One hundred fifty joules of heat are removed from a heat reservoir at a temperature of 150 K. What is the entropy change of the reservoir (in J/K)?

Answers

Answer 1

Answer:

ΔS surrounding (entropy change of the reservoir) = -1 J/K

Explanation:

Given:

Change in heat (ΔH) = 150 joules

Temperature (T) = 150 K

Find:

ΔS surrounding (entropy change of the reservoir)

Computation:

ΔS surrounding (entropy change of the reservoir) = - ΔH / T

ΔS surrounding (entropy change of the reservoir) = - 150 / 150

ΔS surrounding (entropy change of the reservoir) = -1 J/K


Related Questions

Consider the reaction for the dissolution of solid magnesium hydroxide.
Mg(OH)2(s)g2 (a) +2OH (ag)
If the concentration of hydroxide ion in a saturated solution of magnesium hydroxide is 2.24 x 104 M.
what is the molar solubility of magnesium hydroxide? Report your answer in scientific notation with three significant figures.

Answers

Answer:

Molar solubility is 1.12x10⁻⁴M

Explanation:

The dissolution of magnesium hydroxide is:

Mg(OH)₂(s) ⇄ Mg²⁺ + 2OH⁻

The molar solubility represents the moles of the solid that the solution can dissolve, that could be written as:

Mg(OH)₂(s) ⇄ X + 2X

Where X is solubility.

If you obtained a [OH⁻] = 2.24x10⁻⁴M and you know [OH⁻] = 2X:

2X = 2.24x10⁻⁴M

X = 2.24x10⁻⁴M/2

X =1.12x10⁻⁴M

Molar solubility is 1.12x10⁻⁴M

How many equivalent resonance structures can be drawn for the molecule of SO3 without having to violate the octet rule on the sulfur atom

Answers

Answer:

3

Explanation:

Resonance is a valence bond concept put forward by Linus Pauling to explain the fact that the observed properties of a molecule may be as a result of the fact that its actual structure lie somewhere between a given number of structural extremes called canonical structures or resonance structures.

There are three resonance structures for SO3 that obey the octet rule. All the S-O bonds in SO3 are equivalent in these resonance structures.

Seven equivalent resonance structures for the molecular of SO3 can be drawn without breaking the octet rule.

We can arrive at this answer because:

The octet rule is a rule that states that an atom must reach stability when it has eight electrons in the valence layer.This means that in bonds that cause the donation or sharing of electrons between atoms, each atom has eight electrons in the valence layer.In chemistry, resonance is a term that refers to structures created to represent the donation or sharing of electrons between the atoms of a molecule.These structures can be arranged in different ways, as long as they respect the octet rule.

In an SO3 molecule, electrons are shared between atoms. This sharing can be done with seven resonance structures.

These structures are shown in the figure below.

More information:

https://brainly.com/question/8155254?referrer=searchResults

Hydrazine, , emits a large quantity of energy when it reacts with oxygen, which has led to hydrazine used as a fuel for rockets: How many moles of each of the gaseous products are produced when 20.1 g of pure hydrazine is ignited in the presence of 20.1 g of pure oxygen

Answers

Answer:

[tex]1.25~mol~H_2O[/tex] and [tex]0.627~mol~N_2[/tex]

Explanation:

Our goal for this question is the calculation of the number of moles of the molecules produced by the reaction of hydrazine ([tex]N_2H_4[/tex]) and oxygen ([tex]O_2[/tex]). So, we can start with the reaction between these compounds:

[tex]N_2H_4~+~O_2~->~N_2~+~H_2O[/tex]

Now we can balance the reaction:

[tex]N_2H_4~+~O_2~->~N_2~+~2H_2O[/tex]

In the problem, we have the values for both reagents. Therefore we have to calculate the limiting reagent. Our first step, is to calculate the moles of each compound using the molar masses values (32.04 g/mol for [tex]N_2H_4[/tex] and 31.99 g/mol for [tex]O_2[/tex]):

