Answer:
Total earning last month with x articles is:
x*100 + 500This is same amount as 2000
The equation is:
100x + 500 = 2000Find the simple interest on the following. 1 ) Rs 1,760 for 3 years 6 months at the rate of 12% p.a.
Plss help me
Answer:
739.2
Step-by-step explanation:
Using the following distribution, calculate the following measures of central tendency:
State Proportion of Residents Without Health Insurance Louisiana 0.19 New Jersey 0.13 New York 0.16 Pennsylvania 0.11 Rhode Island 0.09 South Carolina 0.13 Texas 0.25 Washington 0.14 Wisconsin 0.10
N = 9
Identify the variable:
Identify the median:
Identify the mean:
How would you describe the shape of the distribution:
Answer:
(a) Residents
(b) [tex]Median = 0.13[/tex]
(c) [tex]\bar x = 0.14[/tex]
(d) Right skewed
Step-by-step explanation:
Given
The data of residents without health insurance
Solving (a): The variable
The variable is the residents
Solving (b): The median
First, we sort the data
[tex]Sorted: 0.09, 0.10, 0.11, 0.13, 0.13, 0.14, 0.16, 0.19, 0.25[/tex]
So, the median position is:
[tex]Median = \frac{n + 1}{2}[/tex]
[tex]Median = \frac{9 + 1}{2}[/tex]
[tex]Median = \frac{10}{2}[/tex]
[tex]Median = 5th[/tex]
The 5th element of the dataset is: 0.13
So:
[tex]Median = 0.13[/tex]
Solving (c): The mean
This is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
[tex]\bar x = \frac{0.09+ 0.10+ 0.11+ 0.13+ 0.13+ 0.14+ 0.16+ 0.19+ 0.25}{9}[/tex]
[tex]\bar x = \frac{1.3}{9}[/tex]
[tex]\bar x = 0.14[/tex]
Solving (d): The shape of the distribution
In (b) and (c), we have:
[tex]Median = 0.13[/tex]
[tex]\bar x = 0.14[/tex]
By comparison, the mean is greater than the median.
Hence, the shape is: right skewed.
Please help ASAP!!! Thank you!!!
F(x) = x2. What is g(x)?
need help asap!!!
Answer:
Dear the answer is 100% D
Good luck
3 Lizzie buys 3 clocks for a total cost of £50 at a car boot sale.
She sells 2 of the clocks for £22 each and the other clock for £20
Lizzie thinks she has made a profit of over 30% of the cost of the clocks.
Answer:
28% She didn't make a profit over 30%
Step-by-step explanation:
She buys the clocks for 50 pounds
She sells them for 22 + 22 + 20 = 64 pounds.
The profit is 14 pounds
What's the % profit.
Profit % = 14/50*100 = 28%
She's not quite right.
The greatest common factor of 45a^2b^3 and 18a^4b
Answer:
9a²b
Step-by-step explanation:
Hi there!
We need to find the greatest common factor out of 45a²b³ and 18[tex]a^{4}[/tex]b
We can split apart the monomials to make it easier
45a²b³ is 45*a²b³
18[tex]a^{4}[/tex]b is 18*[tex]a^{4}[/tex]b
First, let's find the GCF out of 45 and 18 (the number coefficients)
we can find all of the multiples of the 2 numbers:
45 is made up of 9 and 5
9 is made up of 3 and 3
so 3*3*5 is 45
18 is made up of 2 and 9
9 is made up of 3 and 3
so 2*3*3 is 18
3*3 is in both 45 and 18, so 9 is the GCF out of 45 and 18
Now let's find the GCF out of a²b³ and [tex]a^{4}[/tex]b
a²b³ made up of a² and b³
so a²b³ is a*a*b*b*b
[tex]a^{4}[/tex]b is made up of [tex]a^{4}[/tex] and b
so [tex]a^{4}[/tex]b is a*a*a*a*b
a*a*b is in both a²b³ and [tex]a^{4}[/tex]b, so the GCF out of a²b³ and [tex]a^{4}[/tex]b is a²b
Now multiply 9 and a²b together, as they are only the GCF of the parts of the monomials
9*a²b=9a²b
there's the greatest common factor of the 2 monomials
Hope this helps!
