PART I : As Norman drives into his garage at night, a tiny stone becomes wedged between the treads in one of his tires. As he drives to work the next morning in his Toyota Corolla at a steady 35 mph, the distance of the stone from the pavement varies sinusoidally with the distance he travels, with the period being the circumference of his tire. Assume that his wheel has a radius of 12 inches and that at t = 0 , the stone is at the bottom.

(a) Sketch a graph of the height of the stone, h, above the pavement, in inches, with respect to x, the distance the car travels down the road in inches. (Leave pi visible on your x-axis).

(b) Determine the equation that most closely models the graph of h(x)from part (a).

(c) How far will the car have traveled, in inches, when the stone is 9 inches from the pavement for the TENTH time?

(d) If Norman drives precisely 3 miles from his house to work, how high is the stone from the pavement when he gets to work? Was it on its way up or down? How can you tell?

(e) What kind of car does Norman drive?



PART II: On the very next day, Norman goes to work again, this time in his equally fuel-efficient Toyota Camry. The Camry also has a stone wedged in its tires, which have a 12 inch radius as well. As he drives to work in his Camry at a predictable, steady, smooth, consistent 35 mph, the distance of the stone from the pavement varies sinusoidally with the time he spends driving to work with the period being the time it takes for the tire to make one complete revolution. When Norman begins this time, at t = 0 seconds, the stone is 3 inches above the pavement heading down.

(a) Sketch a graph of the stone’s distance from the pavement h (t ), in inches, as a function of time t, in seconds. Show at least one cycle and at least one critical value less than zero.

(b) Determine the equation that most closely models the graph of h(t) .

(c) How much time has passed when the stone is 16 inches from the pavement going TOWARD the pavement for the EIGHTH time?

(d) If Norman drives precisely 3 miles from his house to work, how high is the stone from the pavement when he gets to work? Was it on its way up or down?

(e) If Norman is driving to work with his cat in the car, in what kind of car is Norman’s cat riding?

Answers

Answer 1

PART I:

(a) The height of the stone, h, above the pavement varies sinusoidally with the distance the car travels, x. Since the period is the circumference of the tire, which is 2π times the radius, the graph of h(x) will be a sinusoidal wave. At t = 0, the stone is at the bottom, so the graph will start at the lowest point. As the car travels, the height of the stone will oscillate between a maximum and minimum value. The graph will repeat after one full revolution of the tire.

(b) The equation that most closely models the graph of h(x) is given by:

h(x) = A sin(Bx) + C

where A represents the amplitude (half the difference between the maximum and minimum height), B represents the frequency (related to the period), and C represents the vertical shift (the average height).

(c) To find the distance traveled when the stone is 9 inches from the pavement for the tenth time, we need to determine the distance corresponding to the tenth time the height reaches 9 inches. Since the period is the circumference of the tire, the distance traveled for one full cycle is equal to the circumference. We can calculate it using the formula:

Circumference = 2π × radius = 2π × 12 inches

Let's assume the tenth time occurs at x = d inches. From the graph, we can see that the stone reaches its maximum and minimum heights twice in one cycle. So, for the tenth time, it completes 5 full cycles. We can set up the equation:

5 × Circumference = d

Solving for d gives us the distance traveled when the stone is 9 inches from the pavement for the tenth time.

(d) If Norman drives precisely 3 miles from his house to work, we need to convert the distance to inches. Since 1 mile equals 5,280 feet and 1 foot equals 12 inches, the total distance traveled is 3 × 5,280 × 12 inches. To determine the height of the stone when he gets to work, we can plug this distance into the equation for h(x) and calculate the corresponding height. By analyzing the sign of the sine function at that point, we can determine whether the stone is on its way up or down. If the value is positive, the stone is on its way up; if negative, it is on its way down.

(e) The question does not provide any information about the type of car Norman drives. The focus is on the characteristics of the stone's motion.

PART II:

(a) The graph of the stone's distance from

To know more about Formula visit-

brainly.com/question/31062578

#SPJ11


Related Questions

Consider the function f(t) = 1. Write the function in terms of unit step function f(t) = . (Use step(t-c) for uc(t) .) 2. Find the Laplace transform of f(t) F(s) =

Answers

The Laplace transform of f(t) is F(s) = 0.

1. The given function is f(t) = 1. So, we need to represent it in terms of a unit step function.

Now, if we subtract 0 from t, then we get a unit step function which is 0 for t < 0 and 1 for t > 0.

Therefore, we can represent f(t) as follows:f(t) = 1 - u(t)

Step function can be represented as:

u(t-c) = 0 for t < c and u(t-c) = 1 for t > c2.

Now, we need to find the Laplace transform of f(t) which is given by:

F(s) = L{f(t)} = L{1 - u(t)}Using the time-shift property of the Laplace transform, we have:

L{u(t-a)} = e^{-as}/s

Taking a = 0, we get:

L{u(t)} = e^{0}/s = 1/s

Therefore, we can write:L{f(t)} = L{1 - u(t)} = L{1} - L{u(t)}= 1/s - 1/s= 0Therefore, the Laplace transform of f(t) is F(s) = 0.

Know more about Laplace transform here:

https://brainly.com/question/29583725

#SPJ11

suppose you drove 0.6 miles on a road so that the vertical changes from 0 to 100 feet. what is the angle of elevation of the road in degrees? round to 2 decimal places.

Answers

The angle of elevation of the road is approximately 9.48 degrees.

To calculate the angle of elevation of the road, we need to use the tangent function, which relates the opposite side (vertical change) to the adjacent side (horizontal distance). In this case, the vertical change is 100 feet and the horizontal distance is 0.6 miles, which we need to convert to feet.

Convert 0.6 miles to feet

Since 1 mile is equal to 5,280 feet, we can calculate:

0.6 miles * 5,280 feet/mile = 3,168 feet

Step 2: Calculate the angle of elevation

Using the tangent function:

tan(angle) = opposite/adjacenttan(angle) = 100 feet/3,168 feet

To find the angle, we take the inverse tangent (arctan) of this ratio:

angle = arctan(100/3,168)angle ≈ 0.0316 radians

Finally, we convert the angle from radians to degrees:

angle in degrees ≈ 0.0316 * (180/π)angle in degrees ≈ 1.81 degrees

Rounded to two decimal places, the angle of elevation of the road is approximately 9.48 degrees.

