Answer:
It is 300.88.
Step-by-step explanation: In order for the perimeter of the base to be 18.2, the length and width would have to be 9.1, knowing this, you can plug it into the formula for a pyramid like usual with the height provided.
Ethan is installing a new tile backsplash in his kitchen. The tile he likes costs $3.50 per square foot. The area he is tiling is 36.5 square feet. How much will Ethan pay for the tile for his backsplash?
Answer:
$127.75
Step-by-step explanation:
Multiply the cost by the area to find the total cost
a study is planned to compare the proportion of men who dislike anchovies with the proportion of women who dislike anchovies. the study seeks to determine if the proportions of men and women who dislike anchovies are different. a sample of 41 men was taken and the p^ estimate for the true proportion of men who dislike anchovies was determined to be 0.67. a sample of 56 women was also taken and the p^ estimate for the true proportion of women who dislike anchovies was determined to be 0.84. are the requirements satisfied to perform this hypothesis test
Answer:
d. No because n·(1 - [tex]\hat p[/tex]) = 8.96 is less than 10
Step-by-step explanation:
Question options;
a. Yes because the sample sizes of both groups are greater than 5
b. Yes, because in both cases n·[tex]\hat p[/tex] > 10
c. Yes, because we know that the population is evenly distributed
d. No, because the n·(1 - [tex]\hat p[/tex]) is less than 10
Explanation;
The given data are;
The number of men in the sample of men, n₁ = 41
The proportion of men who dislike anchovies, [tex]\hat p_1[/tex] = 0.67
The number of women in the sample of women, n₂ = 56
The proportion of men who dislike anchovies, [tex]\hat p_2[/tex] = 0.84
The assumptions for an analysis of the difference between means using a T-test are;
1) The data should be from a random sample of the population
2) The variables should be approximately normal (n·[tex]\hat p[/tex] ≥ 10, and n·(1 - [tex]\hat p[/tex]) ≥ 10)
3) The scale of the data is a continuous ordinance scale
4) The sample size should be large
5) The sample standard deviations should be approximately equal
From the requirement for normality, we have;
For the sample of men, n₁·[tex]\hat p[/tex]₁ = 41 × 0.67 = 24.47 > 10
n₁·(1 - [tex]\hat p[/tex]₁) = 41 × (1 - 0.67) = 13.53 > 10
For the sample of women, n₂·[tex]\hat p[/tex]₂ = 56 × 0.84 = 47.04 > 10
n₂·(1 - [tex]\hat p[/tex]₂) = 56 × (1 - 0.84) = 8.96 < 10
Therefore, the for n₂·(1 - [tex]\hat p[/tex]₂), the sample does not meet the requirement for normality
The correct option is d. No because n₂·(1 - [tex]\hat p[/tex]₂) = 8.96 is less than 10
Peter gets 1 star for every 3 correct answers he gets on khan academy. What is the minimum number of correct answers Peter must enter if he wants to get 12 stars?
For full points you need to write an equation that uses a variable and division, show what work you did to solve it, and then give me a final answer.
Answer:
Peter needs to get 36 problems correct to get 12 stars
Step-by-step explanation:
for every 3 correct answers, Peter gets 1 star
1/3
if he wants 12 stars he will have to get 'x' amount of questions correctly
considering this is constant, 1/3 will have to equal 12/x
[tex]\frac{1}{3} = \frac{12}{x} \\\\1x = 36\\[/tex]
1x = x, so you don't need to do anything to 36
therefore the answer is that you need to get 36 problems correct to get 12 stars
what is the answer to this question
Answer:
[tex]slope = \frac{2 - ( - 1)}{0 - ( - 1)} \\ = 3 \\ y = mx + c \\ 2 = (0 \times 3) + c \\ c = 2 \\ { \boxed{y = 3x + 2}}[/tex]
in a math final please help asap
find the angle r show ur work
Answer:
The measure of angle R is 112 degrees
Step-by-step explanation:
Using the given markings, we can see that we have an isosceles triangle
so RT is also 3x-2
Mathematically, the sum of the interior angles of a triangle is 180:
Thus;
9x + 4 + (3x-2) + (3x-2) = 180
9x + 3x +3x + 4-2-2 = 180
15x = 180
x = 180/15
x = 12
Recall; Angle R is 9x + 4
= 9(12) + 4 = 108 + 4 = 112
helpppp meee pleaseeeeewee
We can't see what you are talking about. send another one.