Convert 0.0177 to a percent and a fraction.
Write the expression in complete factored form.
5n(x - 2) + 8(x - 2) =
x − 2 out of 5n ( x −2 ) + 8 ( x − 2) . ( x − 2 ) ( 5 n + 8 )
I hope this is correct and helps!
[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\textsf{5n(x - 2) + 8(x - 2) =}[/tex]
[tex]\large\text{DISTRIBUTE 5 and 8 WITHIN the PARENTHESES}[/tex]
[tex]\large\textsf{= 5n(x) + 5(-2) + 8(x) + 8(-2)}[/tex]
[tex]\large\textsf{= 5nx - 10n + 8x - 16}[/tex]
[tex]\boxed{\boxed{\huge\textsf{Answer: \bf (x - 2)(5n + 8)}}}\huge\checkmark[/tex]
[tex]\large\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
What is the growth factor that corresponds to a product that increases its value first by 2%, and then increases by 5% of
its value, and finally increases by 12% of its value? Round to the tenths place.
a. 1.20
C. 1.19
b. 3.19
d. 1
Answer:
1.19
Step-by-step explanation:
1+0.02+0.05+0.12 = 1.19
write the expression x^2+8x-5 and x^2-4x-2 in the form (x+a)^2 +b
HELP ASAP PLS Select the correct answer.
A light bulb's brightness is reduced when placed behind a screen. The amount of visible light produced by the light bulb decreases by 25% with
each additional layer that is added to the screen. With no screen, the light bulb produces 750 lumens. The lumen is a unit for measuring the total
quantity of visible light emitted by a source,
Select the correct equation that can be used to represent the lumens, L, after x screen layers are added.
Answer:
D. 750(0.75)ˣ
Step-by-step explanation:
Let the new brightness be L'. Since our initial brightness L₀ reduces by 25 %, we have that L' = L₀ - 25% of L₀
L' = L₀ - 0.25L₀
L' = 0.75L₀
Adding the second screen, the new intensity is L" = L' - 25 % of L'
L" = L' - 0.25 L'
L" = 0.75L'.
Since L' = 0.75L₀,
L" = 0.75L' = 0.75(0.75L₀) = 0.75²L₀
Adding the third screen, the new intensity is L"' = L'' - 25 % of L''
L'" = L" - 0.25 L"
L"' = 0.75L".
Since L" = 0.75L' = 0.75²L₀
L"' = 0.75L" = 0.75(0.75²L₀) = 0.75³L₀
So, we see a pattern here.
The intensity after x screens is L = (0.75)ˣL₀
Since L₀ = 750 lumens,
L = 750(0.75)ˣ
Which statement must be true if APQR = ASTU?
Answer:
(a) [tex]PQ \sim ST[/tex]
Step-by-step explanation:
Given
See attachment
Required
Which must be true
[tex]\triangle PQR \simeq \triangle STU[/tex] implies that:
The following sides are corresponding
[tex]PQ \sim ST[/tex]
[tex]PR \sim SU[/tex]
[tex]QR \sim TU[/tex]
The following angles are corresponding
[tex]\angle P \sim \angle S[/tex]
[tex]\angle Q \sim \angle T[/tex]
[tex]\angle R \sim \angle U[/tex]
From the given options, only option (a) is true because:
[tex]PQ \sim ST[/tex]
Water lilies are often used to decorate ponds, as shown in the photo. But they are also famous for their unusual growth pattern!
Answer:
what is the question
pls mark me as brainlist
Thank you for the points
In May 2010, the Pew Research Center for the People & the Press carried out a national survey to gauge opinion on the Arizona Immigration Law. Responses (Favor, Oppose, Don’t Know) were examined according to groups defined by political party affiliation (Democrat, Republican, Independent). Which of the following would be appropriate for displaying these data?
a. Pie charts
b. Segmented bar chart.
c. Side by side bar chart.
d. Contigency table
Explanation:
It's most effective to use a contingency table because we have two variables here: 1) the responses, and 2) the party affiliation.
We can have the responses along the rows and the party affiliation along the columns, or vice versa.
See the example below. The values are completely random simply for the purpose of the example (and not drawn from any real life data source).
As per the given options, the appropriate for the displaying these data will be contingency table. Hence, option D is correct.
What is a Pie chart?A pie chart is a visual depiction of information in the shape of a pie, where the pieces of the pie represent the magnitude of the data. To depict data as a pie chart, you need a list of quantitative variables as well as categorical variables.
As per the given information in the question,
A contingency table in statistics is a particular kind of matrix-style table that shows the frequency of the variables. They are extensively utilized in scientific, engineering, business intelligence, and survey research.
To know more about Pie charts:
https://brainly.com/question/24207368
#SPJ5
Mr. Pinter's class has twice as many students as Mrs. Rupert's class. Mrs. Althouse's class has 20 less than three times Mrs. Rupert's class. Together they have 106 students. How many are in each class?
Answer:
Mr. Pinter's class has 42 students, Mrs. Rupert's class has 21 students, and Mrs. Althouse's class has 43 students.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
Mr. Pinter's class has x students.
Mrs. Rupert's class has y students.
Mrs. Althouse's class has z students.
Mr. Pinter's class has twice as many students as Mrs. Rupert's class.
This means that:
[tex]x = 2y[/tex]
Mrs. Althouse's class has 20 less than three times Mrs. Rupert's class.
This means that:
[tex]z = 3y - 20[/tex]
Together they have 106 students.
This means that:
[tex]x + y + z = 106[/tex]
We have x and z has a function of y, so:
[tex]2y + y + 3y - 20 = 106[/tex]
[tex]6y = 126[/tex]
[tex]y = \frac{126}{6}[/tex]
[tex]y = 21[/tex]
And:
[tex]x = 2y = 2(21) = 42[/tex]
[tex]z = 3y - 20 = 3(21) - 20 = 63 - 20 = 43[/tex]
Mr. Pinter's class has 42 students, Mrs. Rupert's class has 21 students, and Mrs. Althouse's class has 43 students.
11
5
у
х
Find the value of x.
A) 4rad5
B) 8rad5
C) 6
D) 16
Answer:
Option A, 4rad5
Step-by-step explanation:
x² = 5*(5+11)
x² = 5*16
x² = 80
x = 4√5
Answered by GAUTHMATH
A small radio transmitter broadcasts in a 69 mile radius. If you drive along a straight line from a city 93 miles north of the transmitter to a second city 78 miles east of the transmitter, during how much of the drive will you pick up a signal from the transmitter?
Answer:
See Explanation
Step-by-step explanation:
According to the Question,
We have A small radio transmitter that broadcasts in a 69-mile radius. If you drive along a straight line from a city 93 miles north of the transmitter to a second city 78 miles east of the transmitter.Thus,
The distance that you get reception is the length of the chord created by the intersection of the circle defining the edge of transmission and the line defining the car trip.
x2 + y2 = 69² this is the circleAnd,
The Transmitter at the origin
City to the north at (0,93) & City to the east at (78,0)
the Slope is M=(-93/78)
Intercept is B= y - mx ⇒ 93 - (-93/78)(0) = 93
The equation of the line between the cities is y = (-93/78)x + 93
y = -93x/78 + 93 this is the lineNow, Solve the above two Equations
The intersection is gotten from the picture or solving:
x^2 + [(-93/78)*x + 93]^2 = 69^2
on solving we get, the points approximately are: (67.952,11.98 ) and (23.6277, 64.82)Now,
From the Pythagorean theorem the total distance of the trip is:
d1 = √(93^2 + 78^2) ≈ 121.37miles
And the distance when the signal is picked up is:
d2 =√ [(67.952-23.627)^2 + (64.82 - 11.98)^2] ≈ 68.96 miles
You will pick up a signal from the transmitter in (d2/d1)*100 = 56% of the drive.