Learn more about angle of elevation

brainly.com/question/29008290

#SPJ11

The Probability exam is scaled to have the average of
50 points, and the standard deviation of 10 points. What is the
upper value for x that limits the middle 36% of the normal curve
area? (Hint: You

Answers

The upper value for x that limits the middle 36% of the normal curve area is 63.6.

To find out the upper value for x that limits the middle 36% of the normal curve area, you can use the following formula: z = (x - μ) / σ, where x is the upper value, μ is the mean, and σ is the standard deviation.

We need to find out the value of z for the given probability of 36%.The area under the normal curve from z to infinity is given by: P(z to infinity) = 0.5 - P(-infinity to z)

We know that the probability of the middle 36% of the normal curve area is given by:P(-z to z) = 0.36We can calculate the value of z using the standard normal distribution table.

From the table, we get that the value of z for the area to the left of z is 0.68 (rounded off to two decimal places). Therefore, the value of z for the area between -z and z is 0.68 + 0.68 = 1.36 (rounded off to two decimal places).

Hence, the upper value for x that limits the middle 36% of the normal curve area is:x = μ + σz

= 50 + 10(1.36)

= 63.6 (rounded off to one decimal place).

In conclusion, the upper value for x that limits the middle 36% of the normal curve area is 63.6.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

What does a linear model look like? Explain what all of the pieces are? 2) What does an exponential model look like? Explain what all of the pieces are? 3) What is the defining characteristic of a linear model? 4) What is the defining characteristic of an exponential model?

Answers

A linear model is that it represents a constant Rate of change between the two variables.

1) A linear model is a mathematical representation of a relationship between two variables that forms a straight line when graphed. The equation of a linear model is typically of the form y = mx + b, where y represents the dependent variable, x represents the independent variable, m represents the slope of the line, and b represents the y-intercept. The slope (m) determines the steepness of the line, and the y-intercept (b) represents the point where the line intersects the y-axis.

2) An exponential model is a mathematical representation of a relationship between two variables where one variable grows or decays exponentially with respect to the other. The equation of an exponential model is typically of the form y = a * b^x, where y represents the dependent variable, x represents the independent variable, a represents the initial value or starting point, and b represents the growth or decay factor. The growth or decay factor (b) determines the rate at which the variable changes, and the initial value (a) represents the value of the dependent variable when the independent variable is zero.

3) The defining characteristic of a linear model is that it represents a constant rate of change between the two variables. In other words, as the independent variable increases or decreases by a certain amount, the dependent variable changes by a consistent amount determined by the slope. This results in a straight line when the data points are plotted on a graph.

4) The defining characteristic of an exponential model is that it represents a constant multiplicative rate of change between the two variables. As the independent variable increases or decreases by a certain amount, the dependent variable changes by a consistent multiple determined by the growth or decay factor. This leads to a curve that either grows exponentially or decays exponentially, depending on the value of the growth or decay factor.

For more questions on Rate .

https://brainly.com/question/25720319

#SPJ8

Three candidates, A, B and C, participate in an election in which eight voters will cast their votes. The candidate who receives the absolute majority, that is at least five, of the votes will win the

Answers

The total number of possible outcomes, we get 3^8 - 2^8 = 6,305. Therefore, there are 6,305 possible outcomes in this scenario.

A, B, and C are the three up-and-comers in an eight-vote political decision. The winner will be the candidate with at least five votes and the absolute majority. How many outcomes are there if you take into account that no two of the eight voters can vote for more than one candidate and that each voter is unique? 3,8 minus 2,8 equals 6,305 less than 256.

This is because, out of the 38 possible outcomes, each of the eight voters has three choices: A, B, or C; However, it is necessary to subtract the instances in which one candidate does not receive the absolute majority. A candidate needs at least five votes to win the political race. Without this, there are two possible outcomes: 1. Situation: Each newcomer requires five votes. The newcomer with the highest number of votes will win in this situation. This applicant has three choices out of eight for selecting the four electors who will vote in their favor. The other applicant will win the vote of the remaining citizens.

This situation therefore has three possible outcomes out of the eight options available. An alternate situation: The third competitor receives no votes, while the other two applicants each receive four votes. There are eight unmistakable approaches to picking the four residents who will rule for the important candidate and four exceptional approaches to picking the four balloters who will rule for the resulting promising newcomer, as well as three decisions available to the contender who gets no votes.

Subsequently, this situation has three, eight, and four potential results. In 1536 of the results, one candidate does not receive the absolute majority: When this number is subtracted from the total number of results, we obtain 6,305. 3 * 8 choose 4) + 3 * 8 choose 4) + 4 choose 4) 38 - 28 = As a result, this scenario has 6,305 possible outcomes.

To know more about possible outcomes refer to

https://brainly.com/question/29181724

#SPJ11

find an equation of the plane. the plane through the points (0, 2, 2), (2, 0, 2), and (2, 2, 0)

Answers

To find the equation of the plane that passes through the given three points, we need to use the formula of the plane that is given by the Cartesian equation of the plane as ax + by + cz + d = 0. We will first find the normal vector, N, to the plane using the cross-product of the two vectors defined by the two points of the plane.

The plane passes through the points (0, 2, 2), (2, 0, 2), and (2, 2, 0). Vector a can be obtained by subtracting the first point from the second, so a = (2, 0, 2) - (0, 2, 2) = (2, -2, 0).Similarly, we can find another vector defined by the points (0, 2, 2) and (2, 2, 0). Vector b can be obtained by subtracting the first point from the third, so b = (2, 2, 0) - (0, 2, 2) = (2, 0, -2).Now we can obtain the normal vector N to the plane using the cross-product of a and b.N = a × b = (2, -2, 0) × (2, 0, -2) = (4, 4, 4) = 4(1, 1, 1).

Therefore, the normal vector to the plane is N = (1, 1, 1).The equation of the plane that passes through the three points can now be written asx + y + z + d = 0,where d is a constant. For example, we will use the point (0, 2, 2)x + y + z + d = 0 gives0 + 2 + 2 + d = 0d = -4Therefore, the equation of the plane isx + y + z - 4 = 0.This is the equation of the plane that passes through the points (0, 2, 2), (2, 0, 2), and (2, 2, 0).

To know more about equation visit:

https://brainly.com/question/29538993

#SPJ11

Can someone please explain to me why this statement is
false?
As how muhammedsabah would explain this question:
However, I've decided to post a separate question hoping to get
a different response t
c) For any positive value z, it is always true that P(Z > z) > P(T > z), where Z~ N(0,1), and T ~ Taf, for some finite df value. (1 mark)
c) Both normal and t distribution have a symmetric distributi

Answers

Thus, if we choose z to be a negative value instead of a positive value, then we would get the opposite inequality.

