Answer:
18 is 64 days
20 is 1 37/128
Step-by-step explanation:
I looked it up if I am being completely honest with you but it should be correct
The circumference of a circle is 20π. What is the area of the circle?
Answer:
The area of the circle is 100 square units.
Step-by-step explanation:
We are given that the circumference of a circle is 20π, and we want to determine its area.
Recall that the circumference of a circle is given by the formula:
[tex]\displaystyle C = 2\pi r[/tex]
Substitute:
[tex]20 \pi = 2 \pi r[/tex]
Solve for the radius:
[tex]\displaystyle r = \frac{20\pi}{2\pi} = 10[/tex]
The area of a circle is given by:
[tex]\displaystyle A = \pi r^2[/tex]
Since the radius is 10 units:
[tex]\displaystyle A = \pi (10)^2[/tex]
Evaluate:
[tex]\displaystyle A = 100\pi\text{ units}^2[/tex]
In conclusion, the area of the circle is 100 square units.
help please ITS OF TRIGONOMETRY
PROVE
Answer:
The equation is true.
Step-by-step explanation:
In order to solve this problem, one must envision a right triangle. A diagram used to represent the imagined right triangle is included at the bottom of this explanation. Please note that each side is named with respect to the angle is it across from.
Right angle trigonometry is composed of a sequence of ratios that relate the sides and angles of a right triangle. These ratios are as follows,
[tex]sin(\theta)=\frac{opposite}{hypotenuse}\\\\cos(\theta)=\frac{adjacent}{hypotenuse}\\\\tan(\theta)=\frac{opposite}{adjacent}[/tex]
One is given the following equation,
[tex]\frac{sin(A)+sin(B)}{cos(A) +cos(B)}+\frac{cos(A)-cos(B)}{sin(A)-sin(B)}=0[/tex]
As per the attached reference image, one can state the following, using the right angle trigonometric ratios,
[tex]sin(A)=\frac{a}{c}\\\\sin(B)=\frac{b}{c}\\\\cos(A)=\frac{b}{c}\\\\cos(B)=\frac{a}{c}[/tex]
Substitute these values into the given equation. Then simplify the equation to prove the idenity,
[tex]\frac{sin(A)+sin(B)}{cos(A) +cos(B)}+\frac{cos(A)-cos(B)}{sin(A)-sin(B)}=0[/tex]
[tex]\frac{\frac{a}{c}+\frac{b}{c}}{\frac{b}{c}+\frac{a}{c}}+\frac{\frac{b}{c}-\frac{a}{c}}{\frac{a}{c}-\frac{b}{c}}=0[/tex]
[tex]\frac{\frac{a+b}{c}}{\frac{a+b}{c}}+\frac{\frac{b-a}{c}}{\frac{a-b}{c}}[/tex]
Remember, any number over itself equals one, this holds true even for fractions with fractions in the numerator (value on top of the fraction bar) and denominator (value under the fraction bar).
[tex]\frac{\frac{a+b}{c}}{\frac{a+b}{c}}+\frac{\frac{b-a}{c}}{\frac{a-b}{c}}[/tex]
[tex]\frac{\frac{a+b}{c}}{\frac{a+b}{c}}+\frac{\frac{-(a-b)}{c}}{\frac{a-b}{c}}[/tex]
[tex]1+(-1)=0[/tex]
[tex]1-1=0[/tex]
[tex]0=0[/tex]
GIVING BRAINLY TO CORRECT ANSWER!!
Answer:
7/0
Step-by-step explanation:
7/0 = 7
A rational number is written in the form of p/q, where q is not equal to zero. Therefore it is not a rational number.
I hope this answer helps you out! Brainliest would be appreciated :)Answer:
7/0
Step-by-step explanation:
a irrational can not be written as a fraction
a sum of money Doubles itself in 5 years what is rate of simple interest
Step-by-step explanationIf you are reading this say
thank u
I don't understand need help?
9514 1404 393
Answer:
2. (only)
Step-by-step explanation:
The Pythagorean theorem tells you the sum of the squares of the two legs of a right triangle is equal to the square of the hypotenuse. To determine if these are right triangles, determine if that condition is met.
