Answer:
H(s) = 20 / [ 1 + s / 10^5 ]^2
Explanation:
Given data:
cutoff frequency = 100 kHz
stopband attenuation rate = 40 dB/decade
nominal passband gain = 20 dB
new nominal passband gain at cutoff = 14 dB
Represent the transfer function H(s)
The attenuation rate show that there are two(2) poles
H(s) = k / [ 1 + s/Wc ]^2 ----- ( 1 )
where : Wc = 100 kHz = 10^5 Hz , K = 20 log k = 20 dB ∴ k = 20
Input values into equation 1
H(s) = 20 / [ 1 + s / 10^5 ]^2
A flow inside a centrifuge can be approximated by a combination of a central cylinder and a radial line source flow, giving the following potential function:
Ø= a2/r -cosØ + aßlnr = r
Where a is the radius of the central base of the centrifuge and ß is a constant.
a) Provide expressions for the velocities Vr and vo .
b) Find the expression for the stream function.
Answer:
a) Vr = - a^2/r cosθ + aß / r
Vθ = 1/r [ -a^2/r * sinθ ]
b) attached below
Explanation:
potential function
Ø= a^2 /r cosØ + aßlnr ----- ( 1 )
a = radius , ß = constant
a) Expressions for Vr and Vθ
Vr = dØ / dr ----- ( 2 )
hence expression : Vr = - a^2/r cosθ + aß / r
Vθ = 1/r dØ / dθ ------ ( 3 )
back to equation 1
dØ / dr = - a^2/r sinθ + 0 --- ( 4 )
Resolving equations 3 and 4
Vθ = 1/r [ -a^2/r * sinθ ]
b) expression for stream function
attached below
Do you know who Candice is
Answer: Can these nuts fit in your mouth?
Explanation:
im just here for the points >:)
An ideal neon sign transformer provides 9130 V at 51.0 mA with an input voltage of 240 V. Calculate the transformer's input power and current.
Answer:
Input power = 465.63 W
current = 1.94 A
Explanation:
we have the following data to answer this question
V = 9130
i = 0.051
the input power = VI
I = 51.0 mA = 0.051
= 9130 * 0.051
= 465.63 watts
the current = 465.63/240
= 1.94A
therefore the input power is 465.63 wwatts
while the current is 1.94A
the input power is the same thing as the output power.
Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
using relevant grids.