Answer:
A
Step-by-step explanation:
100fps=68.182mph
68.182/3.8=17.94
Mellissa's speed will be 17.94 mph.
What is speed?Speed is defined as the ratio of the time distance travelled by the body to the time taken by the body to cover the distance.
It is given that Melissa is able to Rollerblade 100 feet in 3.8 seconds.
We know that 100fps is equal to 68.182mph.
Mellissa's speed in meters per hour is calculated as:-
S = 68.182/3.8=17.94mph
Therefore, Mellissa's speed will be 17.94 mph.
To know more about Speed follow
https://brainly.com/question/6504879
#SPJ2
Which one is correct? in need of large help
Answer:
Option C. x + 12 ≤ 2(x – 3)
Step-by-step explanation:
From the question, we obtained the following information:
x + 12 ≤ 5 – y .......(1)
5 – y ≤ 2(x – 3) ....... (2)
To know which option is correct, do the following:
From equation 2,
5 – y ≤ 2(x – 3)
Thus, we can say
5 – y = 2(x – 3)
Now, we shall substitute the value of 5 – y into equation 1 as shown below:
x + 12 ≤ 5 – y
5 – y = 2(x – 3)
x + 12 ≤ 2(x – 3)
From the above illustration, we can see that if x + 12 ≤ 5 – y and 5 – y ≤ 2(x – 3), then x + 12 ≤ 2(x – 3) must be true.
Option C gives the correct answer.
log 7 (x^2 + 11) = log 7 15
Answer:
x = ±2
Step-by-step explanation:
log 7 (x^2 + 11) = log 7 15
We know that log a ( b) = log a(c) means b =c
x^2 + 11 = 15
Subtract 11 from each side
x^2 = 15-11
x^2 =4
Take the square root of each side
sqrt(x^2) =±sqrt(4)
x = ±2
Cases Prudence has a special (cubic) die. The values on its face are the integers from 1 to 6, but they are not arranged ae in a normal die. When Prudence first tosses the die, the sum of the values on the four side faces is 15. In her second toss, the sum of these values is 12. Find what value appears in the face opposite 6 on Prudence’s special die. (Hint: what are possible values for the top and bottom face when the sum of the side faces is 12).
Answer: 3
Step-by-step explanation:
first, we know that:
1 + 2 + 3 + 4 +5 +6 = 21
Now, which two numbers we should take out in order to have 15?
we can remove the 2 and the 4, or the 1 and the 5.
so here we have two possibilities, 2 and 4 are opposite, or 1 and 5 are opposite (they are located in opposite faces of the die)
in the other arrange, we have that removing two numbers we should get 12.
in order to reach 12, we should remove two numbers that add 9 together.
those can be 4 and 5, or 6 and 3.
Now, notice that in the first restriction we have that:
Or 2 and 4 are opposite,
or 1 and 5 are opposite.
So 4 and 5 can never be opposite, so we should have that 6 and 3 are opposite.
Then we can affirm that the value that appears in the face opposite to the 6, is the 3.
Find an equation of the plane through the point(1, 5,-1) and perpendicular to the vector (1, 5, 1). Do this problem in the standard way.
Answer:
x+5y+z = 25Step-by-step explanation:
Given a plane passing through the point(1, 5,-1) and perpendicular to the vector (1, 5, 1), the equation of the plane can be expressed generally as;
a(x-x₀)+b(y-y₀)+c(z-z₀) = 0 where (x₀, y₀, z₀) is the point on the plane and (a, b,c) is the normal vector perpendicular to the plane i.e (1,5,1)
Given the point P (1, 5, -1) and the normal vector n(1, 5, 1)
x₀ = 1, y₀ =5, z₀ = -1, a = 1, b = 5 and c = 1
Substituting this point in the formula we will have;
a(x-x₀)+b(y-y₀)+c(z-z₀) = 0
1(x-1)+5(y-5)+1(z-(-1)) = 0
(x-1)+5(y-5)+(z+1) = 0
x-1+5y-25+z+1 = 0
x+5y+z-1-25+1 = 0
x+5y+z-25 = 0
x+5y+z = 25
The final expression gives the equation of the plane.
Calculate, correct to one decimal plice
the acute angle between the lines
3x - 4y + 5 = 0 and 2x + 3y -1 = 0
A. 70.69
B. 50.2
C. 39.8
D. 19.4
Answer:
A. 70.69 is the correct answer.
Step-by-step explanation:
Given:
Two lines:
[tex]3x - 4y + 5 = 0 \\2x + 3y -1 = 0[/tex]
To find:
Angle between the two lines = ?
Solution:
Acute Angle between two lines can be found by using the below formula:
[tex]tan \theta = |\dfrac{(m_1 - m_2)}{ (1 + m_1m_2)}|[/tex]
Where [tex]\theta[/tex] is the acute angle between two lines.
[tex]m_1, m_2[/tex] are the slopes of two lines.
Slope of a line represented by [tex]ax+by+c=0[/tex] is given as:
[tex]m = -\dfrac{a}{b }[/tex]
So,
[tex]m_1 = -\dfrac{3}{- 4} = \dfrac{3}{4}[/tex]
[tex]m_2 = -\dfrac{2}{ 3}[/tex]
Putting the values in the formula:
[tex]tan \theta = |\dfrac{(\dfrac{3}{4}- (-\dfrac{2}{3}))}{ (1 + \dfrac{3}{4}\times (-\dfrac{2}{3 }))}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{3}{4}+\dfrac{2}{3}}{ (1 -\dfrac{1}{2})}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{17}{12}}{ \dfrac{1}{2}}|\\\Rightarrow tan \theta = \dfrac{17}{6}\\\Rightarrow \theta = tan^{-1}(\frac{17}{6})\\\Rightarrow \theta = \bold{70.69^\circ}[/tex]
So, correct answer is A. 70.69
How many dimensions does an angle have?
Answer:
the length has dimension 1, the area has the dimension 2, the volume has dimension 3, etc. And the angle has dimension 0.
Step-by-step explanation:
Find the measure of F. A. 44 B. 88 C. 90 D. 46
Answer:
A. 44º
Step-by-step explanation:
The sum of internal angles in a triangle is equal to 180 degrees, whereas the sum for a square is equal to 360 degrees. Given that three triangles depicted on figure constructs a square, it is to conclude that each is an isosceles triangle. The following relations are presented:
1) [tex]e + 92^{\circ} = 180^{\circ}[/tex] Given
2) [tex]a = b[/tex], [tex]c = d[/tex] Given
3) [tex]a + b + 92^{\circ} = 180^{\circ}[/tex] Given.
4) [tex]c + d + e = 180^{\circ}[/tex] Given.
5) [tex]b + c = 90^{\circ}[/tex] Given.
6) [tex]2\cdot a + 92^{\circ} = 180^{\circ}[/tex] 2) in 3)
7) [tex]a = 44^{\circ}[/tex] Algebra
8) [tex]b = 44^{\circ}[/tex] By 2)
9) [tex]b= f[/tex] Alternate internior angles.
10) [tex]f = 44^{\circ}[/tex] By 8). Result
Hence, the answer is A.
Candice spent 5 1/4 hours doing her homework. Her brother, Ronald, spent 1/2 that number of hours doing his homework. How many hours did Ronald spend on his homework?
Answer:
Step-by-step explanation:
½ of 5¼
½×(21/4)
=21/8
=2⅝ hours
Answer:
2 5/8
Step-by-step explanation:
you would divide 5 1/4 by 2 :
5 divided by 2 =2 1/2
1/4 divided by 2=1/8
then make the numbers have the same denomanator
1/2, 2/4, 4/8
1/8,
then you add
2 4/8+1/8=2 5/8
Megan’s room is expanded so the width is 150% of 3 meters. What is the new width?
Work Shown:
The keyword "of" means "multiply".
150% = 150/100 = 1.5
150% of 3 = 1.5*3 = 4.5
The percentage is calculated by dividing the required value by the total value and multiplying by 100.
Required percentage value = a
total value = b
Percentage = a/b x 100
100% = 3 meters
150% = 4.5 meters
The new width is 4.5 meters.
What is a percentage?The percentage is calculated by dividing the required value by the total value and multiplying by 100.
Example:
Required percentage value = a
total value = b
Percentage = a/b x 100
Example:
50% = 50/100 = 1/2
25% = 25/100 = 1/4
20% = 20/100 = 1/5
10% = 10/100 = 1/10
We have,
Megan’s room is expanded so the width is 150% of 3 meters.
This means,
100% = 3 meters
Multiply 150/100 on both sides.
150% = 150/100 x 3
150% = 4.5 meters
Thus,
The new width is 4.5 meters.
Learn more about percentages here:
https://brainly.com/question/11403063
#SPJ2
g If the events A and B are independent with P( A) = 0.35 and P( B) = 0.45, then the probability that both events will occur simultaneously is:
Answer:
0.1575.
Step-by-step explanation:
Here, as they are independent, we multiply the probabilities:
P( A and B) = 0.35*0.45
= 0.1575.
The probability that both events will occur simultaneously is 0.1575.
Given that, the events A and B are independent with P( A) = 0.35 and P( B) = 0.45.
What is independent probability?Two events are independent if the occurrence of one event does not affect the chances of the occurrence of the other event. The mathematical formulation of the independence of events A and B is the probability of the occurrence of both A and B being equal to the product of the probabilities of A and B (i.e., P(A and B).
Since, the events A and B are independent
We have P(A and B)
= P(A) × P(B)
= 0.35 × 0.45
= 0.1575
Hence, the probability that both events will occur simultaneously is 0.1575.
Learn more about the independent probability here:
https://brainly.com/question/27987662.
#SPJ5
If the area of the square is A(s) = s², find the formula for the area as a function of time, and then determine A(s(3)).
A(t) = 100t^2 + 500t + 625
3,025 square pixels
Answer:
A(t) equals 100t²+ 500t + 625.
The area of the square image after 3 seconds is 3,025 square pixels.
Billy has x marbles. Write an expression for the number of marbles the following have… a) Charlie has 5 more than Billy b) Danny has 8 fewer than Billy c) Eric has three times as many as Billy
Answer:
Charlie: 5 + xDanny: x - 8Eric: x × 3Complete parts (a) through (c) below.
(a) Determine the critical value(s) for a right-tailed test of a population mean at the alpha = 0.10 level of significance with 15 degrees of freedom.
(b) Determine the critical value(s) for a left-tailed test of a population mean at the alpha = 0.01 level of significance based on a sample size of n = 20.
(c) Determine the critical value(s) for a two-tailed test of a population mean at the alpha = 0.05 level of significance based on a sample size of n = 14.
Answer:
(a) 1.341
(b) -2.539
(c) -2.160 and 2.160
Step-by-step explanation:
(a) We have to find the critical value(s) for a right-tailed test of a population mean at the alpha = 0.10 level of significance with 15 degrees of freedom.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 15 and the level of significance for a right-tailed test is 0.10, i.e. P = 10%
Now, looking in the t table with P = 10% and [tex]\nu[/tex] = 15, we get the critical value of 1.341.
(b) We have to find the critical value(s) for a left-tailed test of a population mean at the alpha = 0.01 based on a sample size of n = 20.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 20 - 1 = 19 and the level of significance for a left-tailed test is 0.01, i.e. P = 1%
Now, looking in the t table with P = 1% and [tex]\nu[/tex] = 19, we get the critical value of 2.539. But since it is a left-tailed test, so the critical value will be -2.539.
(c) We have to find the critical value(s) for a two-tailed test of a population mean at the alpha = 0.05 level of significance based on a sample size of n = 14.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 14 - 1 = 13 and the level of significance for a two-tailed test is [tex]\frac{0.05}{2}[/tex] is 0.025, i.e. P = 2.5%.
Now, looking in the t table with P = 2.5% and [tex]\nu[/tex] = 13, we get the critical value of -2.160 and 2.160 for a two-tailed test.
area please it's easy plzzzzzzzzzz
a ) Now as you can see, the white region is composed of a triangle and a rectangle. This triangle has a height of 5, as it is composed of the respective blank triangles. It's base is 5 meters as well, by properties of a rectangle - which is sufficient information to solve for the area of the triangle.
Area of Triangle : 1 / 2 [tex]*[/tex] 4 [tex]*[/tex] 5 = 2 [tex]*[/tex] 5 = 10 m²
The area of this rectangle will be 3 [tex]*[/tex] 4 = 12 m², considering it's given dimensions are 3 by 4. Therefore the area of this white region will be 10 + 12 = 22 m²
b ) Now this striped region will be the remaining area, or the area of the white region subtracted from the area of the outer rectangle.
Area of Outer Rectangle : 10 [tex]*[/tex] 4 = 40 m²,
Area of Striped Region : 40 - 22 = 18 m²
PLS HELP !!
Define two terms, each containing the variables x and y, with exponents on each. (For Example : 10x³y–⁵)Find the quotient of the two terms. Explain step-by-step how you found the quotient
Answer:
Step-by-step explanation:
Two such terms are 7x^3*y^9 and -3x*y^5
Their quotient is
7x^3*y^9
--------------
-3x*y^5
This can be simplified as follows:
The numerical coefficients become -7/3.
x^3/x = x^3*x^1 = x^(3 - 1) = x^2 (we subtract the exponent of x in the denominator from the exponent of x in the numerator).
Next, y^9*y^5 = y^4.
The quotient in final reduced form is then (-7/3)x^2*y^4
Solve for y:1(y+3)=2(y+−4)+−7
Answer:
[tex]\large \boxed{{y=18}}[/tex]
Step-by-step explanation:
[tex]1(y+3)=2(y+-4)+- 7[/tex]
Expand brackets.
[tex]y+3=2y-8+- 7[/tex]
Simplify.
[tex]y+3=2y-15[/tex]
Add -y and 15 on both sides.
[tex]y+3-y+15=2y-15-y+15[/tex]
Simplify.
[tex]3+15=2y-y[/tex]
[tex]18=y[/tex]
Answer:
18
Step-by-step explanation:
● 1 (y+3) = 2 (y+(-4) )+ (-7)
When you multiply by 1 you get the same result.
● y+3 = 2 (y+(-4))+(-7)
When you have a + sign with a - sign write -.
● y+3 = 2(y-4)-7
Multiply 2 by (y-4) and simplify
● y+3 = (2y-8)-7
● y+3 = 2y -8-7
● y+3 = 2y -15
Add 15 to both sides
● y +3+15 = 2y-15 +15
● y + 18 = 2y
Sibstract y from both sides
● y +18 - y = 2y -y
● 18 = y
What is the correct alternate hypothesis if the pilots' average gain score due to alcohol is indicated in the hypothesis statement by
Answer:
Ha : Pilots average gain score not due to alcohol.
Step-by-step explanation:
Null hypothesis is a statement that is to be tested against the alternative hypothesis and then decision is taken whether to accept or reject the null hypothesis. Here the null hypothesis is that pilots average gain due to alcohol. Then if there is no alcohol what is pilots average gain. This thing will be tested as alternative hypothesis.
Which of the following is the graph of the quadratic parent function
This is the graph of y = x^2. It is a parabola that opens upward and has its vertex at the origin. Applying various transformations to the parent function will allow us to produce any parabolic graph we want. In effect, the parent function is like the most basic building block.
The length of a rectangle is twice its width.
If the area of the rectangle is 200 yd?, find its perimeter.
Answer:
The answer is 60cmStep-by-step explanation:
Perimeter of a rectangle = 2l + 2w
Area of rectangle = l × w
where
l is the length
w is the width
From the question
The length is twice its width is written as
l = 2w
Substitute this into the formula for finding the area of the rectangle
Area = 200 yd²
200 = 2w²
Divide both sides by 2
w² = 100
Find the square root of both sides
width = 10cm
Substitute this value into l = 2w
That's
l = 2(10)
length = 20cm
Perimeter of the rectangle is
2(20) + 2(10)
= 40 + 20
= 60cmHope this helps you
the box plots shows the price for two different brands of shoes
Answer:
A. The interquartile range (IQR) for brand A, $10, is less than the IQR for brand B, $25.
Step-by-step explanation:
The most appropriate measure that can be used to compare the SPREAD of the data of the 2 brands plotted on a box plot, is the Interquartile range (IQR).
Interquartile range is the difference between Q3 and Q1.
Q3 is the value which lies at the end of the rectangular box, while the Q1 lies at the beginning of the box.
From the box plot given,
IQR for brand A = 80 - 70 = $10
IQR for brand B = 50 - 25 = $25
Therefore, the correct option is "A. The interquartile range (IQR) for brand A, $10, is less than the IQR for brand B, $25."
Lisa built a rectangular flower garden that is 4 meters wide and has a perimeter of 26 meters.
What is the length of Lisa's flower garden?
Answer:
9 m
Step-by-step explanation:
Given that
Width of rectangular flower garden, w = 4 m
Perimeter of rectangular flower garden, p = 26 m
To find:
Length of Lisa's flower garden = ?
Solution:
First of all, let us understand perimeter, length and width of a rectangle.
Let ABCD be a rectangle. Please refer to the attached image.
Opposite sides of a rectangle are equal to each other.
AB = CD = Length
Let the length be [tex]l[/tex] m.
BC = DA = Width = 4 m
Perimeter of a closed image is equal to the sum of all the sides of the image.
So, perimeter of ABCD:
[tex]p = AB + BC + CD + DA \\\Rightarrow \bold{ p = 2 \times (Length +Width)}[/tex]
[tex]26 = 2 \times (l +4)\\\Rightarrow 2l =26-8\\\Rightarrow \bold{l = 9 m}[/tex]
football team, won 35 out of 39 games over a period of 4 years. if they keep winning pace, predict how many games you would expect them to win over the next 78 football games
Answer:
70
Step-by-step explanation:
If the team continues with same pace, they expected wins as per previous ratio:
35/39*78 = 70Expected wins 70 out of 78 games
How many pepperoni pizzas did they buy if they bought 6 cheese pizzas
Answer:
Question is incomplete but use below
Step-by-step explanation:
you can do total = (price of cheese pizza) ( amount of cheese pizzas bought)+(price of pepperoni pizza) ( amount of pepperoni pizzas bought)
Complete each equation with a number that makes it true. 5⋅______=15 4⋅______=32 6⋅______=9 12⋅______=3
Answer: blank 1: 3 Blank 2: 8 blank 3: 1.5 blank 4: 0.25
Step-by-step explanation:
5 times 8=15
4 times 8=32
6 times 1.5=9
12 times 0.25=3
The complete equation is
5⋅____3__=15
4⋅___8___=32
6⋅___1.5___=9
12⋅__0.25____=3
What is Multiplication?Multiplication is an operation that represents the basic idea of repeated addition of the same number. The numbers that are multiplied are called the factors and the result that is obtained after the multiplication of two or more numbers is known as the product of those numbers. Multiplication is used to simplify the task of repeated addition of the same number.
Multiplication Formula
The multiplication formula is expressed as, Multiplicand × Multiplier = Product; where:
Multiplicand: The first number (factor).Multiplier: The second number (factor).Product: The final result after multiplying the multiplicand and multiplier.Multiplication symbol: '×' (which connects the entire expression)5 * 3=154 * 8=326 * 1.5=912 * 0.25=3Learn more about multiplication here:
https://brainly.com/question/5992872
#SPJ2
In an examination, 40% of the candidates failed. The number candidates who failed was 160. How many candidates passed the examination?
Answer:
240 candidates
Step-by-step explanation:
40% candidates failed, i. e. out of every 100 candidates 40 failed.
40 failed ----------------------------- 100 total students
1 failed --------------------------------100/40 total students, given 160 failed therefore
160 failed ----------------------------(100/40) x 160 total students
Total students = (100/40) x 160 = 400
Number of candidates passed = (total candidates) - (total candidates failed)
= 400 - 160 = 240 candidates
10 points plssssss!!!
Answer:
A. rectangle
B. any of triangle, quadrilateral, pentagon, hexagon
Step-by-step explanation:
A. A plane perpendicular to the base will intersect 2 adjacent or 2 opposite lateral faces, as well as the two bases. Each plane intersected will result in an edge of the cross sectional figure. The figure will have two pairs of parallel edges, so is a rectangle.
__
B. If the intersecting plane is not constrained to be perpendicular to the base(s), it can intersect 3, 4, 5, or all 6 faces of the prism. Hence, the shape of the cross section can be any of ...
trianglequadrilateralpentagonhexagonThe graph of the function f(x) = (x − 3)(x + 1) is shown.
On a coordinate plane, a parabola opens up. It goes through (negative 1, 0), has a vertex at (1, negative 4), and goes through (3, 0).
Which describes all of the values for which the graph is positive and decreasing?
all real values of x where x < −1
all real values of x where x < 1
all real values of x where 1 < x < 3
all real values of x where x > 3
Answer:
x < -1
Step-by-step explanation:
Since the parabola opens upward, it is positive and decreasing where the left branch is above the x-axis: all points to the left of x=-1.
all real values of x where x < -1
Select the correct answer from each drop-down menu. The gasoline prices in seven states are $1.96, $2.09, $1.79, $1.61, $1.75, $2.11, and $1.84. The median gasoline price is _____. The difference of the first and third quartiles in this set of gas prices is ______ .
Answer:
The median is 1.84 and the difference between the first and third quartile is 0.34
Step-by-step explanation:
When you write them out 1.84 is the median (middle number). To find the difference I just subtracted the third quartile (2.09) by the first quartile (1.75)
========================================================
Explanation:
Original data set = {1.96, 2.09, 1.79, 1.61, 1.75, 2.11, 1.84}
Sorted data set = {1.61, 1.75, 1.79, 1.84, 1.96, 2.09, 2.11}
Notice that 1.84 is in the middle of the sorted set. Three values are smaller than it, and three values are larger than it.
Therefore, 1.84 is the median.
The values {1.61, 1.75, 1.79} are smaller than the median. We'll call this set L for lower set.
The values {1.96, 2.09, 2.11} are larger than the median. We'll call this set U for upper set.
From set L = {1.61, 1.75, 1.79}, the median here is 1.75. This is the value of the first quartile Q1
The value of Q3 is 2.09 as it is in the direct middle of set U = {1.96, 2.09, 2.11}
The interquartile range (IQR) is the difference of Q3 and Q1
IQR = Q3 - Q1
IQR = 2.09 - 1.75
IQR = 0.34
Part 3: Choose a proof method
Answer: see proof below
Step-by-step explanation:
Statement Reason
1. ∠WZX ≅ ∠YZX 1. Given
2. ZW ≅ ZY 2. Given
3. ZX = ZX 3. Reflexive Property
4. ΔWZX ≅ ΔYZX 4. SAS Congruency Theorem
5. WX = YX 5. CPCTC
6. ∠WXZ = 90° 6. bisector of isosceles ΔWZY
∠YXZ = 90°
7. ZX is perpendicular bisector of WY 7. Definition of perpendicular bisector
Step-by-step explanation:
In this question we have to prove that zx = wy
the question is proved in the above attachment
and as we know that the straight line is of 180 degree and Ab is the bisector of line so the angles are also equally divided it means angle zxw= 90 and zxy = 90
Hope it helps you mate
At Jefferson Middle School, eighty-two students were asked which sports they plan to participate in for the coming year. Twenty students plan to participate in track and cross country; six students in cross country and basketball; and eight students in track and basketball. Twelve students plan to participate in all three sports. A total of thirty students plan to participate in basketball, and a total of forty students plan to participate in cross country. Ten students don't plan to participate in any of the three sports. How many students plan to just participate in cross country? 2 4 40 30
Answer:
40
Step-by-step explanation:
In the question only lies the answer:
"and a total of forty students plan to participate in cross country."
Answer:
2
Step-by-step explanation:
2