1. 3^2 +5^2 = 9 + 25 = 34 ≠ (√35)^2 . . . . not a right triangle
2. 5^2 +4^2 = 25 +16 = 41 = (√41)^2 . . . a right triangle
3. 6^2 +8^2 = 36 +64 = 100 ≠ (√10)^2 . . . . not a right triangle
4. 3^2 +3^2 = 9 +9 = 18 ≠ (3√3)^2 = 27 . . . . not a right triangle
SEE QUESTION IN IMAGE
Answer:
B. 48°Step-by-step explanation:
∠OST = 90° as ST ⊥ OS (tangent is perpendicular to radius at same point)
m∠OSP = 1/2(180° - m∠SOP) = 90° - 96°/2 = 42° (sum of interior angles of the triangle SOP)
m∠PST = 90° - m∠OSP = 90° - 42° = 48° (angle addition postulate)
Correct choice is B
Which is the graph of y = [x]-2?
PLEASE HELP TIMED PLEASE
Answer:
3rd graph
Step-by-step explanation:
Help what is x
When x^5 is 225
Answer:
Solution given:
x^5=225
we have
x=[tex] \sqrt[5]{225} [/tex]
x=2.9541
Hello!
[tex] \bf {x}^{5} = 225[/tex]
Extract the radical on both sides of the equation.[tex] \bf x = \sqrt[5]{225} [/tex]
[tex] \bf x ≈2.95418[/tex]
Answer: x ≈ 2,95418
Good luck! :)
I need the answer ASAP
1. Add Area (Split the shape up to two or more known
shapes first)
12.5 ft
11.6 ft
19.2 ft
16.7 ft
Answer:
Step-by-step explanation:
The shape cam be split into a triangle and a trapezoid
✔️Area of the trapezoid = ½(a + b)h
Where,
a = 12.5 ft
b = 16.7 ft
h = 11.6 ft
Plug in the values
Area of the trapezoid = ½(12.5 + 16.7)*11.6
Area of trapezoid = 169.36 ft²
✔️Area of the triangle = ½*b*h
b = 16.7 ft
h = 19.2 - 11.6 = 7.6 ft
Area of the triangle = ½*16.7*7.6
= 63.46 ft²
✔️Area of the shape = 169.36 + 63.46
= 232.82 ft²
solve for w.
-9/7=-2/3w-1/2
Answer: [tex]w=\frac{33}{28}[/tex]
Step-by-step explanation:
To solve for w, we want to isolate w.
[tex]-\frac{9}{7}=-\frac{2}{3}w-\frac{1}{2}[/tex] [add both sides by 1/2]
[tex]-\frac{11}{14}=-\frac{2}{3}w[/tex] [multiply both sides by -3/2]
[tex]w=\frac{33}{28}[/tex]
Now we know that [tex]w=\frac{33}{28}[/tex].
Answer:
[tex]\sf w=\dfrac{33}{28} \\[/tex]
Step-by-step explanation:
[tex]\sf -\dfrac{9}{7} =-\dfrac{2w}{3} -\dfrac{1}{2}[/tex]
First, take -2w/3 to the left side.
[tex]\sf -\dfrac{9}{7}+\dfrac{2w}{3} = -\dfrac{1}{2}[/tex]
Then, add 9/7 to both sides.
[tex]\sf \dfrac{2w}{3} = -\dfrac{1}{2}+\dfrac{9}{7}[/tex]
Make the denominators the same and add the fractions.
[tex]\sf \dfrac{2w}{3} = -\dfrac{1*7}{2*7}+\dfrac{9*2}{7*2}\\\\\sf \dfrac{2w}{3} = -\dfrac{7}{14}+\dfrac{18}{14}\\\\\sf \dfrac{2w}{3} = \dfrac{-7+18}{14}\\\\\sf \dfrac{2w}{3} = \dfrac{11}{14}[/tex]
Use cross multiplication.
[tex]\sf 2w*14=11*3\\\\28w=33[/tex]
Divide both sides by 28.