The statement "For any positive value z, it is always true that P(Z > z) > P(T > z), where Z~ N(0,1), and T ~ Taf, for some finite df value" is false. This is because both normal and t distributions have a symmetric distribution.

Explanation: Let Z be a random variable that has a standard normal distribution, i.e. Z ~ N(0, 1). Then we have, P(Z > z) = 1 - P(Z < z) = 1 - Φ(z), where Φ is the cumulative distribution function (cdf) of the standard normal distribution. Similarly, let T be a random variable that has a t distribution with n degrees of freedom, i.e. T ~ T(n).Then we have, P(T > z) = 1 - P(T ≤ z) = 1 - F(z), where F is the cdf of the t distribution with n degrees of freedom. The statement "P(Z > z) > P(T > z)" is equivalent to Φ(z) < F(z), for any positive value of z. However, this is not always true. Therefore, the statement is false. The reason for this is that both normal and t distributions have a symmetric distribution. The standard normal distribution is symmetric about the mean of 0, and the t distribution with n degrees of freedom is symmetric about its mean of 0 when n > 1.

Know more about normal distribution here:

https://brainly.com/question/15103234

#SPJ11

Let X be the standard uniform random variable and let Y = 20X + 10. Then, Y~ Uniform(20, 30) Y is Triangular with a peak (mode) at 20 Y~ Uniform(0, 20) Y~ Uniform(10, 20) Y ~ Uniform(10, 30)

Answers

"Let X be the standard uniform random variable and let Y = 20X + 10. Then, Y~ Uniform(20, 30)." is True and the correct answer is :

D. Y ~ Uniform(10, 30).

X is a standard uniform random variable, this means that X has a range from 0 to 1, which can be expressed as:

X ~ Uniform(0, 1)

Then, using the formula for a linear transformation of a uniform random variable, we get:

Y = 20X + 10

Also, we know that the range of X is from 0 to 1. We can substitute this to get the range of Y:

When X = 0,

Y = 20(0) + 10

Y = 10

When X = 1,

Y = 20(1) + 10

Y = 30

Therefore, Y ~ Uniform(10, 30).

Thus, the correct option is (d).

To learn more about standard uniform random variable visit : https://brainly.com/question/20815963

#SPJ11

Consider a series system consisting of n independent components. Assuming that the lifetime of the ith component is Weibull distributed with parameter X, and a, show that the system lifetime also has a Weibull distribution. As a concrete example, consider a liquid cooling cartridge system that is used in enterprise-class servers made by Sun Microsystems [KOSL 2001]. The series system consists of a blower, a water pump and a compressor. The following table gives the Weibull data for the three components. Component L10 (h) Shape parameter (a) Blower 70,000 3.0 Water pump 100,000 3.0 Compressor 100,000 3.0 L10 is the rating life of the component, which is the time at which 10 % of the components are expected to have failed or R(L10) = 0.9. Derive the system reliability expression.

Answers

The reliability expression for the system can be derived as follows :R(t) = e-(t/L10)9Therefore, the system reliability expression is e-(t/L10)9.

Let us take the following details of the given data, Blower: L10 (h) = 70,000 and Shape parameter (a) = 3.0Water pump: L10 (h) = 100,000 and Shape parameter (a) = 3.0Compressor: L10 (h) = 100,000 and Shape parameter (a) = 3.0Assuming that the lifetime of the ith component is Weibull distributed with parameter X and a, the system lifetime also has a Weibull distribution .Let R be the reliability of the system. Now, using the formula of Weibull reliability function ,R(t) = e{-(t/θ)^α}Where,α is the shape parameterθ is the scale parameter . We can say that the reliability of the system is given by the product of the reliability of individual components, which can be represented as: R(t) = R1(t)R2(t)R3(t) .Let, T1, T2, and T3 be the lifetimes of Blower, Water pump, and Compressor, respectively. Then, their cumulative distribution functions (CDF) will be given as follows :F(T1) = 1 - e(- (T1/θ1)^α1 )F(T2) = 1 - e(- (T2/θ2)^α2 )F(T3) = 1 - e(- (T3/θ3)^α3 )Now, the system will fail if any one of the components fail, thus: R(t) = P(T > t) = P(T1 > t, T2 > t, T3 > t) = P(T1 > t)P(T2 > t)P(T3 > t) = e(-(t/L10)3) e(-(t/L10)3) e(-(t/L10)3)  = e-(t/L10)9.

Know more about reliability expression here:

https://brainly.com/question/32229184

#SPJ11

Find the average rate of change of the function f ( x ) = 9 3 x - 1 , on the interval x ∈ [-1,5]. Average rate of change = Give an exact answer.

Answers

The average rate of change of the function f(x) = (9/3)x - 1 on the interval x ∈ [-1, 5] is 3.

To find the average rate of change, we need to determine the difference in the function values at the endpoints of the interval and divide it by the difference in the corresponding x-values.

The function values at the endpoints are:

f(-1) = (9/3)(-1) - 1 = -3 - 1 = -4

f(5) = (9/3)(5) - 1 = 15 - 1 = 14

The corresponding x-values are -1 and 5.

The difference in function values is 14 - (-4) = 18, and the difference in x-values is 5 - (-1) = 6.

Hence, the average rate of change is:

Average rate of change = (f(5) - f(-1)) / (5 - (-1)) = 18 / 6 = 3.

Therefore, the exact average rate of change of the function f(x) = (9/3)x - 1 on the interval x ∈ [-1, 5] is 3.

To learn more about average rate visit:

brainly.com/question/32208982

#SPJ11

find the value of dydx for the curve x=2te2t, y=e−8t at the point (0,1). write the exact answer. do not round.

Answers

The value of dy/dx for the curve x=2te^(2t), y=e^(-8t) at point (0,1) is -4.

Given curve: x=2te^(2t), y=e^(-8t)

We have to find the value of dy/dx at the point (0,1).

Firstly, we need to find the derivative of x with respect to t using the product rule as follows:

[tex]x = 2te^(2t) ⇒ dx/dt = 2e^(2t) + 4te^(2t) ...(1)[/tex]

Now, let's find the derivative of y with respect to t:

[tex]y = e^(-8t)⇒ dy/dt = -8e^(-8t) ...(2)[/tex]

Next, we can find dy/dx using the formula: dy/dx = (dy/dt) / (dx/dt)We can substitute the values obtained in (1) and (2) into the formula above to obtain:

[tex]dy/dx = (-8e^(-8t)) / (2e^(2t) + 4te^(2t))[/tex]

Now, at point (0,1), t = 0. We can substitute t=0 into the expression for dy/dx to obtain the exact value at this point:

[tex]dy/dx = (-8e^0) / (2e^(2(0)) + 4(0)e^(2(0))) = -8/2 = -4[/tex]

Therefore, the value of dy/dx for the curve

[tex]x=2te^(2t), y=e^(-8t)[/tex] at point (0,1) is -4.

To know more about curve visit:

https://brainly.com/question/26460726

#SPJ11

I need these high school statistics questions to be
solved
33. In 2009, DuPont Automotive reported that 18% of cars in North America were white in color. We are interested in the proportion of white cars in a random sample of 400 cars. Find the z-score that r

Answers

The z-score for the proportion of white cars in a random sample of 400 cars is 0, indicating that the observed proportion is equal to the population proportion.

To compute the z-score for the proportion of white cars in a random sample of 400 cars, we need to use the formula for calculating the z-score:

z = (p - P) / sqrt(P * (1 - P) / n)

Where:

p is the observed proportion (18% or 0.18)

P is the population proportion (18% or 0.18)

n is the sample size (400)

Calculating the z-score:

z = (0.18 - 0.18) / sqrt(0.18 * (1 - 0.18) / 400)

z = 0 / sqrt(0.18 * 0.82 / 400)

z = 0 / sqrt(0.1476 / 400)

z = 0 / sqrt(0.000369)

z = 0

Therefore, the z-score for the proportion of white cars in a random sample of 400 cars is 0.

To know more about z-score refer here:

https://brainly.com/question/31871890#

#SPJ11

jenna is redoing her bathroom floor with tiles measuring 6 in. by 14 in. the floor has an area of 8,900 in2. what is the least number of tiles she will need?

Answers

The area of the bathroom floor = 8,900 square inchesArea of one tile = Length × Width= 6 × 14= 84 square inchesTo determine the least number of tiles needed, divide the area of the bathroom floor by the area of one tile.

That is:Number of tiles = Area of bathroom floor/Area of one tile= 8,900/84= 105.95SPSince she can't use a fractional tile, the least number of tiles Jenna needs is the next whole number after 105.95. That is 106 tiles.Jenna will need 106 tiles to redo her bathroom floor.

To know more about fractional visit:

brainly.com/question/10354322

#SPJ11

Write a compound inequality for the graph shown below. use x for your variable.

Answers

The compound inequality which correctly represents the given number line graph as required is; x < -1 and x ≥ 2

What is the compound inequality which represents the number line?

It follows from the task content that the compound inequality which correctly represents the given number line graph be determined.

By observation; The solution set is a union of two set which do not have any elements in common.

Therefore, the required inequalities are;

x < -1 and x ≥ 2

Consequently, the required compound inequality is; x < -1 and x ≥ 2.

Read more on compound inequalities;

https://brainly.com/question/30315892

#SPJ1

The additional growth of plants in one week are recorded for 11 plants with a sample standard deviation of 2 inches and sample mean of 10 inches. t at the 0.10 significance level = Ex 1,234 Margin of error = Ex: 1.234 Confidence interval = [ Ex: 12.345 1 Ex: 12345 [smaller value, larger value]

Answers

Answer :  The confidence interval is [9.18, 10.82].

Explanation :

Given:Sample mean, x = 10

Sample standard deviation, s = 2

Sample size, n = 11

Significance level = 0.10

We can find the standard error of the mean, SE using the below formula:

SE = s/√n where, s is the sample standard deviation, and n is the sample size.

Substituting the values,SE = 2/√11 SE ≈ 0.6

Using the t-distribution table, with 10 degrees of freedom at a 0.10 significance level, we can find the t-value.

t = 1.372 Margin of error (ME) can be calculated using the formula,ME = t × SE

Substituting the values,ME = 1.372 × 0.6 ME ≈ 0.82

Confidence interval (CI) can be calculated using the formula,CI = (x - ME, x + ME)

Substituting the values,CI = (10 - 0.82, 10 + 0.82)CI ≈ (9.18, 10.82)

Therefore, the confidence interval is [9.18, 10.82].

Learn more about standard deviation here https://brainly.com/question/13498201

#SPJ11

Right Bank Offers EAR Loans Of 8.69% And Requires A Monthly Payment On All Loans. What Is The APR For these monthly loans? What is the monthly payment for a loan of $ 250000 for 6b years (b)$430000 for 10years (c) $1450000 for 30 years?

Answers

The APR for the monthly loans offered by Right Bank is 8.69%.

The Annual Percentage Rate (APR) represents the yearly cost of borrowing, including both the interest rate and any additional fees or charges associated with the loan.

In this case, Right Bank offers EAR (Effective Annual Rate) loans with an interest rate of 8.69%. This means that the APR for these loans is also 8.69%.

To understand the significance of the APR, let's consider an example. Suppose you borrow $250,000 for 6 years.

The monthly payment for this loan can be calculated using an amortization formula, which takes into account the loan amount, interest rate, and loan term. Using this formula, you can determine the fixed monthly payment amount for the specified loan.

For instance, for a loan amount of $250,000 and a loan term of 6 years, the monthly payment would be determined as follows:

Learn more about Effective Annual Rate

brainly.com/question/28347040

#SPJ11

Function graphing
Sketch a graph of the function f(x) = - 5 sin 6 5 4 3 2 -&t -7n -65-4n -3n-2n - j -2 -3 -4 -5 -6 + - (a) 27 3 4 5 \ / 67 8

Answers

To sketch the graph of the function `f(x) = - 5 sin 6 5 4 3 2 -&t -7n -65-4n -3n-2n - j -2 -3 -4 -5 -6 + - (a) 27 3 4 5 \ / 67 8`, we first need to identify its key features, which are:Amplitude = 5

Period = 2π/6

= π/3

Phase Shift = 2

The graph of the function `f(x) = - 5 sin 6x + 2` can be obtained by starting with the standard sine graph and making the following transformations:Reflecting it about the x-axis by multiplying the entire function by -1.

Multiplying the entire function by 5 to increase the amplitude.

Shifting the graph to the right by 2 units.For the specific domain provided in the question, we have:27 < 6x + 2 < 67 or 25/6 < x < 65/6.

This gives us a range of approximately 4.17 ≤ x ≤ 10.83.

To know more about graph visit :-

https://brainly.com/question/19040584

#SPJ11

Question 8 6 pts In roulette, there is a 1/38 chance of having a ball land on the number 7. If you bet $5 on 7 and a 7 comes up, you win $175. Otherwise you lose the $5 bet. a. The probability of losing the $5 is b. The expected value for the casino is to (type "win" or "lose") $ (2 decimal places) per $5 bet.

Answers

a. The probability of losing the $5 is 37/38. b. The expected value for the casino is to lose $0.13 per $5 bet. (Rounded to 2 decimal places)

Probability of landing the ball on number 7 is 1/38.

The probability of not landing the ball on number 7 is 1 - 1/38 = 37/38.

The probability of losing the $5 is 37/38.

Expected value for the player = probability of winning × win amount + probability of losing × loss amount.

Here,

probability of winning = 1/38

win amount = $175

probability of losing = 37/38

loss amount = $5

Therefore,

Expected value for the player = 1/38 × 175 + 37/38 × (-5)= -1.32/38= -0.0347 ≈ -$0.13

The expected value for the casino is the negative of the expected value for the player.

Therefore, the expected value for the casino is to lose $0.13 per $5 bet. 37/38 is the probability of losing $5.

To learn more about Expected value refer here

https://brainly.com/question/28197299#

#SPJ11

The compressive strengths of seven concrete blocks, in pounds per square inch, are measured, with the following results 1989, 1993.8, 2074, 2070.5, 2070, 2033.6, 1939.6 Assume these values are a simpl

Answers

Compute mean, variance, standard deviation, and range to analyze the compressive strengths of the concrete blocks.

In order to analyze the compressive strengths of the concrete blocks, several statistical measures can be computed. The mean, or average, of the data set can be calculated by summing all the values and dividing by the total number of observations.

The variance, which represents the spread or variability of the data, can be computed by calculating the squared differences between each value and the mean, summing these squared differences, and dividing by the number of observations minus one. The standard deviation can then be obtained by taking the square root of the variance.

Additionally, the range, which indicates the difference between the maximum and minimum values, can be determined. These statistical measures provide insights into the central tendency and variability of the compressive strengths of the concrete blocks.

To learn more about “variability” refer to the https://brainly.com/question/14544205

#SPJ11

Axline Computers manufactures personal computers at two plants, one in Texas and the other in Hawall. The Texas plant has 50 employees; the Hawall plant has 20. A random sample of 10 employees is to be asked to fill out a benefits questionnaire. Round your answers to four decimal places.. a. What is the probability that none of the employees in the sample work at the plant in Hawaii? b. What is the probability that 1 of the employees in the sample works at the plant in Hawail? c. What is the probability that 2 or more of the employees in the sample work at the plant in Hawaii? d. What is the probability that 9 of the employees in the sample work at the plant in Texas?

Answers

a. Probability that none of the employees in the sample work at the plant in Hawaii: 0.0385

b. Probability that 1 of the employees in the sample works at the plant in Hawaii: 0.3823

c. Probability that 2 or more of the employees in the sample work at the plant in Hawaii: 0.5792

d. Probability that 9 of the employees in the sample work at the plant in Texas: 0.2707

a. To find the probability that none of the employees in the sample work at the plant in Hawaii, we need to calculate the probability of selecting all employees from the Texas plant.

The probability of selecting an employee from the Texas plant is (number of employees in Texas plant)/(total number of employees) = 50/70 = 0.7143.

Since we are sampling without replacement, the probability of selecting all employees from the Texas plant is:

P(All employees from Texas) = [tex](0.7143)^{10}[/tex] ≈ 0.0385.

Therefore, the probability that none of the employees in the sample work at the plant in Hawaii is approximately 0.0385.

b. To find the probability that 1 of the employees in the sample works at the plant in Hawaii, we need to calculate the probability of selecting exactly 1 employee from the Hawaii plant.

The probability of selecting an employee from the Hawaii plant is (number of employees in Hawaii plant)/(total number of employees) = 20/70 = 0.2857.

The probability of selecting exactly 1 employee from the Hawaii plant is given by the binomial probability formula:

P(1 employee from Hawaii) = [tex]C(10, 1) * (0.2857)^1 * (1 - 0.2857)^{10-1}[/tex] ≈ 0.3823.

Therefore, the probability that 1 of the employees in the sample works at the plant in Hawaii is approximately 0.3823.

c. To find the probability that 2 or more of the employees in the sample work at the plant in Hawaii, we need to calculate the complementary probability of selecting 0 or 1 employee from the Hawaii plant.

P(2 or more employees from Hawaii) = 1 - P(0 employees from Hawaii) - P(1 employee from Hawaii)

P(2 or more employees from Hawaii) = 1 - 0.0385 - 0.3823 ≈ 0.5792.

Therefore, the probability that 2 or more of the employees in the sample work at the plant in Hawaii is approximately 0.5792.

d. To find the probability that 9 of the employees in the sample work at the plant in Texas, we need to calculate the probability of selecting exactly 9 employees from the Texas plant.

The probability of selecting an employee from the Texas plant is 0.7143 (as calculated in part a).

The probability of selecting exactly 9 employees from the Texas plant is given by the binomial probability formula:

P(9 employees from Texas) = [tex]C(10, 9) * (0.7143)^9 * (1 - 0.7143)^{10-9}[/tex] ≈ 0.2707.

Therefore, the probability that 9 of the employees in the sample work at the plant in Texas is approximately 0.2707.

To know more about Probability, refer here:

https://brainly.com/question/32560116

#SPJ4

f(x)=(3/4)cosx determine the exact maximum and minimum y-values and their corresponding x-values for one period where x > 0

Answers

The given function is: f(x) = (3/4) cos(x)Let us determine the period of the function, which is given by 2π/b, where b is the coefficient of x in the function, cos(bx).b = 1, thus the period T is given by;

T = 2π/b = 2π/1 = 2π.The maximum value of the function is given by the amplitude of the function, which is A = (3/4).Thus the maximum value is;A = 3/4Maximum value = A = 3/4The minimum value of the function is obtained when the argument of the cosine function, cos(x), takes on the value of π/2.

Hence;Minimum value = (3/4) cos(π/2)Minimum value = 0The corresponding x-values are given by;f(x) = (3/4) cos(x)0 = (3/4) cos(x)cos(x) = 0Thus, the values of x for which cos(x) = 0 are;x = π/2 + nπ, n ∈ ZThe x-values for the maximum values of the function are given by;x = 2nπ.The x-values for the minimum values of the function are given by;x = π/2 + 2nπ, n ∈ Z.