There are two numbers. The sum of 4 times the first number and 3 times the second number is 34 the difference between 2 times the first number and 3 times the second number is 12 . Find the two numbers
Answer:
10/9
23/3
Step-by-step explanation:
4x + 3y = 34
2x - 3y = 12
2x = 12 + 3y
2×(12 + 3y) + 3y = 34
24 + 6y + 3y = 34
24 + 9y = 34
9y = 10
y = 10/9
3×10/9 + 4x = 34
10/3 + 4x = 34
4x = (102 - 10)/3 = 92/3
x = (92/3)/4 = (92/3)/(4/1) = 92/(4×3) = 23/3
Which could be the function graphed below?
[tex]f(x)=\sqrt{x} -2[/tex] is the correct option
Suppose that the middle 95% of average scores in the NBA per player per game fall between 8.18 and 31.34. Give an approximate estimate of the standard deviation of the number of the points scored. Assume the points scored has a normal distribution.
Answer:
An approximate estimate of the standard deviation of the number of the points scored per game is of 5.79.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
Suppose that the middle 95% of average scores in the NBA per player per game fall between 8.18 and 31.34.
This means that there is 4 standard deviations within this interval. So
[tex]4s = 31.34 - 8.18[/tex]
[tex]4s = 23.16[/tex]
[tex]s = \frac{23.16}{4}[/tex]
[tex]s = 5.79[/tex]
An approximate estimate of the standard deviation of the number of the points scored per game is of 5.79.
Algebraically show that each of the given combinations are equivalent to the given functions. f(x) – g() is
equivalent to m(x) given:
f(0)
= - 3x + 5; g(x)
- 5x – 7; m(x) = 2x + 12
f(x) – g(x) = (
=
Is f(x) – g(x) equivalent to m(x)? yes
Answer:
[tex]f(x) - g(x) = 2x + 12[/tex]
[tex]m(x) = f(x) - g(x)[/tex] --- True
Step-by-step explanation:
Given
[tex]f(x) = -3x + 5[/tex]
[tex]g(x) = -5x - 7[/tex]
[tex]m(x) = 2x + 12[/tex]
Solving (a): [tex]f(x) - g(x)[/tex]
From the given parameters, we have:
[tex]f(x) = -3x + 5[/tex]
[tex]g(x) = -5x - 7[/tex]
So:
[tex]f(x) - g(x)=-3x+5 + 5x + 7[/tex]
Collect like terms
[tex]f(x) - g(x) = 2x + 12[/tex]
Solving (b) m(x) = f(x) = g(x)?
In (a), we have:
[tex]f(x) - g(x) = 2x + 12[/tex]
And
[tex]m(x) = 2x + 12[/tex] --- given
By comparison:
[tex]m(x) = f(x) - g(x)[/tex]
Which of the following is NOT equivalent to 2x + x - y + 3 + 5?
x + x + x - y + 8
3x - y + 8
2x 2 - y + 5 + 3
x + 2x - y + 5 + 3
Answer:
2x 2 - y + 5 + 3
Step-by-step explanation:
2ggfdfguutffyreryyrrrrrrrr
Please help it’s kinda confusing only got 20 minutes left !!
Please help asap i will give brainliest. Find the exact perimeter and area of the triangle.
Answer:
perimeter=9cm
Area=2cm^2
step by step explanation:
Firstly solve the sides that don't have figures using trigonometry
#1..sin15°=opposite/hypotenuse
sin15=opposite/4
opposite=sin15×4
=1.035, round off to 1cm
Then find the value of the base
tan15=opposite/adjacent
tan15=1/adjacent
1=tan15adjascent
1/tan15=adjacent
adjacent or base=3.7 round off to 4cm
After finding these values find the perimeter
p=side+side+side
p=4cm+4cm+1cm
p=9cm
Find the area
1/2bh
1/2×4×1
A=2cm2
If the smallest angle of a triangle is 20° and it is included between sides of 4 and 7, then (to the nearest tenth) the smallest side of the triangle is _____.
Answer:
[tex]3.5[/tex]
Step-by-step explanation:
The smallest side of a triangle is formed by the smallest angle in the triangle.
To find the side opposite (formed by) the 20 degree angle, we can use the Law of Cosines. The Law of Cosines states that for any triangle, [tex]c^2=a^2+b^2-ab\cos \gamma[/tex], where [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] are the three sides of the triangle and [tex]\gamma[/tex] is the angle opposite to [tex]c[/tex].
Let [tex]c[/tex] be the side opposite to the 20 degree angle.
Assign variables:
[tex]a\implies 4[/tex] [tex]b\implies 7[/tex] [tex]\gamma \implies 20^{\circ}[/tex]Substituting these variables, we get:
[tex]c^2=4^2+7^2-2(4)(7)\cos 20^{\circ},\\c^2=16+49-56\cos 20^{\circ},\\c^2=12.377213236,\\c=\sqrt{12.377213236}=3.51812638147\approx \boxed{3.5}[/tex]
Therefore, the shortest side of this triangle is 3.5.
NEEED HELP FROM BRAINLIEST??????
If the point (1,4) is on the graph of an equation, which statement must be
true?
A. The values x= 1 and y= 4 make the equation true.
B. The values x= 4 and y= 1 make the equation true.
C. The values x= 1 and y= 4 are the only values that make the
equation true.
D. There are solutions to the equation for the values x= 1 and x= 4.
Answer:
A
Step-by-step explanation:
what is the circumference of a circle whose radius squared is 113
Answer:
[tex] C = 2 \pi \sqrt{113} [/tex]
[tex] C \approx 66.79 [/tex]
Step-by-step explanation:
[tex] C = 2 \pi r [/tex]
[tex] r^2 = 113 [/tex]
[tex] r = \sqrt{113}} [/tex]
[tex] C = 2 \pi \sqrt{113} [/tex]
[tex] C \approx 66.79 [/tex]
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Answer:
4
Problem:
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Step-by-step explanation:
One approach would be to plug in the choices and see.
If n=1, then we have m^2-1=9.
This would give m^2=10 after adding 1 on both sides. There is no integer m when squared would give us 10. ( Square root of 9 is a decimal )
If n=16, then we would have m^2-256=9.
This would give m^2=265 after adding 256 on both sides. There is no integer m when squared would give us 265. ( Square root of 265 is a decimal )
If n=9, then we would have m^2-81=9.
This would give m^2=90 after adding 81 on both sides. There is no integer m when squared would give us 90. ( Square root of 90 is a decimal )
If n=4, then we would have m^2-16=9.
This would give m^2=25 after adding 16 on both sides. There is an integer m when squared would give us 25. ( Square root of 25 is a 5)
Michael wants to buy some new exercise equipment for his home gym for 372,000 financial at an annual interest rate of 12% using the add on method. If michael wants to pay off the loan in 2 years. What will be his monthly payment?
Step-by-step explanation:
the answer of this question will be 88,800
Answer:
Step-by-step explanation:
Perform the following division 3 3/4 ÷ 2/8
Answer:
[tex]15[/tex]
Step-by-step explanation:
[tex]3\frac{3}{4}\div\frac{2}{8}[/tex]
Turn the mixed number into an improper fraction
[tex]\frac{15}{4} \div\frac{2}{8}[/tex]
keep change flip
[tex]\frac{15}{4} *\frac{8}{2}[/tex]
cancel with GCF
[tex]\frac{15}{1} *\frac{2}{2}[/tex]
simplify
[tex]15*1[/tex]
solve
[tex]15[/tex]