[tex]\sf w=\dfrac{33}{28} \\[/tex]
Given the mean of a random variable, X, is 10 and P(X < 11) = 0.67. Find the standard deviation.
Answer:
Step-by-step explanation:
This is the problem we need to solve:
[tex]z=\frac{x_i-\bar{x}}{\sigma}[/tex] and we have everything but the z-score (which we find from a table) with our main unknown being the standard deviation.
If the probability that a random variable that is less than 11 is .67, we first have to find the z-score from the table that is closest to .67, and there are 2:
P(z < .43) = .66640 and P(z < .44) = .67003
We'll use z = .44
[tex].44=\frac{11-10}{\sigma}[/tex] and
[tex].44=\frac{1}{\sigma}[/tex] and
[tex]\sigma=\frac{1}{.44}[/tex] so
σ = 2.27 (check it; it works!)
helpppppppppppppp meeeeeeeeeeeeeeeee plsssssssssssssssss!!!!!!!!!!!!!
Answer:
a=13
Step-by-step explanation:
-90=-6a-12
-6a=-78
a=13
Answer:
a=13 well as u can see the other comment already gave an explanation of y it is a=13 and i completely agree with it have a nice afternoon,night,or day to u
Step-by-step explanation:
Trigonometric ratios
class 9
please answer my questions
Step-by-step explanation:
Hi there!
Please see the answer in the picture.
Hope it helps!
1. Approach
One is given a trigonometric equation with and one is asked to prove that it is true. Using the attached image, combined with the knowledge of trigonometry, one can evaluate each trigonometric function. Then one can simplify each ratio to solve. To yield the most accurate result, one has to each of the ratios in a fractional form, rather than simplifying it into a decimal form. Remember the right angle trigonometric ratios, these ratios describe the relationship between the sides and angles in a right triangle. Such ratios are as follows,
[tex]sin(\theta)=\frac{opposite}{hypotenuse}\\\\cos(\theta)=\frac{adjacent}{hypotenuse}\\\\tan(\theta)=\frac{opposite}{adjacent}\\\\csc(\theta)=\frac{hypotenuse}{opposite}\\\\sec(\theta)=\frac{hypotenuse}{adjacent}\\\\cot(\theta)=\frac{adjacent}{opposite}[/tex]
Please note that the terms (opposite) and (adjacent) are relative to the angle uses in the ratio, however the term (hypotenuse) refers to the side opposite the right angle, this side never changes its name. Use these ratios to evaluate the trigonometric functions. Then simplify to prove the identity.
2. Problem (9)
[tex]\frac{sin(60)+cos(30)}{1+sin(30)+cos(60)}=sin(60)[/tex]
As per the attached image, the following statements regarding the value of each ratio can be made:
[tex]sin(60)=\frac{\sqrt{3}}{2}\\\\cos(30)=\frac{\sqrt{3}}{2}\\\\sin(30)=\frac{1}{2}\\\\cos(60)=\frac{1}{2}[/tex]
Substitute,
[tex]\frac{sin(60)+cos(30)}{1+sin(30)+cos(60)}=sin(60)[/tex]
[tex]\frac{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}{1+\frac{1}{2}+\frac{1}{2}}=\frac{\sqrt{3}}{2}[/tex]
Simplify,
[tex]\frac{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}{1+\frac{1}{2}+\frac{1}{2}}=\frac{\sqrt{3}}{2}[/tex]
[tex]\frac{\frac{2\sqrt{3}}{2}}{1+\frac{1}{2}+\frac{1}{2}}=\frac{\sqrt{3}}{2}[/tex]
[tex]\frac{\frac{2\sqrt{3}}{2}}{1+1}=\frac{\sqrt{3}}{2}[/tex]
[tex]\frac{\sqrt{3}}{1+1}=\frac{\sqrt{3}}{2}[/tex]
[tex]\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}[/tex]
Thus, this equation is true.
2. Problem (10)
Use a similar strategy to evaluate this equation,
[tex]\frac{1-cos(30)}{sin(30)}=\frac{1-cot(60)}{1+cot(60)}[/tex]
Use the attached image to evaluate the ratios.