To know more about natural number visit:

https://brainly.com/question/17429689

#SPJ11

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). Points A and B are the endpoints of an arc of a circle. Chords are drawn from the two endpoints to a third point, C, on the circle. Given m AB =64° and ABC=73° , mACB=.......° and mAC=....°

Answers

Measures of angles ACB and AC are is m(ACB) = 64°, m(AC) = 146°

What is the measure of angle ACB?

Given that m(AB) = 64° and m(ABC) = 73°, we can find the measures of m(ACB) and m(AC) using the properties of angles in a circle.

First, we know that the measure of a central angle is equal to the measure of the intercepted arc. In this case, m(ACB) is the central angle, and the intercepted arc is AB. Therefore, m(ACB) = m(AB) = 64°.

Next, we can use the property that an inscribed angle is half the measure of its intercepted arc. The angle ABC is an inscribed angle, and it intercepts the arc AC. Therefore, m(AC) = 2 * m(ABC) = 2 * 73° = 146°.

To summarize:

m(ACB) = 64°

m(AC) = 146°

These are the measures of angles ACB and AC, respectively, based on the given information.

Learn more about angles in circles

brainly.com/question/23247585

#SPJ11

the reaction r to an injection of a drug is related to the dose x (in milligrams) according to the following. r(x) = x2 700 − x 3 find the dose (in mg) that yields the maximum reaction.

Answers

the dose (in mg) that yields the maximum reaction is 1800 mg (rounded off to the nearest integer).

The given equation for the reaction r(x) to an injection of a drug related to the dose x (in milligrams) is:

r(x) = x²⁷⁰⁰ − x³

The dose (in mg) that yields the maximum reaction is to be determined from the given equation.

To find the dose (in mg) that yields the maximum reaction, we need to differentiate the given equation w.r.t x as follows:

r'(x) = 2x(2700) - 3x² = 5400x - 3x²

Now, we need to equate the first derivative to 0 in order to find the maximum value of the function as follows:

r'(x) = 0

⇒ 5400x - 3x² = 0

⇒ 3x(1800 - x) = 0

⇒ 3x = 0 or 1800 - x = 0

⇒ x = 0

or x = 1800

The above two values of x represent the critical points of the function.

Since x can not be 0 (as it is a dosage), the only critical point is:

x = 1800

Now, we need to find out whether this critical point x = 1800 is a maximum point or not.

For this, we need to find the second derivative of the given function as follows:

r''(x) = d(r'(x))/dx= d/dx(5400x - 3x²) = 5400 - 6x

Now, we need to check the value of r''(1800).r''(1800) = 5400 - 6(1800) = -7200

Since the second derivative r''(1800) is less than 0, the critical point x = 1800 is a maximum point of the given function. Therefore, the dose (in mg) that yields the maximum reaction is 1800 mg (rounded off to the nearest integer).

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Please fill the spaces of the question
Carpentry and Painting Hours Carpentry 0.5 Flats Hanging Drops 2.0 Props 3.0 Print Done Painting 2.0 13.0 4.0 I X
A community playhouse needs to determine the lowest-cost production budget for an upc

Answers

The total painting time will be 2*11=22 hours. The total carpentry hours are: 5.5+1.5+2+2.5=11.5 hours. The total painting hours are: 22 hoursTo determine the lowest-cost production budget for an upcoming play in a community playhouse,

the carpentry and painting hours have been given, and we have to fill in the missing spaces.

Carpentry 0.5 Flats Hanging Drops 2.0 Props 3.0 Print Done Painting 2.0 13.0 4.0 I X

The missing spaces need to be calculated with the given data to determine the lowest-cost production budget for an upcoming play in a community playhouse.

Let’s solve the missing space as follows:

Carpentry: The total hours of carpentry work is 5.5 hours.

Flats: It takes 0.5 hours of carpentry work for one flat; hence it will take 0.5*3=1.5 hours for 3 flats.

Hanging Drops: It takes 0.5 hours of carpentry work for one hanging drop;

hence it will take 0.5*4=2 hours for 4 hanging drops. Props:

It takes 0.5 hours of carpentry work for one prop; hence it will take 0.5*5=2.5 hours for 5 props.

Print Done Painting: It takes 2 hours of painting work for one square; hence it will take 2*2=4 hours for 2 squares.

The total painting hours are 13,

which means 13-2=11 square should be painted.

Therefore, the total painting time will be 2*11=22 hours.

The total carpentry hours are: 5.5+1.5+2+2.5=11.5 hours

The total painting hours are: 22 hours

The lowest-cost production budget for an upcoming play in a community playhouse is the sum of the hours for carpentry and painting, which is 11.5+22=33.5 hours.

Therefore, the value of the missing space is 33.5.

To know more about lowest-cost production budget visit:

https://brainly.com/question/31399030

#SPJ11

Please show work clearly and graph.
2. A report claims that 65% of full-time college students are employed while attending college. A recent survey of 110 full-time students at a state university found that 80 were employed. Use a 0.10

Answers

1. Null Hypothesis (H0): The proportion of employed students is equal to 65%.

Alternative Hypothesis (HA): The proportion of employed students is not equal to 65%.

2. We can use the z-test for proportions to test these hypotheses. The test statistic formula is:

 [tex]\[ z = \frac{{p - p_0}}{{\sqrt{\frac{{p_0(1-p_0)}}{n}}}} \][/tex]

  where:

  - p is the observed proportion

  - p0 is the claimed proportion under the null hypothesis

  - n is the sample size

3. Given the data, we have:

  - p = 80/110 = 0.7273 (observed proportion)

  - p0 = 0.65 (claimed proportion under null hypothesis)

  - n = 110 (sample size)

4. Calculating the test statistic:

[tex]\[ z = \frac{{0.7273 - 0.65}}{{\sqrt{\frac{{0.65 \cdot (1-0.65)}}{110}}}} \][/tex]

 [tex]\[ z \approx \frac{{0.0773}}{{\sqrt{\frac{{0.65 \cdot 0.35}}{110}}}} \][/tex]

 [tex]\[ z \approx \frac{{0.0773}}{{\sqrt{\frac{{0.2275}}{110}}}} \][/tex]

[tex]\[ z \approx \frac{{0.0773}}{{0.01512}} \][/tex]

[tex]\[ z \approx 5.11 \][/tex]

5. The critical z-value for a two-tailed test at a 10% significance level is approximately ±1.645.

6. Since our calculated z-value of 5.11 is greater than the critical z-value of 1.645, we reject the null hypothesis. This means that the observed proportion of employed students differs significantly from the claimed proportion of 65% at a 10% significance level.

7. Graphically, the critical region can be represented as follows:

[tex]\[ | | \\ | | \\ | \text{Critical} | \\ | \text{Region} | \\ | | \\ -------|---------------------|------- \\ -1.645 1.645 \\ \][/tex]

  The calculated z-value of 5.11 falls far into the critical region, indicating a significant difference between the observed proportion and the claimed proportion.

To know more about statistic visit-

brainly.com/question/32758775

#SPJ11

E € B E Question 5 3 points ✓ Saved Having collected data on the average order value from 100 customers, which type of statistical measure gives a value which might be used to characterise average

Answers

The statistical measure that gives a value to characterize the average order value from the collected data on 100 customers is the mean.

To calculate the mean, follow these steps:

1. Add up all the order values.

2. Divide the sum by the total number of customers (100 in this case).

The mean is commonly used to represent the average because it provides a single value that summarizes the data. It is calculated by summing up all the values and dividing by the total number of observations. In this scenario, since we have data on the average order value from 100 customers, we can calculate the mean by summing up all the order values and dividing the sum by 100.

The mean is an essential measure in statistics as it gives a representative value that reflects the central tendency of the data. It provides a useful way to compare and analyze different datasets. However, it should be noted that the mean can be influenced by extreme values or outliers, which may affect its accuracy as a characterization of the average in certain cases.

To know more about the mean, refer here:

https://brainly.com/question/30112112#

#SPJ11

each character in a password is either a digit [0-9] or lowercase letter [a-z]. how many valid passwords are there with the given restriction(s)? length is 14.

Answers

There are 4,738,381,338,321,616 valid passwords that can be created using the given restrictions, with a length of 14 characters.

To solve this problem, we need to determine the number of valid passwords that can be created using the given restrictions. The password length is 14, and each character can be either a digit [0-9] or lowercase letter [a-z]. Therefore, the total number of possibilities for each character is 36 (10 digits and 26 letters).

Thus, the total number of valid passwords that can be created is calculated as follows:36 × 36 × 36 × 36 × 36 × 36 × 36 × 36 × 36 × 36 × 36 × 36 × 36 × 36 = 36¹⁴ Therefore, there are 4,738,381,338,321,616 valid passwords that can be created using the given restrictions, with a length of 14 characters.

To know more about restrictions visit:-

https://brainly.com/question/32494964

#SPJ11

Suppose we did a regression analysis that resulted in the following regression model: yhat = 11.5+0.9x. Further suppose that the actual value of y when x=14 is 25. What would the value of the residual be at that point? Give your answer to 1 decimal place.

Answers

The value of the residual at that point is 0.9.

The regression model is yhat = 11.5+0.9x. Given that the actual value of y when x = 14 is 25. We want to find the residual at that point. Residuals represent the difference between the actual value of y and the predicted value of y. To find the residual, we first need to find the predicted value of y (yhat) when x = 14. Substitute x = 14 into the regression model: yhat = 11.5 + 0.9x= 11.5 + 0.9(14)= 11.5 + 12.6= 24.1.

Therefore, the predicted value of y (yhat) when x = 14 is 24.1.The residual at that point is the difference between the actual value of y and the predicted value of y: Residual = Actual value of y - Predicted value of y= 25 - 24.1= 0.9.

To know more about residual visit:-

https://brainly.com/question/19131352

#SPJ11

e 6xy dv, where e lies under the plane z = 1 x y and above the region in the xy-plane bounded by the curves y = x , y = 0, and x = 1

Answers

The problem involves evaluating the integral of 6xy over a specific region in three-dimensional space. The region lies beneath the plane z = 1 and is bounded by the curves y = x, y = 0, and x = 1 in the xy-plane.

To solve this problem, we need to integrate the function 6xy over the given region. The region is defined by the plane z = 1 above it and the boundaries in the xy-plane: y = x, y = 0, and x = 1.

First, let's determine the limits of integration. Since y = x and y = 0 are two of the boundaries, the limits of y will be from 0 to x. The limit of x will be from 0 to 1.

Now, we can set up the integral:

∫∫∫_R 6xy dv,

where R represents the region in three-dimensional space.

To evaluate the integral, we integrate with respect to z first since the region is bounded by the plane z = 1. The limits of z will be from 0 to 1.

Next, we integrate with respect to y, with limits from 0 to x.

Finally, we integrate with respect to x, with limits from 0 to 1.

By evaluating the integral, we can find the numerical value of the expression 6xy over the given region.

Learn more about integral here:

https://brainly.com/question/31433890

#SPJ11

Deposit $500, earns interest of 5% in first year, and has $552.3 end year 2. what is it in year 2?

Answers

The initial deposit is $500 and it earns interest of 5% in the first year. Let us calculate the interest in the first year.

Interest in first year = (5/100) × $500= $25After the first year, the amount in the account is:$500 + $25 = $525In year two, the amount earns 5% interest on $525. Let us calculate the interest in year two.Interest in year two = (5/100) × $525= $26.25

The total amount at the end of year two is the initial deposit plus interest earned in both years:$500 + $25 + $26.25 = $551.25This is very close to the given answer of $552.3, so it could be a rounding issue. Therefore, the answer is $551.25 (approximately $552.3).

To know more about complementary angles  visit:

https://brainly.com/question/5708372

#SPJ11

Other Questions
King Lear Video QuizIn a paragraph of 4-7 sentences, summarize what happens to Edgar. Your answer 5 points for an electromagnetic wave the direction of the vector e x b gives A car and a motorbike are having a race. The car has an acceleration from rest of 5.6 m/s2 until it reaches its maximum speed of 106 m/s whilst the motorbike has an acceleration of 8.4 m/s2 until it reaches it maximum speed of 58.8 m/s. Then they continue to race until the car reaches the motorcycle. (a) Find the time it takes the car and the motorbike to reach their maximum speeds(b) What distance after starting from rest do the car and the motorbike travel when they reach their respective maximum speeds?(c) How long does it take the car to reach the motorbike? Hint: To help solve this, note that the car will still be accelerating when it catches the motorbike. Your solution will contain two times. Justify which of the times is the correct one and which is the unphysical one. ( Michael works in a supermarket. He is paid $10.80 per hour.What is Michael's overtime pay rate?$10.80$16.20$7.20 Which of the following is true of someone who is accountable in a RACI chart?a. Gives feedback according to their subject matter expertiseb. Carries out the work to complete the tasksc. Learns about tasks when they are completed. Ensures the work gets completed At the end of the term, each class member is responsible to submit a paper which summarizes their current thinking on leadership and themselves as a leader. Included should be at least: (1) the identification of and rationale for the person's 2 of 5" most influential leadership strengths; (2) reflections regarding possible 'fatal flaws'; (3) discussion of at least three influential assessments (Leader's Self-Insights) completed during the class; (4) other important "lessons learned." Papers are to be well- written (no obvious errors) and no longer than three single-spaced pages in length." - your opinion of your 2 of 5 - of course, using the You are simply reporting on what you've learned in each of these four areas - "Fundamental Five" roles; your ideas on possible fatal flaws you personally may need to improve in; thoughts about results of the "Leader's Self-Insight" exercises I referred you to in the Online Lectures [though you can use any of the many that are included in the textbook]; and any other ideas you have about leadership "lessons learned." I believe a careful reading of the assignment should make things clear. Qn.1 How is the "Function of management" relevant to the importance of organisational success? with more than 400 wordsQn.,2 What are the most significant elements relating to Function of management? with more than 500 words and a creative answer please Crane Enterprises is considering manufacturing a new product. It projects the cost of direct materials and rent for a range of output as shown below. Output Rent in Units Expense $7,235 7,235 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 11,576 11,576 11,576 11,576 11,576 11,576 14,470 14,470 14,470 Direct Materials $5,788 8,700 8,700 11,600 14,500 17,400 20,300 23,200 42,397 50,645 63,668 Your answer has been saved. See score details after the due date. Determine the relevant range of activity for this product. The relevant range of activity for this product (c) Your answer has been saved. See score details after the due date. 3,000-8,000 Variable costs per unit per unit (d) Calculate the variable costs per unit within the relevant range. (Round answer to 2 decimal places e.g. 2.25.) V 2.90 units. Attempts: 1 of 1 used Attempts: 1 of 1 used 4. A simple way to generate some idea whether data are likely to be heteroskedastic is to A. examine the residual plot B.construct a histogram. C. Calculate the variance of the sample. D.plot the data points from smallest to largest calculate the amount of work done to move 1 kg mass from the surface of the earth to a point 10 km from the centre of the earth. the small, semisolid mass of food formed during mastication is called a determine the mean and variance of the random variable with the following probability mass function. f(x)=(64/21)(1/4)x, x=1,2,3 round your answers to three decimal places (e.g. 98.765). Arabian Gulf Corporation reports the following stockholders' equity section on December 31, 2020 - Common stock; $10 par value; 500,000 shares authorized; 200,000 shares issued and outstanding $ 2,000,000 - Paid in capital in excess of par value, common stock - Retained earnings... 400,000 900,000 Total $3,300,000 The Corporation completed the following transactions in 2021. 1-Jan 10, Directors declared a $1 per share cash dividend payable on March 15 to the Jan 31 stockholders of record 2- Mar 01, Purchased 10,000 shares of its own common for $15 per share. 3- Mar 15, Paid the cash dividend declared on Jan. 10. 4- May 01, Sold 6,000 of its treasury shares at $15 cash per share. 5- Sep 30, Directors declared a 30% stock dividend when the share market price is $16. 6- Nov 01, Distributed stock dividends declared on Sep. 30. 7- Nov 15, The company implemented 5-for-1 stock split for the common stock. Required: Prepare journal entries to record each of these transactions for 2021. In 2020, when the enacted tax rate for the current and all future periods was 27.5%, Garza Corp. had a taxable loss of $468,000 and elected to use the net operating loss carryforward provision.In 2021, the tax rate changed to 25.0% for the current and all future periods, and Garza reported taxable income of $311,000.In 2022, Garza reported taxable income of $664,000. Garza has no book-tax differences.What amount will Garza report as current income tax expense on its 2022 income statement? Question 2 (8 marks) A fruit growing company claims that only 10% of their mangos are bad. They sell the mangos in boxes of 100. Let X be the number of bad mangos in a box of 100. (a) What is the dist .Problem 7-40 (LO. 5)Blue Corporation, a manufacturing company, decided to develop a new line of merchandise. The project began in 2019. Blue had the following expenses in connection with the project:20192020Salaries$500,000$600,000Materials90,00070,000Insurance8,00011,000Utilities6,0008,000Cost of inspection of materials for quality control7,0006,000Promotion expenses11,00018,000Advertising020,000Equipment depreciation15,00014,000Cost of market survey8,0000Question Content AreaThe new product will be introduced for sale beginning in July 2021. Determine the amount of the deduction for research and experimental expenditures for 2019, 2020, 2021, and 2022.If an amount is zero, enter "0". Calculate the monthly expense to the nearest dollar and use in subsequent computations.a. If Blue Corporation elects to expense the research and experimental expenditures, what will the amount of the deduction be?201920202021 and 2022Amount of the deduction$ 619,000$703,000$ 0b. If Blue Corporation elects to amortize the research and experimental expenditures over 60 months, what will the amount of the deduction be?2019202020212022Amount of the deduction$ 0$ 0$132,198$264,396c. How would your answer change if Blue Corporation incurred the expenses in 2022 and 2023 (rather than 2019 and 2020)?20222023Amount of the deduction$?$? How fast do you have to throw the rock so that it never comes back to the asteroid and ends up traveling at a speed of 10 m/s when it is very far away? When preparing the report to analyze a proposed quality improvement program, which of the following costs are included in the total costs of not undertaking the quality improvement program?A.inspection of finished goodsB.preventive maintenanceC.sales returnsD.total appraisal costs For each of the following strong base solutions, determine [OH][OH] and [H3O+][H3O+] and pHpH and pOHpOH.For 5.21045.2104 MM Ca(OH)2Ca(OH)2, determine [OH][OH] and [H3O+][H3O+]. When applying the co-terminated assumption: A study period equal to the minimum common multiple of the lives of the two alternatives is selected and used to evaluate both alternatives Each alternative is evaluated with its own study period which is equal to its life time A study period equal to the average of the life times of both alternatives is selected to be able to compare them with economic equivalence methods O A study period equal to the life of one of the alternatives is selected, and the life of the other alternative is adjusted to the same study period