Simplify the expression 3 (9+ 4z - 5)
Answer:
12x+12
Step-by-step explanation:
Multiply 3 to everything in the parenthesis
so it becomes
18+12x-15
=12x+12
Use the chart to multiply the binomial by the trinomial.
The expression (y + 3)(y squared minus 3 y + 9) is shown above a blank table with 3 columns and 2 rows.
What is the product?
y3 + 27
y3 – 27
y3 – 6y2 + 27
y3 + 6y2 + 27
Answer:
A. y^3 + 27
Step-by-step explanation:
Ed22
Answer: A. y3+27
Step-by-step explanation:
$2000 at 9% for 1 year
Answer:
$180
Step-by-step explanation:
9% = 0.09
2000 * 0.09 = 180
The sum of a number and two times a smaller number is 62. Three times the bigger number exceeds the smaller number by 116.
Answer:
10 and 42
Step-by-step explanation:
The difficulty with word problems is translating them into math.
Let's do that
---------------------
The sum of a number and two times a smaller number is 62.
let's call the bigger number b, and the smaller number s
b + 2s = 62
Three times the bigger number exceeds the smaller number by 116
3b = s + 116
-----------------------
Now manipulate one of the equations to isolate the variable
3b = s + 116
Subtract 116 from both sides
3b - 116 = s
substitute for s = 3b - 116 in
b + 2s = 62
b + 2(3b - 116) = 62
Distribute
b + 6b - 232 = 62
combine like terms
7b = 294
Divide both sides by 7
b = 42
to find s plug in b = 42 into
b + 2s = 62
42 + 2s = 62
subtract 42 from both side
2s = 20
divide both sides by 2
s = 10
How many marble do you need to balance to scale
A. 4
B. 3
C. 2
D. 1
Answer: its B.
Step-by-step explanation:
have a good day hope this help
Answer:
B.3
Step-by-step explanation:
just divide 6 by 2
A jar contains five red marbles and three green marbles. A
marble is drawn at random and not replaced. A second marble is
then drawn from the jar.
find the probability that both marbles are the same color
Answer:
I figured out that the probability that both marbles are red is 20/56 and the probability that both are green is 6/56. Then I added them together to get 26/56.
Hope this answer is right !
Please help?? I have an exam tomorrow
Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
x² - 5xy + 6y² = x² - 3xy - 2xy + 6y²
= x(x - 3y) - 2y(x - 3y)
= (x - 3y)(x -2y)
x² - 4xy + 3y² = x² -xy - 3xy + 3y²
= x(x - y) - 3y(x - y)
= (x - y)(x - 3y)
x² - 3xy + 2y² = x² - xy - 2xy + 2y²
= x(x - y) - 2y(x - y)
= (x - y)(x - 2y)
Least common denominator = (x-y)(x - 2y)(x - 3y)
[tex]RHS = \frac{1*(x-y)}{(x-3y)(x-2y)*(x-y)}+\frac{a*(x-2y)}{(x-y)(x-3y)*(x-2y)}+\frac{1*(x-3y)}{(x-y)(x-2y)*(z-3y)}\\\\= \frac{x- y + ax - 2ay +x -3y}{(x-y)(x-2y)(x-3y)}\\\\= \frac{2x -4y +ax - 2ay}{ x^{3}-5x^{2}y+8xy^{2}-4y^{3}}[/tex]
y-(-4) =m(x-(-5)) solve for m
Answer:
m = [tex]\frac{y+4}{x+5}[/tex]
Step-by-step explanation:
y-(-4) = m(x-(-5))
Simplify, distribute the negative sign outside of the parenthesis, remember negative times negative equals positive
y + 4 = m (x + 5)
Inverse operations, divide the equation by the value inside of the parenthesis
[tex]\frac{y+4}{x+5}[/tex] = m
Answer:
m=y+4x/x+5 your welcome !!
Help please! No links!