[tex]cos(30)=\frac{\sqrt{3}}{2}\\\\sin(30)=\frac{1}{2}\\\\cot(60)=\frac{1}{\sqrt{3}}[/tex]
Substitute,
[tex]\frac{1-cos(30)}{sin(30)}=\frac{1-cot(60)}{1+cot(60)}[/tex]
[tex]\frac{1-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}[/tex]
Simplify,
[tex]\frac{1-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}[/tex]
[tex]\frac{\frac{2-\sqrt{3}}{2}}{\frac{1}{2}}=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}[/tex]
[tex]\frac{\frac{2-\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}[/tex]
[tex]\frac{\frac{2-\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}[/tex]
[tex]2-\sqrt{3}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}[/tex]
[tex]2-\sqrt{3}=\frac{\sqrt{3}-1}{\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}+1}}[/tex]
[tex]2-\sqrt{3}=\frac{\sqrt{3}-1}{\sqrt{3}+1}[/tex]
Rationalize the denominator,
[tex]2-\sqrt{3}=\frac{\sqrt{3}-1}{\sqrt{3}+1}[/tex]
[tex]2-\sqrt{3}=\frac{\sqrt{3}-1}{\sqrt{3}+1}*\frac{\sqrt{3}-1}{\sqrt{3}-1}[/tex]
[tex]2-\sqrt{3}=\frac{(\sqrt{3}-1)^2}{3-1}[/tex]
[tex]2-\sqrt{3}=\frac{3-2\sqrt{3}+1}{2}[/tex]
[tex]2-\sqrt{3}=\frac{4-2\sqrt{3}}{2}[/tex]
[tex]2-\sqrt{3}=2-\sqrt{3}[/tex]
Therefore, this equation is also true.
if A ={1,2,3,4} and B={3,4,5,6} find A-B.
Answer: {1,2} is the answer.
Step-by-step explanation:
A-B
{1,2,3,4}-{3,4,5,6)
= {1,2}
If n equals 5 and b equals 4 what is n + b * 5
Answer:
25Step-by-step explanation:
Given,
n = 5
and, b = 4
Equation:
n + b × 5
= 5 + 4 × 5
= 5 + 20
= 25 (Ans)
How many gallons equal 26 liters
Answer:
6.8 gallions i believe. im not quite sure
What is the slope of a line that is perpendicular to the line whose equation is
y= 4x – 3?
Answer:
-1/ 4
Step-by-step explanation:
y = 4x-3 has a slope of 4 because the equation is in slope intercept form
y = mx+b where the slope is m
Perpendicular lines have slopes that are negative reciprocals
-1/ 4 is the slope of a line that is perpendicular to y = 4x-3
Can some help please
Answer:
Step-by-step explanation:
2 * 10^7 You are to use a single digit. That's the 2 on the left. Then count what it takes to get the decimal between the 2 and the 3. It's 7
0.000136
Count the number of zeros. Add a minus 1. You want the number to be counted until you get minus 1 which is the number of powers after the 1.
1 * 10^-4
26837 becomes 2 * 10^4. 4 is the number of digits you have before you get to a number between 1 and 10.
0.0302 becomes 3 * 10^-(1 + 1) = 3 * 10^-2
u4gent help needed
help me with the question of o.math
Answer:
1≤f(x)≤5
Step-by-step explanation:
-1≤x≤1
-2≤2x≤2 (Multiplied by 2 both side)
-2+3≤2x+3≤2+3 (Adding three both sides)
1≤f(x)≤5
Find the first three terms of the sequence given by the following.
a
n = 25-3(n − 1), n= 1, 2, 3, ...
A. 28, 25, 22
B. 25, 22, 19
C. 25, 28, 31
D. 28, 31, 34
the answer is
A. 28, 25, 22
Am I suppose to substitute the variables with random numbers in order to answer these questions???
Translation A maps (x, y) to (x + n, y + 1). Translation B maps (x, y) to (x +s, y + m).
1. Translate a point using Translation A, followed by Translation B. Write an algebraic rule for the final image of the point after this composition.
2. Translate a point using Translation B, followed by Translation A. Write an algebraic rule for the final image of the point after this composition.
3. Compare the rules you wrote for parts (a) and (b). Does it matter which translation you do first? Explain your reasoning.
9514 1404 393
Answer:
(x, y) ⇒ (x +n +s, y +1 +m)(x, y) ⇒ (x +s +n, y +m +1)they are identical in effect; order does not matterStep-by-step explanation:
Substitute the expressions.
A then BAfter the first translation, the value of x is (x+n). Put that as the value of x in the second translation.
x ⇒ x +s . . . . . . . . . the definition of the second translation
(x+n) ⇒ (x+n) +s . . . the result after both translations
The same thing goes for y. After the first translation, its new value is (y+1).
y ⇒ y +m . . . . . . . . the definition of the second translation
(y+1) ⇒ (y+1) +m . . . the result of both translations
Then the composition of A followed by B is (x, y) ⇒ (x +n +s, y +1 +m).
__
B then AThe same reasoning applies. After the B translation, the x-coordinate is (x+s) and the y-coordinate is (y+m). Then the A translation changes these to ...
x ⇒ x +n . . . . . . . . . . definition of translation A
(x+s) ⇒ (x+s) +n . . . . translation A operating on point translated by B
y ⇒ y +1 . . . . . . . . . . . definition of translation A
(y+m) ⇒ (y+m) +1 . . . . translation A operating on point translated by B
The composition of B followed by A is (x, y) ⇒ (x + s + n, y + m + 1).
__
You should recognize that the sums (x+n+s) and (x+s+n) are identical. The commutative and associative properties of addition let us rearrange the order of the terms with no effect on the outcome.
The two translations give the same result in either order.
In the number 9663 which places contain digits where one dogit is 10 times as great as the other?
Answer: Hundreds and tens place values (the two copies of '6')
Explanation:
We're looking for where the digits are the same, which would be those two copies of '6'
The first 6 on the left is in the hundreds place. It represents 600
The other 6 is in the tens place, and it represents 60
The jump from 60 to 600 is "times 10".
An angle measures 73.6° more than the measure of its complementary angle. What is the measure of each angle?
PLEASE help, I'm struggling a lot!
Answer:
Let ABC = 73.6
Complement = ABD = 16.4
ABx = unknown angle
ABx + (ABx + 73.6) = 90
ABx = 16.4 / 2 = 8.2
The angles are 8.2 and (8.2 + 73.6) = 90
HELP ITS DUE IN THE MORNING AND ITS 3:57
Answer:
A " (1,-2)
B " (4,0)
C " (6,-3)
Step-by-step explanation:
Hope it helped.
° ° °
Which segment is parallel to ED?
Answer:
AB
Step-by-step explanation:
The segments that are parallel need to be in the same direction ( up and down)
The segments that are parallel are FH, AB, GC
Answer:
AB
Step-by-step explanation:
since is a cube all of the angles are 90 degees and this only possibel whn the line That a vertical a parrelllt to each other
find the mean value of the following. 5, 11, 4, 10, 8, 6
A recipe requires 500 mL of milk. You will make the recipe once a month for the next 4 months. You do not use milk other than for cooking. Which container of milk should you buy? (1L=1000 mL) *
Answer: 1 month = 500ml
4 month = 500ml × 4 = 2000ml = 2L
you should use the 2L container
Step-by-step explanation:
please help i need to finnish this!
Answer:
56
Step-by-step explanation:
f(x)=6*x^2+2 =6*3^2+2=56
Answer:
56
Step-by-step explanation:
6(x^2) + 2 = 0replace x = 3 => 6 x (3 ^ 2) + 2 = 56
If 75% is 10 days, how many days is the remaining 25%?
Answer:
10/3 days or 3 1/3 days
Step-by-step explanation:
Let d = number of days total
75% of the days is 10
.75 d = 10
d = 10/.75
d = 40/3 days
We want to know how man is 25% of d
d * 25%
(40/3) *.25
10/3 days
please help me guys its important
Answer:
1441.08in^3
Step-by-step explanation: