03: A mass with a 60 g vibrate at the end of a spring. The amplitude of the motion is 0.394 ft
and a frequency is 0.59 HZ. Find the perind and spring constant, the maximum speed and
acceleration of the mass, the speed and acceleration when the displacement is 6 cm, compute the
kinetic and the potential energy when the position is 6 cm
Answer:
a) T = 1.69 s, b) k = 0.825 N / m, c) v = 1.46 feet/s, d) a = 5.41 ft / s²,
e) v = - 1,319 ft / s, a = - 2.70 ft / s², f) K = 4.8 10⁻³ J, U = 1.49 10⁻³ J
Explanation:
In a mass-spring system with simple harmonic motion, the angular velocity is
w = [tex]\sqrt{\frac{k}{m} }[/tex]
a) find the period
angular velocity, frequency, and period are related
w = 2π f = 2π / T
f = 1 / T
T = 1 / f
T = 1 / 0.59
T = 1.69 s
b) the spring constant
w = 2π f
w = 2π 0.59
w = 3.70 rad / s
w² = k / m
k = w² m
k = 3.70² 0.060
k = 0.825 N / m
c) the maximum speed
simple harmonic movement is described by the expression
x = A cos (wt + Ф)
speed is defined by
v =[tex]\frac{dx}{dt}[/tex]
v = -A w sin (wt + fi)
the speed is maximum when the cosine is ± 1
v = A w
v = 0.394 3.70
v = 1.46 feet/s
d) maximum acceleration
a = [tex]\frac{dv}{dt}[/tex]
a = - A w² cos wt + fi
the acceleration is maximum when the cosine is ±1
a = A w²
a = 0.394 3.70²
a = 5.41 ft / s²
e) velocity and acceleration for x = 6 cm
let's reduce the cm to feet
x = 6 cm (1 foot / 30.48 cm) = 0.1969 foot
Before doing this part we must find the phase angle (Ф), the most common way to start the movement is to move the spring a small distance and release it, so its initial speed is zero for t = 0 s
let's use the expression for the velocity
v = -A w sin (0 + Фi)
0 = - A w sin Ф
so sin Ф = 0 which implies that Фi = 0
the equation of motion is
x = A cos wt
x = 0.394 cos 3.70t
we substitute
0.1969 = 0.394 cos 370t
3.70 t = cos⁻¹ (0.1969 / 0.394)
let's not forget that the angle is in radians
3.70, t = 1.047
t = 1.047 / 3.70
t = 0.2826 s
we substitute this time in the equation for velocity and acceleration
v = - Aw sin wt
v = - 0.394 3.70 sin 3.70 0.2826
v = - 1,319 ft / s
a = - A w² cos wt
a = - 0.394 3.70² cos 3.70 0.2826
a = - 2.70 ft / s²
f) the kinetic and potential energy at this point
K = ½ m v²
let's slow down to the SI system
v = 1.319 ft / s (1 m / 3.28 ft) = 0.402 m / s
K = ½ 0.060 0.402²
K = 4.8 10⁻³ J
U = ½ k x²
U = ½ 0.825 0.06²
U = 1.49 10⁻³ J
Consider a wheel (solid disk) of radius 1.12 m, mass 10 kg and moment of inertia 1 2 M R2 . The wheel rolls without slipping in a straight line in an uphill direction 37◦ above the horizontal. The wheel starts at angular speed 12.0536 rad/s but the rotation slows down as the wheel rolls uphill, and eventually the wheel comes to a stop and rolls back downhill. How far does the wheel roll in the uphill direction before it stops?
Answer:
d= 23.25 m
Explanation:
Assuming no other external forces acting on the disk, total mechanical energy must be conserved.Taking the initial height of the disk as the zero reference for the gravitational potential energy, initially. all the energy is kinetic.This kinetic energy is part translational kinetic energy, and part rotational kinetic energy, as follows:[tex]E_{o} = K_{transo} + K_{roto} (1)[/tex]
When the disk rolling uphill finally comes to an stop, its energy is completely gravitational potential energy, as follows:[tex]E_{f} = m*g*h (2)[/tex]
Since the angle with the horizontal of the track on which the disk is rolling, is 37º, we can express the height h in terms of the distance traveled d and the angle of 37º, as follows:[tex]h = d* sin 37 (3)[/tex]
Replacing (3) in (2):[tex]E_{f} = m*g* d * sin 37 (4)[/tex]
Since the wheel rolls without sleeping, this means that at any time there is a fixed relationship in the translational speed and the angular speed, as follows:[tex]v = \omega * R (5)[/tex]
For a solid disk, as mentioned in the question, the moment of inertia is just 1/2*M*R².The rotational kinetic energy of a rotating rigid body can be written as follows:[tex]K_{rot} = \frac{1}{2}* I * \omega^{2} (6)[/tex]
Replacing I from (6) and ω from (5), and remembering the definition of the translational kinetic energy, we can solve (1) in terms of v, m and r as follows:[tex]E_{o} = K_{transo} + K_{roto} = \frac{1}{2}* m* v^{2} +(\frac{1}{2}* \frac{1}{2}) *m*r^{2}*(\frac{v}{r}) ^{2} = \\ \frac{3}{4} * m * v^{2} (7)[/tex]
Since (4) and (7) must be equal each other, we can solve for d as follows:[tex]d =\frac{3}{4} * \frac{v^{2}}{g*sin37} = \frac{3}{4}*\frac{(\omega*r)^{2}}{g*sin 37} (8)[/tex]
Replacing by the values, we finally get:[tex]d =\frac{3}{4}*\frac{(\omega*r)^{2}}{g*sin 37} = \frac{3}{4} *\frac{(12.0536rad/sec*1.12m)^{2}}{9.8 m/s2*0.601} = 23. 25 m.[/tex]
Scientists are constantly exploring the universe, looking for new planets that support life similar to the life on
Earth. A new planet that supports life would have all of the following characteristics except -
A. a gaseous atmosphere.
B. an orbiting moon.
C. liquid water.
D. protection from radiation.
A new planet that supports life would have all the following characteristics except an orbiting moon. Hence, option B is correct.
What is a Planet?An enormous, spherical celestial object known as a planet is neither a star nor its remains. The nebular hypothesis, which states how an interstellar cloud falls out of a nebula to produce a young protostar encircled by a protoplanetary disk, is now the best explanation for planet formation.
By gradually accumulating material under the influence of gravity, or accretion, planets develop in this disk.
The rocky planets Mercury, Venus, Earth, and Mars, as well as the giant planets Jupiter, Saturn, Uranus, and Neptune, make up the Solar System's minimum number of eight planets. These planets all revolve around axes that are inclined relative to their respective polar axes.
To know more about Planet:
https://brainly.com/question/14581221
#SPJ2
Which is the best analogy of a wave?
A wave is like building a ramp.
A wave is like shaking a hand.
A wave is like water rippling in a pond.
A wave is like knocking down a building.
Answer:
c i think
Explanation:
Answer:
answer is C
Explanation:
Bonnie has 16 coins in her pocket worth $1.50. What are two different combinations of coins she could have in her pocket?
How much work will a 500 watt motor do in 10 seconds?
Answer:
50j
Explanation:
Watts are units used to measure power. power can be defined as rate of energy transfer
500 watts means - 500 J of energy per second
in 1 second - 500 J of work is done
therefore within 10 seconds - 500 J/s x 10 s = 5000 J
work of 5000 J is carried out in 10 seconds
Answer:
Watts are units used to measure power. power can be defined as rate of energy transfer
500 watts means - 500 J of energy per second
in 1 second - 500 J of work is done
therefore within 10 seconds - 500 J/s x 10 s = 5000 J
work of 5000 J is carried out in 10 seconds
Explanation:
Swordfish are capable of stunning output power for short bursts. A 650 kg swordfish has a cross-sectional area of 0.92 m2 and a drag coefficient of 0.0091- very low due to some evolutionary adaptations. Such a fish can sustain a speed of 30 m/s for a few seconds. Assume seawater has a density of 1026 kg/m3. a) How much power does the fish need to put out for motion at this high speed
Answer:
the required or need power is 115960.57 Watts
Explanation:
First of all, we take down the data we can find from the question, to make it easier when substituting values into formulas.
mass of swordfish m = 650 kg
Cross - sectional Area A = 0.92 m²
drag coefficient C[tex]_D[/tex] = 0.0091
speed v = 30 m/s
density p = 1026 kg/m³
Now, we determine our Drag force F[tex]_D[/tex]
Drag force F[tex]_D[/tex] = [tex]\frac{1}{2}[/tex] × C[tex]_D[/tex] × A × p × v²
Next, we substitute the values we have taken down, into the formula.
Drag force F[tex]_D[/tex] = [tex]\frac{1}{2}[/tex] × 0.0091 × 0.92 × 1026 × (30)²
Drag force F[tex]_D[/tex] = 4.294836 × 900
Drag force F[tex]_D[/tex] = 3865.3524
Now, we determine the power needed P[tex]_w[/tex]
P[tex]_w[/tex] = F[tex]_D[/tex] × v
we substitute
P[tex]_w[/tex] = 3865.3524 × 30
P[tex]_w[/tex] = 115960.57 Watts
Therefore, the required or need power is 115960.57 Watts
Which statement best explains why objects are pulled toward Earth’s center?
Answer:
Earth has a much greater mass than objects on its surface
The universe cooled after the Big Bang.At some point hydrogen atoms combined to form helium.What is this process called?
Answer:
Nuclear fusion
Explanation:
A running Marites launched the egg she
stole as she was about to be caught with
a velocity of 25 m/s in a direction making
an angle of 20° upward with the
horizontal
a) What is the maximum height reached by
the egg?
b) What is the total flight time (between
launch and touching the ground) of the
egg?
c) What is the horizontal range (maximum
* above ground) of the egg?
d) What is the magnitude of the velocity
of the egg just before it hits the ground?
Answer:
a) y = 3.73 m, b) t = 1.74 s, c) R = 40.99 m,
d) vₓ = 23.49 m/s, v_y = -8.5 m / s
Explanation:
This is a projectile launching exercise, we start by breaking down the initial velocity
sin θ = v_{oy} / v₀
cos θ = v₀ₓ / v₀
v_{oy} = v₀ sin θ
v₀ₓ = v₀ cos θ
v_{oy} = 25 sin 20 = 8.55 m / s
v₀ₓ = 25 cos 20 = 23.49 m / s
a) when the egg reaches the maximum height its vertical speed is zero
v_y² = v_{oy}² - 2 g y
0 = v_[oy}² - 2g y
y = v_{oy}² / 2g
y = [tex]\frac{8.55^2}{2 \ 9.8 }[/tex]
y = 3.73 m
b) flight time
y = v_{oy} t - ½ g t²
the time of flight occurs when the body reaches the ground y = 0
0 = (v_{oy} - ½ g t) t
The results are
t₁ = 0s this time is for using the body star
v_{oy} - ½ g t = 0
t = [tex]\frac{2v_{oy}^2}{g}[/tex]
t = 2 8.55 / 9.8
t = 1.74 s
c) the range
R = v₀² sin 2θ / g
R = 25² sin (2 20) / 9.8
R = 40.99 m
d) speed at the point of arrival
horizontal speed is constant
vₓ = v₀ₓ = 23.49 m/s
vertical speed is
v_y = Iv_{oy} - g t
v_y = 8.55 - 9.8 1.74
v_y = -8.5 m / s
Objects A and B, of mass M and 2M respectively, are each pushed a distance d straight up an inclined plane by a force F parallel to the plane. The coefficient of kinetic friction between each mass and the plane has the same value μ.k At the highest point is:______
a. KEA > KEB
b. KEA = KEB
c. KEA < KEB
d. The work done by F on A is greater than the work done by F on B.
e. The work done by F on A is less than the work done by F on B.
Answer:
The correct answer is option (A) that is KEA > KEB .
Explanation:
Let us calculate -
If the object is straighten up and inclined plane , the work done is
[tex]W=F_d- F_f_r_id-F_gh[/tex]
[tex]W=F_d-\mu_kmgdcos\theta-mgdsin\theta[/tex]
The change in kinetic energy is ,
[tex]\Delta K=\frac{1}{2}mv^2-\frac{1}{2}m\nu_0^2[/tex]
At the top of the inclined plane , the velocity is zero
So,
[tex]\Delta K=\frac{1}{2} m(0)^2-\frac{1}{2}m\nu_0^2[/tex]
[tex]\Delta KE=-\frac{1}{2}m\nu_0^2[/tex]
From the work energy theorem , we have [tex]W=-\Delta K[/tex] in case of friction , so
[tex]\frac{1}{2}m\nu_0^2=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
[tex]KE=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
For object A-
[tex]KE_A=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
For object B
[tex]KE_B= Fd -2\mu_kMgdcos\theta-2Mgdsin\theta[/tex]
[tex]KE_B= Fd -2(\mu_kMgdcos\theta-Mgdsin\theta)[/tex]
Thus , larger mass is going to mean less total work and a lower kinetic energy .
From the above results , we get
[tex]KE_A >KE_B[/tex]
Therefore , option A is correct .
can someone please take there time and answer this for me :)
Answer:
number 1
Explanation:
they have common ancestors
what term is used to describe the block of organs (heart, lungs, liver, kidneys and spleen) that are removed during the autopsy?
The term used to describe the block of organs that are removed during the autopsy is Thoracic organs.
The organs that are removed during autopsy include:
Thoracic organs;Cervical organs, and Abdominal organsThe thoracic cavity contains organs and tissues that function in the respirator, cardiovascular, nervous and digestive system.
These thoracic organs include the following;
heart, lungs, liver, kidneys and spleen.Thus, we can conclude that the term used to describe the block of organs that are removed during the autopsy is Thoracic organs.
Learn more here:https://brainly.com/question/25087653
mdjxjxjcjfkfjjdksklqlakzjxjxkkskakMmznxkxkdkd?
JHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWKJHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWKJHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWKJHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWKJHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWK
I hope this helped!+*
an object is moving at 60m/s and has a mass of 5 kg what is its momentum
Answer:
300
Explanation:
the momentum is 300
p=mv
p=5×60
5×60 =300
During transpiration, water goes from a _____ to a _____.
Answer:
WATER TO A VAPOR
Explanation:
Explanation:
During transpiration, water goes from a root to a stomata.
red light from a He-Ne laser is at 590.5 nm in the air. it is fired at an angle of 31.0 to horizontal at a flat transparent crystal of calcite (n= 1.34 ar this frequency) .find the wavelength and frequency of the light inside the crystal and the angle from horizontal that it travels inside the calcite crystal.
Answer:
7374.4
Explanation:
I took the test
(filler so I can post)
The nucleus of a certain type of uranium atom contains
92 protons and 143 neutrons. What is the total charge of
the nucleus?
Answer:
charge = electrons + protons
=92+92
=184
15 points!
a. Calculate the electric potential energy stored in a 1.4 x 10-7 F capacitor
that stores 3.40 x 10-6 C of charge at 24.0 V.
Answer:
[tex]4.12\times 10^{-5}\ J[/tex].
Explanation:
Given that,
Capacitance, [tex]C=1.4\times 10^{-7}\ F[/tex]
Charge stored in the capacitor, [tex]Q=3.4\times 10^{-6}\ C[/tex]
We need to find the electric potential energy stored in the capacitor. The formula for the electric potential energy stored in the capacitor is given by :
[tex]E=\dfrac{Q^2}{2C}[/tex]
Put all the values,
[tex]E=\dfrac{(3.4\times 10^{-6})^2}{2\times 1.4\times 10^{-7}}\\\\=4.12\times 10^{-5}\ J[/tex]
So, the required electric potential eenergy is equal to [tex]4.12\times 10^{-5}\ J[/tex].
A 4 kg box is at rest on a table. The static friction coefficient u, between the box and table is 0.30, and
the kinetic friction coefficient Hi is 0.10. Then, a 10 N horizontal force is applied to the box.
Answer:
The box will not move from its position.
Explanation:
First, we will calculate the static frictional force that is stopping the box to move from its position:
[tex]f = \mu R = \mu W=\mu mg[/tex]
where,
f = static frictional force = ?
μ = coefficient of static friction = 0.3
m = mass of box = 4 kg
g = acceleration due to gravity = 9.81 m/s²
Therefore,
[tex]f = (0.3)(4\ kg)(9.81\ m/s^2)\\f=11.77\ N[/tex]
Since the frictional force (11.77 N) is greater than the applied force (10 N).
Therefore, the box will not move from its position.
What type of electromagnetic radiation is being shown in the picture?
A. Gamma rays
B. Ultraviolet radiation
C. X-rays
D. Infrared radiation
Answer:
I think D. Infrared radiation.
Answer:
infrared radition
Explanation:
valid
What is the magnitude of the gravitational force acting on a
1.0 kg object which is 1.0 m from another 1.0 kg object?
Ans[tex]^{}[/tex]wer and expl[tex]^{}[/tex]anation is in a fi[tex]^{}[/tex]le. Li[tex]^{}[/tex]nk below! Go[tex]^{}[/tex]od luck!
bit.[tex]^{}[/tex]ly/3a8Nt8n
Careful measurements reveal that a star maintains a steady apparent brightness at most times except that at precise intervals of 127 hours the star becomes dimmer for about 4 hours. The most likely explanation is that Careful measurements reveal that a star maintains a steady apparent brightness at most times except that at precise intervals of 127 hours the star becomes dimmer for about 4 hours. The most likely explanation is that:________
a. the star is a white dwarf.
b. the star is periodically ejecting gas into space, every 127 hours.
c. the star is a Cepheid variable.
d. the star is a member of an eclipsing binary star system.
Answer:
d. the star is a member and also a part of an eclipsing binary star system.
Explanation:
If any star happens to be brighter for an extended period of time, however, at some times, it becomes dimmer, is due to the fact that the star is being overshadowed (hiding behind another star that is known as eclipse).
The above-mentioned eclipsing binary star system is essentially what has been defined. It occurs when two stars' orbit planes are so similar that one star will obscure (the light) of the other.
Thus, option D is correct.
Classify each change (which can be manipulated within the green box) according to its effect on the wavelength.
a. Decrease frequency
b. Decrease damping
c. Decrease amplitude
d. Increase frequency
e. Increase amplitude
f. Increase damping
g. Shortens wavelength
Answer:
Explanation:
The classification will be made into 3 categories, which are
Ones that shortens wavelengths
Ones that lengthens wavelengths
Ones that has no effect on wavelengths
Shortens wavelengths -> Increase frequency
Lengthens wavelengths -> Decrease frequency
No effect -> Increase amplitude, decrease amplitude, increase damping, decrease damping.
What organ in the digestive system ABSORBS NUTRIENTS from broken down food?
Answer:
The small intestine absorbs most of the nutrients in your food, and your circulatory system passes them on to other parts of your body to store or use. Special cells help absorbed nutrients cross the intestinal lining into your bloodstream.
Explanation:
A vertical spring with a spring constant of 420 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.15-kg block is dropped from rest. It collides with and sticks to the spring, which is compressed by 3.7 cm in bringing the block to a momentary halt. Assuming air resistance is negligible, from what height above the compressed spring was the block dropped
Answer:
19.53 cm
Explanation:
The computation of the height is as follows:
Here we applied the conservation of the energy formula
As we know that
P.E of the block = P.E of the spring
m g h = ( 1 ÷ 2) k x^2
where
m = 0.15
g = 9.81
k = 420
x = 0.037
So now put the values to the above formula
(0.15) (9.81) (h) = 1 ÷2 × 420 × (0.037)^2
1.4715 (h) = 0.28749
h = 0.19537 m
= 19.53 cm
An object is placed 12.0 cm from a thin diverging lens with a focal length of 4 cm. Which one of the
following statements is true concerning the image?
A. The image is virtual and 3.0 cm from the lens.
B. The image is real and 6.0 cm from the lens.
C. The image is virtual and 12 cm from the lens.
D. The image is real and 12 cm from the lens.
Answer:
soluble soluble soluble soluble
Explanation:
solublesolublesolublesolublesolublesolublesoluble dguhjjewugbcsbdc csyuhjci
What does the Curl-up test assess?
O A.
Body composition
ОВ.
Muscular strength and endurance
O C. Flexibility
D.
Cardiovascular fitness
HURRRY
(it’s pe not physics)
Answer:
assesses C.) muscular endurance
Explanation:
which of the following best defines spring constant ?
a. the amount of force needed to extend or compression og the spring.
b. the amount of force needed every 1 meter of stretch or compression of the spring.
c. the amount of energy needed to extend or compress a spring for every 1 kilogram of mass of the spring.
d. the amount of energy needed for every 1 meter of stretch or compression of the spring.
Answer:
A
Explanation:
A circuit is built based on this circuit diagram.
What is the equivalent resistance of the circuit?
0.61 Ω
Ο 1.6 Ω
7.5Ω
Ο 18 Ω
12V
3.0 Ω.
6.0 Ω
9.Ο Ω.
Will mark brainlyest. No “links” I don’t want them
[tex]\mathfrak{\huge{\orange{\underline{\underline{AnSwEr:-}}}}}[/tex]
Actually Welcome to the concept of resistors,
The equivalent circuit is given as,
1/Rp = 1/3 + 1/6 + 1/9
1/Rp = 6+3+2/18
1/Rp = 11/18
Rp = 18/11 ==> 1.63 ==> 1.6 ohms
hence the equivalent resistance of the circuit is 1.6 ohms
The equivalent resistance of the circuit is 1.6Ω. The correct option is B.
What is Ohm’s law?Ohm’s law state that ” At constant temperature, the current (I) flowing through a conductor is directly proportional to the potential difference(V) across the two endpoints of the given conductor.”
I.e V ∝ I
V=IR
Where V= potential difference across the conductor.
I = current flowing through the conductor.
R= constant pf proportionality i.e resistance which unit is ohm(Ω).
There are two ways we can connect the resistors.
(i) series connection
If a number of resistors are said to be connected in series When the same current (I) flows through them.
Let R1, R2, and R3 be the resistors connected in series.
Then the R equivalent is
Req=R1+R2+R3
(ii) parallel connection
A number of resistors are said to be connected in parallel when the same potential difference(V) exists across each of them.
Let R1, R2, and R3 be the resistors connected in parallel.
Then the R equivalent is
1/Req=1/R1+1/R2+1/R3
In this question,
The three resistance connected in parallel by applying the above formula we get,
1/Req=1/R1+1/R2+1/R3
1/Req = 1/3 + 1/6 + 1/9 ................. (∵R1=3Ω,R2=6Ω AND R3=9Ω)
1/Req =11/18
Req=18/11
Req=1.6363Ω
Req≈1.6Ω
Therefore, The equivalent resistance of the circuit is 1.6Ω.
To learn more about resistance click:
https://brainly.com/question/29427458
#SPJ7