic frictional force acting on the child is 162.93 N

Explanation:

Given;

mass of the child, m = 35 kg

height of the slide, h = 3.8 m

length of the slide, d = 8.0 m

The change in thermal energy associated with the kinetic frictional force is calculated as follows;

[tex]\Delta E_{th} + \Delta K.E + \Delta U = 0\\\\\Delta E_{th} + (\frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2) + (mgh_f - mgh_i) =0\\\\since \ the \ speed \ is \ constant, \ v_f = v_i \ and \ \Delta K.E = 0\\\\Also, \ final \ height \ , h _f= 0\\\\\Delta E_{th} - mgh_i = 0\\\\\Delta E_{th} = mgh_i\\\\\Delta E_{th} = 35 \times9.8 \times 3.8\\\\\Delta E_{th} = 1303.4 \ J[/tex]

The magnitude of the kinetic frictional force that produced this thermal energy is calculated from the work done by frictional force;

[tex]\Delta E_{th} = F \times d\\\\F = \frac{\Delta E_{th} }{d} \\\\F = \frac{1303.4}{8} \\\\F = 162.93 \ N[/tex]

Therefore, the magnitude of the kinetic frictional force acting on the child is 162.93 N

The drag force Fd, imposed by the surrounding air on a vehicle moving with velocity V is given by:
Fd =C dA 2​ pV2
where Cd is a constant called the drag coefficient, A is the projected frontal area of the vehicle, and \rhorho is the air density.
Determine the power, in hp, required to overcome aerodynamic drag for an automobile moving at
(a) 25 miles per hour,
(b) 70 miles per hour.
Assume Cd=0.28,
A= 25ft2
and p=0.075Ib/ft2

Answers

Answer:

Explanation:

a)

Given that:

V = 25 mi/hr

To ft/sec, we have:

[tex]V = 25 \times \dfrac{5280}{3600} ft/s[/tex]

[tex]V = \dfrac{110}{3} ft/s[/tex]

[tex]\rho = 0.075 \ lb/ft^3[/tex]

[tex]\rho = 0.075 \times \dfrac{1 \ lbf s^2/ft}{32.174 \ lbm}[/tex]

[tex]\rho = \dfrac{0.075}{32.174 } lbf.s^2/ft^4[/tex]

[tex]C_d = 0.28[/tex]

A = 25ft²

Recall that:

The drag force [tex]F_d =\dfrac{C_dA \rho V^2}{2}[/tex]

[tex]F_d =\dfrac{1}{2}\times 0.28 \times 25\times \dfrac{0.075}{32.174}\times (\dfrac{110}{3})^2[/tex]

[tex]F_d =10.967 \ lbf[/tex]

[tex]P = F_dV \\ \\ P = 10.97 \times (\dfrac{110}{3}} \\ \\ P = 402.3 \ hp[/tex]

For 70 miles per hour, we have:

[tex]V = 70 \times \dfrac{5280}{3600} ft/s[/tex]

[tex]V = \dfrac{308}{3} ft/s[/tex]

The drag force [tex]F_d =\dfrac{C_dA \rho V^2}{2}[/tex]

[tex]F_d =\dfrac{1}{2}\times 0.28 \times 25\times \dfrac{0.075}{32.174}\times (\dfrac{308}{3})^2[/tex]

[tex]F_d =85.99 \ lbf[/tex]

[tex]P = F_dV \\ \\ P = 85.99 \times (\dfrac{308}{3}}) \\ \\ P = 8828.2 \ hp[/tex]

Calculate the current flowing when the voltage across is 35V and the resistance is 7ohms.​

Answers

Explanation:

V= IR

35=I×7

I=35/7

I=5amperes

pls give brainliest

A 56 kg pole vaulter falls from rest from a height of 5.1 m onto a foam rubber pad. The pole vaulter comes to rest 0.29 s after landing on the pad.

Required:
a. Calculate the athlete's velocity just before reaching the pad
b. Calculate the constant force exerted on the pole vaulter due to the collision

Answers

a. The athlete's velocity just before reaching the pad is [tex]35.21m/s[/tex]

b. The constant force exerted on the pole vaulter is 6799.52 N

a. We use Newton's equation of motion,

                    [tex]v=u+at\\\\S=ut+\frac{1}{2}at^{2}[/tex]

Where u is initial velocity, v is final velocity, a is acceleration , t is time and S represent distance.

Given that,  s = 5.1 m , t = 0.29s, u = 0

Substitute in above equation.

            [tex]5.1=\frac{1}{2}*a*(0.29)^{2} \\\\a=\frac{5.1*2}{0.084}=121.42m/s^{2}[/tex]

the athlete's velocity, [tex]v=0+121.42*(0.29)=35.21m/s[/tex]

b. The constant force exerted on the pole vaulter due to the collision is given as,             [tex]Force=mass*acceleration[/tex]

             [tex]Force=56*121.42=6799.52N[/tex]

Learn more:

https://brainly.com/question/13532462

why does a spherometer have three legs?​

Answers

spherometer is a device used to measure curved in surface

it have 3 legs which form equivalent triangle.

geometry says that 3 point determine a plane that's why it have 3 legs

A force of 3 newtons moves a 10 kilogram mass horizontally a distance of 3 meters. The mass does not slow down or speed up as it moves. Which of the following must be true?
a) 9 joules of kinetic energy were produced
b) 9 joules of gravitational potential energy were produced
c) 9 joules of heat energy were produced
d) 9 joules of kinetic energy and heat were produced

Answers

Answer:

9 joules of heat energy was produced

Explanation: there is no acceleration therefore its not a kinetic energy

Energy= force × distance

= 3×3

=9

What is the main way in which heat transfer occurs in liquids and gases?

Answers

The answer is convection

According to Newton’s law of universal gravitation, which statements are true?

Answers

1,3,5 it should be right because i have took that thing before
Other Questions
What is the answer to this equation Please help ASAP .BCPosition (m)A 0123456789101112Time (s)The graph describes the motion of an object.The object moves withfrom A to B. Itfrom B to C. It movesfrom C to D. The measures of the angles of a triangle are shown in the figure below. Solve for x. 2. Define biomagnfication. Jennifer can clean the house by herself in 3 hours. Her little brother Andy helps her clean and it takes them 2hours working together. How long would it have taken Andy to clean the house if he had worked alone?a. hours b. 3 hours c. 6 hoursd. 1 hour Elizabeth is unwilling to marry Mr. Collins because __________. A) she has no respect for Mr. Collins B) she recognizes Charlottes love for him C) she wants Jane to marry first D) she opposes the institution of marriage an essay in what ways do government and religion play a role in socialization in SA Marta is creating a program that will guide the user through a series of physical exercises. She wants the program to coach the user to do 10 push-ups. Which kind of loop should be used?a binary loopa condition-controlled loopa count-controlled loopan interface loop who can help me pleaseee???? URGENT.True or false. The marketing department is the most important function in business. What risk is most likely to happen when using wind as an energy source what is 3/5 minus 5/11 Please help!!!!!!!!!!!!!!!!!!! The following is a parallelogram solve for the variables a 2100-kg car drives with a speed of 18 m/s onb a flat road around a curve that has a radius of curvature of 83m. The coefficient of static friction between the car and the road is 0.78. What is the magnitude of the force of static friction acting on the car ItemSales Tax (7%)Total PricePlay Station 5 - $500Hoverboard - $125 Person A leaves his home to visit his cousin, person B, who lives 243 miles away. He travels at an average rate of 46 miles per hour. One half-hour later, person B leaves her house to visit person A, traveling at an average rate of 64 miles per hour. How long after person B leaves will it be before they meet? Slapshot Company makes ice hockey sticks. Last week, direct materials (wood, paint, Kevlar, and resin) costing $26,000 were put into production. Direct labor of $20,000 (10 workers x 100 hours x $20 per hour) was incurred. Manufacturing overhead equaled $52,000. By the end of the week, the company had manufactured 2,000 hockey stick. Explain how? What determines the ending units of a stoichiometry problem? Clearwater Electronics is planning to open an office in Shanghai , China , and the HR department has been asked to benchmark the compensation practices of other multinational organizations in the region . Why is benchmarking a first good step to developing a compensation and benefits plan to attract and retain nes employees who will contribute to the organization ?