[tex]20.1~g~N_2H_4\frac{1~mol~N_2H_4}{32.04~g~N_2H_4}=0.627~mol~N_2H_4[/tex]

[tex]20.1~g~O_2\frac{1~mol~O_2}{31.99~g~O_2}=0.628~mol~O_2[/tex]

In the balanced reaction we have 1 mol for each reagent (the numbers in front of [tex]O_2[/tex] and [tex]N_2H_4[/tex] are 1). Therefore the smallest value would be the limiting reagent, in this case, the limiting reagent is [tex]N_2H_4[/tex].

With this in mind, we can calculate the number of moles for each product. In the case of [tex]N_2[/tex] we have a 1:1 molar ratio (1 mol of [tex]N_2[/tex] is produced by 1 mol of [tex]N_2H_4[/tex]), so:

[tex]0.627~mol~N_2H_4\frac{1~mol~N_2}{1~mol~N_2H_4}=~0.627~mol~N_2[/tex]

We can follow the same logic for the other compound. In the case of [tex]H_2O[/tex] we have a 1:2 molar ratio (2 mol of [tex]H_2O[/tex] is produced by 1 mol of [tex]N_2H_4[/tex]), so:

[tex]0.627~mol~N_2H_4\frac{2~mol~H_2O}{1~mol~N_2H_4}=~1.25~mol~H_2O[/tex]

I hope it helps!

Write the half-reactions as they occur at each electrode and the net cell reaction for this electrochemical cell containing indium and cadmium. In(s)|

Answers

Answer:

Oxidation half equation;

3Cd(s) -------> 3Cd^2+(aq) + 6e

Reduction half equation;

2In^3+(aq) + 6e -----> 2In(s)

Explanation:

Since the reduction potentials of Indium and Cadmium are -0.34 V and - 0.40 V respectively, we can see that cadmium will be oxidized while indium will the reduced.

We arrived at this conclusion by examining the reduction potential of both species. The specie with more negative reduction potential is oxidized in the process.

Oxidation half equation;

3Cd(s) -------> 3Cd^2+(aq) + 6e

Reduction half equation;

2In^3+(aq) + 6e -----> 2In(s)

The enthalpy change for a chemical reaction is: a. the temperature change b. the amount of heat given off or absorbed c. related to molar volume d. none of the above

Answers

Answer:

b. the amount of heat given off or absorbed

Explanation:

Hello,

In this case, we should take into account a formal definition of enthalpy change such as an energetic change that occurs in a system when matter is transformed by a given chemical reaction from reactants to products. Thus, such energetic change is macroscopically exhibited and it is related with either a temperature increase or decrease; it means that if a reaction exhibits a temperature increase, we say that heat was given off and if the temperature exhibits a decrease, we say that heat is absorbed. For that reason, answer is b. the amount of heat given off or absorbed.

Regards.

A baseball has a mass of 0.145 kilograms. If acceration due to gravity is 9.8m/s,what is the weight of the baseball in newtons?

Answers

Answer:

I hope it works

Explanation:

As we know that

w=m*g

given m=0.145 , g=9.8

hence we get

w= (9.8)*(0.145)

w=1.421 m/sec 2

if its help-full thank hit the stars and brain-list it thank you

A sample of a hydrocarbon is found to contain 7.99g carbon and 2.01g hydrogen. What is the empirical formula for this compound

Answers

Answer:

The empirical formulae for the compound is CH3.

g When considering the effects of temperature on spontaneity, if both ΔH and ΔS are positive, _______. Select the correct answer below: the process is spontaneous at all temperatures

Answers

Explanation:

The spontaneity of a system is deduced by the sign of the gibbs free energy value. If it is negative, it means the process / reaction is spontaneous however a positive value indicates the such process is not spontaneous.

Gibbs free energy, enthalpy and entropy are related by the following equation;

ΔG = ΔH - TΔS

A positive value of enthalpy, H and entropy, S means that G would always be a negative value at all temperatures.

What is Non Metal?

help me find ​

Answers

The element which can not loose electron easily and having electronagtive character is called non-metal it has following property-

1. it can not conduct heat and electricity

2. it is netiher ductile not malleable

3. it is not lsuturous and also not sonorous

Explanation:

a nonmetal (or non-metal) is a chemical element that mostly lacks the characteristics of a metal. Physically, a nonmetal tends to have a relatively low melting point, boiling point, and density. A nonmetal is typically brittle when solid and usually has poor thermal conductivity and electrical conductivity. Chemically, nonmetals tend to have relatively high ionization energy, electron affinity, and electronegativity. They gain or share electrons when they react with other elements and chemical compounds. Seventeen elements are generally classified as nonmetals: most are gases (hydrogen, helium, nitrogen, oxygen, fluorine, neon, chlorine, argon, krypton, xenon and radon); one is a liquid (bromine); and a few are solids (carbon, phosphorus, sulfur, selenium, and iodine). Metalloids such as boron, silicon, and germanium are sometimes counted as nonmetals.

There are 454 grams in one pound. How many pounds are in 700 grams

Answers

Answer:

1.543 pounds = 700 grams

Calculate the entropy change in the surroundings associated with this reaction occurring at 25∘C. Express the entropy change to three significant figures and include the appropriate units.

Answers

Answer:

That means that if you are calculating entropy change, you must multiply the enthalpy change value by 1000. So if, say, you have an enthalpy change of -92.2 kJ mol-1, the value you must put into the equation is -92200 J mol-1

The entropy change in the surroundings associated with this reaction occurring at 25 degree C is calculated as ΔS = -ΔH/T J/K.

What is entropy?

Entropy is a quantity which gives idea about the randomness or arrangement of atoms or molecules present in any sample.

Entropy change will be calculated as:
ΔS = -ΔH/T, where

ΔH = chnage in enthalpy (J/mole)

T = temperature (K)

So to calculate the entropy change first we have to know about the value of enthalpy in joules and then divide it by the temperature.

Hence the unit of entropy is joule per kelvin.

To know more about entropy, visit the below link:
https://brainly.com/question/6364271

If the rate of formation (also called rate of production) of compound C is 2M/s in the reaction A --->2C, what is the rate of consumption of A

Answers

Answer:

[tex]r_A=-1\frac{M}{s}[/tex]

Explanation:

Hello,

In this case, given the rate of production of C, we can compute the rate of consumption of A by using the rate relationships which include the stoichiometric coefficients at the denominators (-1 for A and 2 for C) as follows:

[tex]\frac{1}{-1} r_A=\frac{1}{2}r_C[/tex]

In such a way, solving the rate of consumption of A, we obtain:

[tex]r_A=-\frac{1}{2} r_C=-\frac{1}{2}*2\frac{M}{s}\\ \\r_A=-1\frac{M}{s}[/tex]

Clearly, such rate is negative which account for consumption process.

Regards.

Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements: 2NaN3 (s) → 2Na (s) + 3N2 (g) How many grams of sodium azide are required to produce 30.5 g of nitroge

Answers

Answer:

NaN3 = 47.2 g

Explanation:

Given:

2 NaN3 ⇒ 2 Na  + 3 N2

Find:

Amount of NaN3

Computation:

N2 moles = Product of N2 / molar mass of N2

N2 moles =30.5/28

N2 moles = 1.0893

2NaN3 makes 3(N2 )

So,

NaN3 moles = (2/3) moles of N2  

NaN3 moles = ( 2/3) × 1.0893

NaN3 moles = = 0.7262

NaN3 mass = 0.7262 x 65

NaN3 = 47.2 g

Answer:

NaN3 = 47.2 g

Explanation:

Given:

2 NaN3 ⇒ 2 Na  + 3 N2

Find:

Amount of NaN3

Computation:

N2 moles = Product of N2 / molar mass of N2

N2 moles =30.5/28

N2 moles = 1.0893

2NaN3 makes 3(N2 )

So,

NaN3 moles = (2/3) moles of N2  

NaN3 moles = ( 2/3) × 1.0893

NaN3 moles = = 0.7262

NaN3 mass = 0.7262 x 65

NaN3 = 47.2 g

Explanation:

what is the molality of a solution

Answers

Molarity (M) is the concentration of a solution expressed as the number of moles of solute per liter of solution: Molarity (M) = moles solute. liters solution.

Answer: The number of moles of a solute per kilogram of solvent

Explanation:

In the experiment students will create solutions with different ratios of ethanol and water. What is the mole fraction of ethanol when 10.00 mL of pure ethanol is combined with 2.00 mL of water

Answers

Answer:

[tex]x_{et}=0.6068[/tex]

Explanation:

Hello,

In this case, since the mole fraction of a compound, in this case ethanol, in a binary mixture, in this constituted by both water and ethanol, is mathematically defined as follows:

[tex]x_{et}=\frac{n_{et}}{n_{et}+n_{w}}[/tex]

Whereas [tex]n[/tex] accounts for the moles in the solution for each species, we must first compute the moles of both ethanol (density: 0.789 g/mL and molar mass: 46.07 g/mol) and water (density: 1g/mL and molar mass: 18.02 g/mol)

[tex]n_{et}=10.00mL\ et*\frac{0.789g\ et}{mL\ et} *\frac{1mol\ et}{46.07g\ et}=0.1713mol\ et\\ \\n_w=2.00mL\ w*\frac{1g\ w}{mL\ w} *\frac{1mol\ w}{18.02g\ w}=0.1110mol\ w[/tex]

Therefore, the mole fraction turns out:

[tex]x_{et}=\frac{0.1713mol}{0.1713mol+0.1110mol}\\\\x_{et}=0.6068[/tex]

Best regards.

write the balanced nuclear equation for the radioactive decay of radium-226 to give radon-222, and determine the type of decay

Answers

Answer:

226Ra88→222Rn86+4He2

Explanation:

An α-particle usually consists of a helium nucleus which indicates the type of decay that was undergone in this radioactive process.

During α-decay(alpha decay), an atomic nucleus emits an alpha particle.

Identify the term that matches each electrochemistry definition. The electrode where oxidation occurs Cathode The electrode where reduction occurs Choose... An electrochemical cell powered by a spontaneous redox reaction Choose... An electrochemical cell that takes in energy to carry out a nonspontaneous redox reaction Choose... A chemical equation showing either oxidation or reduction Choose...

Answers

Answer:

An electrochemical cell that takes in energy to carry out a nonspontaneous redox reaction

Which response includes all the following processes that are accompanied by an increase in entropy? 1) 2SO 2(g) + O 2(g) → SO 3(g) 2) H 2O(l) → H 2O(s) 3) Br 2(l) → Br 2(g) 4) H 2O 2(l) → H 2O(l) + 1/ 2O 2(g)

Answers

Answer: Reaction (1) , (3) and (4) are accompanied by an increase in entropy.

Explanation:

Entropy is the measure of randomness or disorder of a system. If a system moves from  an ordered arrangement to a disordered arrangement, the entropy is said to decrease and vice versa.

(1) [tex]2SO_2(g)+O_2(g)\rightarrow SO_3(g)[/tex]

3 moles of reactant are changing to 1 mole of product , thus the randomness is increasing. Thus the entropy also increases.

2) [tex]H_2O(l)\rightarrow H_2O(s)[/tex]

1 mole of Liquid reactant is changing to 1 mole of solid product , thus the randomness is decreasing. Thus the entropy also decreases.

3) [tex]Br_2(l)\rightarrow Br_2(g)[/tex]

1 mole of Liquid reactant is changing to 1 mole of gaseous product , thus the randomness is increasing. Thus the entropy also increases.

4)  [tex]H_2O_2(l)\rightarrow H_2O(l)+\frac{1}{2}O_2(g)[/tex]

1 mole of Liquid reactant is changing to half mole of gaseous product and 1 mole of liquid product, thus the randomness is increasing. Thus the entropy also increases.

acid-catalyzed hydration of 1-methylcyclohexene gives two alcohols. The major product does not undergo oxidation, while the minor product will undergo oxidation. Explain

Answers

Answer:

Major product does not undergo oxidation since it is a tertiary alcohol whereas minor product undergoes oxidation to ketone as it is  secondary alcohol.

Explanation:

Hello,

In this case, given the attached picture, the hydration of the 1 methylcyclohexene yields to alcohols; 1-methylcyclohexan-1-ol and 1-methylcyclohexan-2-ol. Thus, since the OH in the 1-methylcyclohexan-1-ol (major product) is bonded to a tertiary carbon (bonded with other three carbon atoms) it is not able to increase the number of oxygen bonds (oxidation) as it already attained the octet whereas the 1-methylcyclohexan-2-ol (minor product) is able to undergo oxidation to ketone as the carbon bonded to it is secondary (bonded with other two carbon atoms), so one extra bond the oxygen is allowed to be formed to carbonyl.

Best regards.

PV = nRT. If P = 1 atm, V = 5.0 liter, R = 0.0821 L.atm/mol.K, and T = 293 K; what is the value of n?

Answers

Answer:

n = 0.207 mole

Explanation:

We have,

P = 1 atm

V = 5 liter

R = 0.0821 L.atm/mol.K

T = 293 K

We need to find the value of n. The relation is as follows :

PV = nRT

Solving for n,

[tex]n=\dfrac{PV}{RT}\\\\n=\dfrac{1\times 5}{0.0821 \times 293}\\\\n=0.207\ \text{mol}[/tex]

So, the value of n is 0.207 mol.

What would happen to the rate of a reaction with rate law rate = k [NO]2[Hz] if
the concentration of NO were doubled?

Answers

The rate of a reaction with this rate law would increase by a factor of 4 if NO concentration were doubled.

Answer:

The rate would have doubled

Explanation:

Arrange the following substances in the order of increasing entropy at 25°C. HF(g), NaF(s), SiF 4(g), SiH 4(g), Al(s) lowest → highest

Answers

Answer:

Al(s)<NaF(s)<HF(g)<SiH4(g)<SiF4(g)

Explanation:

Hello,

In this case, we can arrange the increasing order of entropy at 25 \°C by taking into account, at first, that since solids are more molecularly organized than gases, the first we have solid sodium fluoride and solid aluminium, but in this case, as the higher the molar mass, the higher the entropy, the molar mass of aluminium is 27 g/mol and 42 g/mol for sodium fluoride, therefore, we first have:

Al(s)<NaF(s)

Afterwards, since the molar mass of hydrogen fluoride (HF), silicon fluoride (SiF4) and silane (SiH4) are 20, 104 and 32 g/mol respctively, since silicon fluoride has the greater molar mass, it also has the higher entropy. In such a way, the overall order turns out:

Al(s)<NaF(s)<HF(g)<SiH4(g)<SiF4(g)

Best regards.

What is the frequency of a photon having an energy of 4.91 × 10–17 ? (c = 3.00 × 108 m/s, h = 6.63 × 10–34 J · s)​

Answers

Answer:

The frequency of the photon is 7.41*10¹⁶ Hz

Explanation:

Planck states that light is made up of photons, whose energy is directly proportional to the frequency of radiation, according to a constant of proportionality, h, which is called Planck's constant. This is expressed by:

E = h*v

where E is the energy, h the Planck constant (whose value is 6.63*10⁻³⁴ J.s) and v the frequency (Hz or s⁻¹).

So the frequency will be:

[tex]v=\frac{E}{h}[/tex]

Being E= 4.91*10⁻¹⁷ J and replacing:

[tex]v=\frac{4.91*10^{-17} J}{6.63*10^{-34} J.s}[/tex]

You can get:

v= 7.41*10¹⁶ [tex]\frac{1}{s}[/tex]= 7.41*10¹⁶ Hz

The frequency of the photon is 7.41*10¹⁶ Hz

In which list are the three compounds above correctly listed in order of increasing boiling point? A) lowest b.p.... isopropanol < isobutane < acetone ...highest b.p. B) lowest b.p.... isobutane < acetone < isopropanol ...highest b.p. C) lowest b.p.... isobutane < isopropanol < acetone ...highest b.p. D) lowest b.p.... acetone < isobutane < isopropanol ...highest b.p. E) lowest b.p.... acetone < isopropanol < isobutane ...highest b.p.

Answers

Answer:

The correct answer is - option B -  lowest b.p.... isobutane < acetone < isopropanol ...highest b.p.

Explanation:

Isobutane has lowest boiling point due to no hydrogen bonding and no diole to dipole interaction found in them. Isobutane only shows weak dispersion force.

Acetone has dipole dipole interaction but due to lack of Hydrogen bonding they have low boiling point than isopropanol but higher than isobutanol.

Isopropanol is the compound that has ability to form hydrogen bonding with other molecule its boiling point is maximum among all three.

Thus, the correct answer is - option B -  lowest b.p.... isobutane < acetone < isopropanol ...highest b.p.

The condition that a reaction takes place without outside help Choose... Solution in which no more solute can be dissolved in the solvent Choose... Difference of the enthalpy (of a system) minus the product of the entropy and absolute temperature Choose... The extent of randomness in a system Choose... Sum of the internal energy plus the product of the pressure and volume for a reaction

Answers

Answer:

Difference of the enthalpy (of a system) minus the product of the entropy and absolute temperature

Explanation:

The basis of spontaneity in a chemical reaction is that ∆G must be negative. ¡∆G is known as the change in free energy of a system. If ∆G is negative, then the reaction will occur without any external help (the reaction is spontaneous at room temperature).

∆G is given by;

∆G= ∆H -T∆S

Where;

∆H= change in enthalpy of the system

T= absolute temperature of the system

∆S= change in entropy

Hence; when ∆H -T∆S gives a negative result, the reaction proceeds without any external help.

Which of the following pairs of chemical reactions are inverses of each other? Answer options: a. Hydrogenation and alkylation b.Halogenation and hydrolysis c. Ammoniation and alkylation d. Oxidation and reduction

Answers

Answer:

d. Oxidation and reduction

Explanation:

For this question we have to remember the definition of each type of reaction:

-) Hydrogenation

In this reaction, we have the addition of hydrogen to a molecule. Usually, an alkene or alkyne. In the example, molecular hydrogen is added to a double bond to produce an alkane.

-) Alkylation

In this reaction, we have the addition of a chain of carbon to another molecule. In the example, an ethyl group is added to a benzene ring.

-) Hydrolysis

In this reaction, we have the breaking of a bond by the action of water. In the example, a water molecule can break the C-O bond in the ester molecule.

-) Halogenation

In this reaction, we have the addition of a halogen (atoms on the VIIIA group). In the example, "Cl" is added to the butene.

-) Ammoniation

In this reaction, we have the addition of the ammonium ion ([tex]NH_4^+[/tex]). In the example, the ammonium ion is added to an acid.

-) Oxidation and reduction

In this reaction, we have opposite reactions. The oxidation is the loss of electrons and the reduction is the gain of electrons. For example:

[tex]Ag^+~+~e^-~->~Ag[/tex] Reduction

[tex]Al~->~Al^+^3~+~3e^-[/tex] Oxidation

If the Ksp for Li3PO4 is 5.9×10−17, and the lithium ion concentration in solution is 0.0020 M, what does the phosphate concentration need to be for a precipitate to occur?

Answers

Answer:

7.4 × 10⁻⁹ M

Explanation:

Step 1: Given data

Solubility product constant (Ksp) for Li₃PO₄: 5.9 × 10⁻¹⁷

Concentration of lithium ion: 0.0020 M

Step 2: Write the reaction for the solution of Li₃PO₄

Li₃PO₄(s) ⇄ 3 Li⁺(aq) + PO₄³⁻(aq)

Step 3: Calculate the phosphate concentration required for a precipitate to occur

The solubility product constant is:

Ksp = 5.9 × 10⁻¹⁷ = [Li⁺]³ × [PO₄³⁻]

[PO₄³⁻] = 5.9 × 10⁻¹⁷ / [Li⁺]³

[PO₄³⁻] = 5.9 × 10⁻¹⁷ / 0.0020³

[PO₄³⁻] = 7.4 × 10⁻⁹ M

Will a precipitate of magnesium fluoride form when 300. mL of 1.1 × 10 –3 M MgCl 2 are added to 500. mL of 1.2 × 10 –3 M NaF? [K sp (MgF 2) = 6.9 × 10 –9]

Answers

Answer:

No precipitate is formed.

Explanation:

Hello,

In this case, given the dissociation reaction of magnesium fluoride:

[tex]MgF_2(s)\rightleftharpoons Mg^{2+}+2F^-[/tex]

And the undergoing chemical reaction:

[tex]MgCl_2+2NaF\rightarrow MgF_2+2NaCl[/tex]

We need to compute the yielded moles of magnesium fluoride, but first we need to identify the limiting reactant for which we compute the available moles of magnesium chloride:

[tex]n_{MgCl_2}=0.3L*1.1x10^{-3}mol/L=3.3x10^{-4}molMgCl_2[/tex]

Next, the moles of magnesium chloride consumed by the sodium fluoride:

[tex]n_{MgCl_2}^{consumed}=0.5L*1.2x10^{-3}molNaF/L*\frac{1molCaCl_2}{2molNaF} =3x10^{-4}molMgCl_2[/tex]

Thus, less moles are consumed by the NaF, for which the moles of formed magnesium fluoride are:

[tex]n_{MgF_2}=3x10^{-4}molMgCl_2*\frac{1molMgF_2}{1molMgCl_2}=3x10^{-4}molMgF_2[/tex]

Next, since the magnesium fluoride to magnesium and fluoride ions is in a 1:1 and 1:2 molar ratio, the concentrations of such ions are:

[tex][Mg^{2+}]=\frac{3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =3.75x10^{-4}M[/tex]

[tex][F^-]=\frac{2*3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =7.5x10^{-4}M[/tex]

Thereby, the reaction quotient is:

[tex]Q=(3.75x10^{-4})(7.5x10^{-4})^2=2.11x10^{-10}[/tex]

In such a way, since Q<Ksp we say that the ions tend to be formed, so no precipitate is formed.

Regards.

To find the pH of a solution of NH4Br directly, one would need to use:__________
Select the correct answer below:
a) the Kb of NH3 to find the hydroxide concentration
b) the Ka of NH+4 to find the hydronium concentration
c) the Kb of NH3 to find the hydronium concentration
d) the Ka of NH+4 to find the hydroxide concentration

Answers

Answer:

b) the Ka of NH₄⁺ to find the hydronium concentration

Explanation:

The equilbrium of NH₄⁺ (The conjugate acid of NH₃, a weak base), is:

NH₄⁺ ⇄ NH₃ + H⁺

Where Ka of the conjugate acid is:

Ka = [NH₃] [H⁺] / [NH₄⁺]

Thus, if you know Ka of NH₄⁺ and its molar concentration you can calculate  [H⁺], the hydronium concentration, to find pH (Because pH =  -log [H⁺])

Thus, right option is:

b) the Ka of NH₄⁺ to find the hydronium concentration

clacium hydroxide is slightly soluable in water about 1 gram will dissolve in 1 liter what are the spectator ions in the reaction ions in the reaction of such a dilute solution of calcium hydroxide with hydrochloric acid

Answers

Answer:

Ca²⁺ and Cl⁻

Explanation:

In a chemical reaction, spectator ions are ions that are not involved in the reaction, that means are the same before and after the reaction.

In water, calcium hydroxide, Ca(OH)₂ is dissociated in Ca²⁺ and OH⁻. Also, hydrochloric acid, HCl, dissociates in H⁺ and Cl⁻. The reaction is:

Ca²⁺ + 2OH⁻ + 2H⁺ + 2Cl⁻ → 2H₂O + Ca²⁺ + 2Cl⁻

The ions that react are H⁺ and OH⁻ (Acid and base producing water)

And the ions that are not reacting, spectator ions, are:

Ca²⁺ and Cl⁻
Other Questions
the function y= -16t^2 + 248, models the hight y in feet of a stone t seconds after it dropped from the edge of a vertical cliff. How long will it take the stone to hit the ground? Margarita, age 30, used to work 80 hours a week as a corporate lawyer. this year she quit her job to take care of her five-month-old daughter. she is currently not looking for a job. the survey conducted by the bureau of labor statistics will count margarita today as choose one:a. not in the labor force.b. not in the working-age population.c. a discouraged worker.d. employed.e. unemployed. Maya can't find her red sandals. Tamiko is wearing red sandals. Therefore, Tamiko stole Maya's shoes. This is an example of Heterocyclic aromatic compounds undergo electrophilic aromatic substitution in a similar fashion to that undergone by benzene with the formation of a resonance-stabilized intermediate. Draw all of the resonance contributors expected when the above compound undergoes bromination What is the function of the nucleus? A. Builds proteins B. Stores the cell's glucose C. Stores the cell's DNA D. Produces energy for the cell by respiration In a concentrated network configuration:a. firms perform a supply chain activity in one location and serve foreign locations from itb. firms allow each site on the network to operate with full autonomyc. firms tightly link operations and supply chain activities to one anotherd. firms perform a supply chain activity in various countries You pack sandwiches for a hike with your friends. Each sandwich takes 2 slices of bread, and each hiker eats one sandwich. How many slices of bread are used for n hikers? The Ruiz family is exchanging euros for US dollars. The exchange rate is 1 euro equals 1.35261 USD. Since the Ruiz family knows that USD are stated to the nearest hundredth of a dollar, they used the conversion ratio. Will this give the Ruiz family the correct exchange? A brick weighs 50.0 N, and measures 30.0 cm 10.0 cm 4.00 cm. What is the maximum pressure it can exert on a horizontal surface due to its weight? Llevaste un paraguas contigo? No. No ___ llev. *(A) La (B) Lo (C) Las (D) Los (E) El Given the following diagram, find the required measures. Given: l | | m m 1 = 120 m 3 = 40 m 2 = 20 60 120 This table shows a linear relationship.The slope of the line is ? Give this problem a try and try to solve this Water flows through a pipe at a rate of 4 quarts per day. Express this rate of flow in liters per week. Round your answer to the nearest tenth. Help please anyone. Thank You What is the volume of this rectangular prism?2 cm7/3 cm2 cm Dilate line f by a scale factor of 3 with the center of dilation at the origin to create line f'. Where are points A' and B' located after dilation, and how are lines f and f' related? 36 minus 20 minus 32 times 1/4 CHALLENGE ACTIVITY 3.7.2: Type casting: Reading and adding values. Assign totalowls with the sum of num_owls A and num_owls_B. Sample output with inputs: 34 Number of owls: 7 1. total_owls - 2.3. num_owls A - input 4. num_owls_B - input 5.6. " Your solution goes here 7.8. print("Number of owls:', total_owls) identify the components ( parts) of DNA