Answer: 1, 4
Step-by-step explanation:
Number #1 = xNumber #2 = [tex]\frac{1}{4} x[/tex][tex]\frac{1}{4} x+x=5\\\\\frac{1}{4} x+\frac{4}{4} x=5\\\\\frac{5}{4} x=5\\\\5x=4*5\\5x=20\\x=4[/tex]
Number #1 = x = 4Number #2 = [tex]\frac{1}{4} x[/tex] = [tex]\frac{1}{4} *4=\frac{4}{4} =1[/tex]PLSHELPASAPDFFFFFFFFFFFFFFFFFFFFFFFFFF
im struggling with the same one
PLEASE HELP!!! Which number is a solution of the inequality x less-than negative 4? Use the number line to help answer the question. A number line going from negative 9 to positive 1.
Answer:
is it going to be 10.5
Step-by-step explanation:
I do not have any explanation
Answer: 0 (zero)
Step-by-step explanation:
Start Learning & start growing! edge2023
*DROPS THE MIC*
when price of indomie noodles was lowered from #50 to #40 per unit, quantity demanded increases from 400 to 600 units per week. calculate the coefficient of price elasticity of demand and determine whether by lowering price this firm has made a wise decision
Answer:
The price elasticity of demand is -10
Step-by-step explanation:
Given
[tex]p_1,p_2 = 50,40[/tex]
[tex]q_1,q_2 = 400,500[/tex]
Solving (a): The coefficient of price elasticity of demand (k)
This is calculated as:
[tex]k = \frac{\triangle q}{\triangle p}[/tex]
So, we have:
[tex]k = \frac{500 - 400}{40 - 50}[/tex]
[tex]k = \frac{100}{-10}[/tex]
[tex]k = -10[/tex]
Because |k| > 0, then we can conclude that the company made a wise decision.
Find the solution of the differential equation that satisfies the given initial condition. (dP)/(dt)
Answer:
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]P(1) = 2[/tex]
Required
The solution
We have:
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]\frac{dP}{dt} = (Pt)^\frac{1}{2}[/tex]
Split
[tex]\frac{dP}{dt} = P^\frac{1}{2} * t^\frac{1}{2}[/tex]
Divide both sides by [tex]P^\frac{1}{2}[/tex]
[tex]\frac{dP}{ P^\frac{1}{2}*dt} = t^\frac{1}{2}[/tex]
Multiply both sides by dt
[tex]\frac{dP}{ P^\frac{1}{2}} = t^\frac{1}{2} \cdot dt[/tex]
Integrate
[tex]\int \frac{dP}{ P^\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Rewrite as:
[tex]\int dP \cdot P^\frac{-1}{2} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the left hand side
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]2P^{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the right hand side
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{1}{2} +1 }}{\frac{1}{2} +1 } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{3}{2}}}{\frac{3}{2} } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex] ---- (1)
To solve for c, we first make c the subject
[tex]c = 2P^{\frac{1}{2}} - \frac{2}{3}t^\frac{3}{2}[/tex]
[tex]P(1) = 2[/tex] means
[tex]t = 1; P =2[/tex]
So:
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1^\frac{3}{2}[/tex]
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1[/tex]
[tex]c = 2\sqrt 2 - \frac{2}{3}[/tex]
So, we have:
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + 2\sqrt 2 - \frac{2}{3}[/tex]
Divide through by 2
[tex]P^{\frac{1}{2}} = \frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3}[/tex]
Square both sides
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.) c, c, c , where c > 0
Answer:
cos(∝) = 1/√3
cos(β) = 1/√3
cos(γ) = 1/√3
∝ = 55°
β = 55°
γ = 55°
Step-by-step explanation:
Given the data in the question;
vector is z = < c,c,c >
the direction cosines and direction angles of the vector = ?
Cosines are the angle made with the respect to the axes.
cos(∝) = z < 1,0,0 > / |z|
so
cos(∝) = < c,c,c > < 1,0,0 > / √[c² + c² + c²] = ( c + 0 + 0 ) / √[ 3c² ]
cos(∝) = c / √[ 3c² ] = c / c√3 = 1/√3
∝ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
cos(β) = < c,c,c > < 0,1,0 > / √[c² + c² + c²] = ( 0 + c + 0 ) / √[ 3c² ]
cos(β) = c / √[ 3c² ] = c / c√3 = 1/√3
β = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
cos(γ) = < c,c,c > < 0,0,1 > / √[c² + c² + c²] = ( 0 + 0 + c ) / √[ 3c² ]
cos(γ) = c / √[ 3c² ] = c / c√3 = 1/√3
γ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
Therefore;
cos(∝) = 1/√3
cos(β) = 1/√3
cos(γ) = 1/√3
∝ = 55°
β = 55°
γ = 55°
i need help solving this .
Answer:b
Step-by-step explanation:
Answer:
just be smart trust me u dont need us to give u the answer ur super smart
Step-by-step explanation:
make me brainliest to help people be encourage
A large container holds 4 gallons of chocolate milk that has to be poured into bottles. Each bottle holds 2 pints.
If the ratio of gallons to pints is 1: 8,
bottles are required to hold the 4 gallons of milk.
Answer:
64 Bottles
Step-by-step explanation:
that is the procedure above
if cosA=3√2/5,then show that cos2A=11/25
Answer:
Step-by-step explanation:
Cos 2A = 2Cos² A - 1
[tex]= 2*(\frac{3\sqrt{2}}{5})^{2}-1\\\\=2*(\frac{3^{2}*(\sqrt{2})^{2}}{5^{2}})-1\\\\=2*\frac{9*2}{25} - 1\\\\=\frac{36}{25}-1\\\\=\frac{36}{25}-\frac{25}{25}\\\\=\frac{11}{25}[/tex]
find the exact value cos5pi/6
Answer:
[tex] - \frac{ \sqrt{3} }{2} [/tex]
Step-by-step explanation:
Unit circle
if side of square is 4.05 find its area
Answer:
A
≈
16.4
please give brain list9. Mariah has 28 centimeters of reed
and 10 meters of reed for weaving
baskets. How many meters of reed
does she have? Write your answer as a
decimal and explain your answer.
Find the perimeter of a football field which measures 90m by 60m
Hello!
[tex]\large\boxed{P = 300m}[/tex]
Use the following formula for the perimeter:
P = 2l + 2w, where:
l = length
w = width
Therefore:
P = 2(90) + 2(60)
Simplify:
P = 180 + 120 = 300 m
Answer:
well how about you use common sense 100 yards long on each side 200 yards then add 5o yards since the the that is how wide it is then add another 50 and you get 300 yards then convert that to meters
F(x) =-2x-4 find x if f(x)=14
Answer:
14=-2x-4
18=-2x
x=-9
Hope This Helps!!!
Suppose f(x,y,z) = x2 + y2 + z2 and W is the solid cylinder with height 7 and base radius 2 that is centered about the z-axis with its base at z = −2. Enter θ as theta.
A) As an iterated integral, ∭WfdV = ∫BA∫DC∫FE dzdrdθ with limits of integration.
B) Evaluate the integral.
In cylindrical coordinates, W is the set of points
W = {(r, θ, z) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π and -2 ≤ z ≤ 5}
(A) Then the integral of f(x, y, z) over W is
[tex]\displaystyle\iiint_W(x^2+y^2+z^2)\,\mathrm dV = \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
(B)
[tex]\displaystyle \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta = 2\pi \int_0^2\int_{-2}^5(r^3+rz^2)\,\mathrm dz\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(zr^3+\frac13rz^3\right)\bigg|_{z=-2}^{z=5}\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(\frac{133}3r+7r^3\right)\,\mathrm dr \\\\\\= 2\pi \left(\frac{133}6r^2+\frac74r^4\right)\bigg|_{r=0}^{r=2} \\\\\\= 2\pi \left(\frac{110}3\right) = \boxed{\frac{220\pi}3}[/tex]
In the diagram, WZ=StartRoot 26 EndRoot.
On a coordinate plane, parallelogram W X Y Z is shown. Point W is at (negative 2, 4), point X is at (2, 4), point Y is at (1, negative 1), and point Z is at (negative 3, negative 1).
What is the perimeter of parallelogram WXYZ?
units
units
units
units
Answer:
[tex]P = 8 + 2\sqrt{26}[/tex]
Step-by-step explanation:
Given
[tex]W = (-2, 4)[/tex]
[tex]X = (2, 4)[/tex]
[tex]Y = (1, -1)[/tex]
[tex]Z = (-3,-1)[/tex]
Required
The perimeter
First, calculate the distance between each point using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2[/tex]
So, we have:
[tex]WX = \sqrt{(-2- 2)^2 + (4-4)^2 } =4[/tex]
[tex]XY = \sqrt{(2- 1)^2 + (4--1)^2 } =\sqrt{26}[/tex]
[tex]YZ = \sqrt{(1- -3)^2 + (-1--1)^2 } =4[/tex]
[tex]ZW = \sqrt{(-3--2)^2 + (-1-4)^2 } =\sqrt{26}[/tex]
So, the perimeter (P) is:
[tex]P = 4 + \sqrt{26} + 4 + \sqrt{26}[/tex]
[tex]P = 8 + 2\sqrt{26}[/tex]
Answer:
its D.
Step-by-step explanation:
took test