Answer:
It is placed to the left of –2
Select the equation that is parallel to: y = -4x + 5
A. y = 4x - 5
B. y = 1/4x - 5
C. y = -1/4x - 5
D. y = -4x - 5
Answer:
D.
[tex]y = - 4x - 5[/tex]
Step-by-step explanation:
This is because the slopes are the same
The estimated daily living costs for an executive traveling to various major cities follow. The estimates include a single room at a four-star hotel, beverages, breakfast, taxi fares, and incidental costs. Click on the datafile logo to reference the data. City Daily Living Cost ($) City Daily Living Cost ($) Bangkok 242.87 Mexico City 212.00 Bogota 260.93 Milan 284.08 Cairo 194.19 Mumbai 139.16 Dublin 260.76 Paris 436.72 Frankfurt 355.36 Rio de Janeiro 240.87 Hong Kong 346.32 Seoul 310.41 Johannesburg 165.37 Tel Aviv 223.73 Lima 250.08 Toronto 181.25 London 326.76 Warsaw 238.20 Madrid 283.56 Washington, D.C. 250.61 a. Compute the sample mean (to 2 decimals). b. Compute the sample standard deviation (to 2 decimals). c. Compute a confidence interval for the population standard deviation (to 2 decimals).
Answer:
[tex]\bar x = 260.1615[/tex]
[tex]\sigma = 70.69[/tex]
The confidence interval of standard deviation is: [tex]53.76[/tex] to [tex]103.25[/tex]
Step-by-step explanation:
Given
[tex]n =20[/tex]
See attachment for the formatted data
Solving (a): The mean
This is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{242.87 +212.00 +260.93 +284.08 +194.19 +139.16 +260.76 +436.72 +355.36 +.....+250.61}{20}[/tex]
[tex]\bar x = \frac{5203.23}{20}[/tex]
[tex]\bar x = 260.1615[/tex]
[tex]\bar x = 260.16[/tex]
Solving (b): The standard deviation
This is calculated as:
[tex]\sigma = \sqrt{\frac{\sum(x - \bar x)^2}{n-1}}[/tex]
[tex]\sigma = \sqrt{\frac{(242.87 - 260.1615)^2 +(212.00- 260.1615)^2+(260.93- 260.1615)^2+(284.08- 260.1615)^2+.....+(250.61- 260.1615)^2}{20 - 1}}[/tex][tex]\sigma = \sqrt{\frac{94938.80}{19}}[/tex]
[tex]\sigma = \sqrt{4996.78}[/tex]
[tex]\sigma = 70.69[/tex] --- approximated
Solving (c): 95% confidence interval of standard deviation
We have:
[tex]c =0.95[/tex]
So:
[tex]\alpha = 1 -c[/tex]
[tex]\alpha = 1 -0.95[/tex]
[tex]\alpha = 0.05[/tex]
Calculate the degree of freedom (df)
[tex]df = n -1[/tex]
[tex]df = 20 -1[/tex]
[tex]df = 19[/tex]
Determine the critical value at row [tex]df = 19[/tex] and columns [tex]\frac{\alpha}{2}[/tex] and [tex]1 -\frac{\alpha}{2}[/tex]
So, we have:
[tex]X^2_{0.025} = 32.852[/tex] ---- at [tex]\frac{\alpha}{2}[/tex]
[tex]X^2_{0.975} = 8.907[/tex] --- at [tex]1 -\frac{\alpha}{2}[/tex]
So, the confidence interval of the standard deviation is:
[tex]\sigma * \sqrt{\frac{n - 1}{X^2_{\alpha/2} }[/tex] to [tex]\sigma * \sqrt{\frac{n - 1}{X^2_{1 -\alpha/2} }[/tex]
[tex]70.69 * \sqrt{\frac{20 - 1}{32.852}[/tex] to [tex]70.69 * \sqrt{\frac{20 - 1}{8.907}[/tex]
[tex]70.69 * \sqrt{\frac{19}{32.852}[/tex] to [tex]70.69 * \sqrt{\frac{19}{8.907}[/tex]
[tex]53.76[/tex] to [tex]103.25[/tex]
Simplify the expression. 7(-2-7k) +4 Show all work below
(yo please help me im failing math and I have 1 day left of school. ;-;)
==================================================
Work Shown:
7(-2-7k) + 4
7(-2) + 7(-7k) + 4
-14 - 49k + 4
-49k + (-14+4)
-49k - 10
In the second step, I distributed the outer 7 to each term inside. From there, I grouped and combined like terms, which were the -14 and 4.
Simplify the expression. 4^0
be careful i think this is a trick question
Answer:
1
Step-by-step explanation:
4^0
Any number raised to the 0 power is 1.
Answer:
1
Step-by-step explanation:
Anything raised to 0 is 1.
subtract 8x-8y+9 from 5x-8y-z
how do you find x in this? I need help asap!!
Answer:
Step-by-step explanation:
According to the theorem, the angle measuring 110 is one-half the measure of the arc it intercepts. That means that the major arc (this arc of which I'm speaking) measures 110 * 2 = 220.
Since the outside of a circle, regardless of how big or small the circle is, has a degree measure of 360, then x = 360 - 220 so
x = 140°
3/4x × 12/11 ÷ 3x/22
Answer:
242/48
Step-by-step explanation:
A car bought for $13,000 despreciates at 12% annually. What will the car be worth after 10 Years ?
Answer:
I think $3620.51
Step-by-step explanation:
If i did it right, the equation should be something like this?
13,000(.88)^10
There are 5 red, 4 blue, and 3 green marbles in a bag. What are the odds of randomly pulling a blue marble out of the bag and then randomly pulling a green marble out of the bag? The blue marble is NOT replaced.
A - 7/2
B - 12/24
C - 1/12
D - 1/11
A rocket is launched from a tower. The height of the rocket, y in feet, is related to the time after launch, x in seconds, by the given equation. Using this equation, find the time that the rocket will hit the ground, to the nearest 100th of second.
y=-16x^2+165x+69
Answer:
The rocket hits the gorund after approximately 10.71 seconds.
Step-by-step explanation:
The height of the rocket y in feet x seconds after launch is given by the equation:
[tex]y=-16x^2+165x+69[/tex]
And we want to find the time in which the rocket will hit the ground.
When it hits the ground, its height above ground will be 0. Hence, we can let y = 0 and solve for x:
[tex]0=-16x^2+165x+69[/tex]
We can use the quadratic formula:
[tex]\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
In this case, a = -16, b = 165, and c = 69.
Substitute:
[tex]\displaystyle x=\frac{-165\pm\sqrt{(165)^2-4(-16)(69)}}{2(-16)}[/tex]
Evaluate:
[tex]\displaystyle x=\frac{-165\pm\sqrt{31641}}{-32}=\frac{165\pm\sqrt{31641}}{32}[/tex]
Hence, our solutions are:
[tex]\displaystyle x_1=\frac{165+\sqrt{31641}}{32}\approx 10.71\text{ or } x_2=\frac{165-\sqrt{31641}}{32}\approx-0.40[/tex]
Since time cannot be negative, we can ignore the first answer.
So, the rocket hits the gorund after approximately 10.71 seconds.
Answer:
10.71
Step-by-step explanation:
the person below was correct!
15 point question!
Hi can you help? Thanks! *if you are gonna answer, actually answer please!*
Brainly if you get it right!
Answer:
The answer is 129
Step-by-step explanation:
5(exponent 4)/5 = 125 +4 equals 129
I think
Answer:
129
Step-by-step explanation:
5^4 / 5 + 4
We know that a^b / a^c = a^(b-c)
5^(4-1) +5
5^3 +4
125 +4
129
Find a parabola with equation y=ax^2+bx+c that has a slope 10 at x=1, slope -26 at x=-1, and passes through the point (2,29)
9514 1404 393
Answer:
y = 9x^2 -8x +9
Step-by-step explanation:
The given equation has derivative ...
y' = 2ax +b
The requirements on slope give rise to two equations:
2a(1) +b = 10
2a(-1) +b = -26
Adding these equations together gives ...
2b = -16 ⇒ b = -8
Then we have ...
2a -8 = 10
a = (10 +8)/2 = 9
__
The given point lets us find the constant term c.
y = 9x^2 -8x +c
c = y -(9x -8)x = 29 -(9(2) -8)(2) = 29 -20 = 9
The equation of the parabola is ...
y = 9x^2 -8x +9
Let z be inversely proportional to the cube root of y. When y =.064, z =3
a) Find the constant of proportionality k.
b) Find the value of z when y = 0.125.
Given:
z be inversely proportional to the cube root of y.
When y =0.064, then z =3.
To find:
a) The constant of proportionality k.
b) The value of z when y = 0.125.
Solution:
a) It is given that, z be inversely proportional to the cube root of y.
[tex]z\propto \dfrac{1}{\sqrt[3]{y}}[/tex]
[tex]z=k\dfrac{1}{\sqrt[3]{y}}[/tex] ...(i)
Where, k is the constant of proportionality.
We have, z=3 when y=0.064. Putting these values in (i), we get
[tex]3=k\dfrac{1}{\sqrt[3]{0.064}}[/tex]
[tex]3=k\dfrac{1}{0.4}[/tex]
[tex]3\times 0.4=k[/tex]
[tex]1.2=k[/tex]
Therefore, the constant of proportionality is [tex]k=1.2[/tex].
b) From part (a), we have [tex]k=1.2[/tex].
Substituting [tex]k=1.2[/tex] in (i), we get
[tex]z=1.2\dfrac{1}{\sqrt[3]{y}}[/tex]
We need to find the value of z when y = 0.125. Putting y=0.125, we get
[tex]z=1.2\dfrac{1}{\sqrt[3]{0.125}}[/tex]
[tex]z=\dfrac{1.2}{0.5}[/tex]
[tex]z=2.4[/tex]
Therefore, the value of z when y = 0.125 is 2.4.
Proportional quantities are either inversely or directly proportional. For the given relation between y and z, we have:
The constant of proportionality k = 1.2, andWhen y = 0.125 , z = 2.4What is directly proportional and inversely proportional relationship?Let there are two variables p and q
Then, p and q are said to be directly proportional to each other if
[tex]p = kq[/tex]
where k is some constant number called constant of proportionality.
This directly proportional relationship between p and q is written as
[tex]p \propto q[/tex] where that middle sign is the sign of proportionality.
In a directly proportional relationship, increasing one variable will increase another.
Now let m and n are two variables.
Then m and n are said to be inversely proportional to each other if
[tex]m = \dfrac{c}{n}[/tex]
or
[tex]n = \dfrac{c}{m}[/tex]
(both are equal)
where c is a constant number called constant of proportionality.
This inversely proportional relationship is denoted by
[tex]m \propto \dfrac{1}{n}\\\\or\\\\n \propto \dfrac{1}{m}[/tex]
As visible, increasing one variable will decrease the other variable if both are inversely proportional.
For the given case, it is given that:
[tex]z \propto \dfrac{1}{^3\sqrt{y}}[/tex]
Let the constant of proportionality be k, then we have:
[tex]z = \dfrac{k}{^3\sqrt{y}}[/tex]
It is given that when y = 0.064, z = 3, thus, putting these value in equation obtained above, we get:
[tex]k = \: \: ^3\sqrt{y} \times z = (0.064)^{1/3} \times (3) = 0.4 \times 3 = 1.2[/tex]
Thus, the constant of proportionality k is 1.2. And the relation between z and y is:
[tex]z = \dfrac{1.2}{^3\sqrt{y}}[/tex]
Putting value y = 0.0125, we get:
[tex]z = \dfrac{1.2}{^3\sqrt{y}}\\\\z = \dfrac{1.2}{(0.125)^{1/3} } = \dfrac{1.2}{0.5} = 2.4[/tex]
Thus, for the given relation between y and z, we have:
The constant of proportionality k = 1.2, andWhen y = 0.125 , z = 2.4Learn more about proportionality here:
https://brainly.com/question/13082482
Max bought three items for $18.95 each and two items for $26.71 each. How much change would he get from $500 ?
Answer:
$389.73 in change
Step-by-step explanation
500-( (18.95 x 3)+(26.71 x 2) )=
500-(56.85+53.42)=
500-110.27=
389.73
help solving inequalities true or false (middle school) first person to answer i’ll give brainliest please!!!
Answer:
aef true and bcd false
hope u get well in your exams
Step-by-step explanation: