Answer:
A because it's most likely to be like that at tryouts
Consider this function.
h(x) = (x - 2)^2+3
Which of the following domain restrictions would enable h(x) to have an inverse function?
a. x < 1
b. x >5
c. x < 3
d. x > 4
(Ps: all four answer and larger equal then or smaller equal then
Answer:
No inverse function: (a), (b), (c)
Inverse function exists: (d)
Step-by-step explanation:
The graph of h(x) = (x - 2)^2 + 3 is a parabola that opens upward and has vertex at (2, 3). If the entire graph is drawn, and the horizontal line test then applied, h(x) would not have an inverse, because the horizontal line would intersect the parabolic graph twice.
Note that if we restricted the domain to x ≥ 2, the resulting graph would pass the horizontal line test. This would also be true for x ≥ 3, x ≥ 4, and so on. Not so for (a) x < 1. False for x > -5. True for x < 3. True for x > 4.
No inverse function: (a), (b), (c)
Inverse function exists: (d)
(2x+y)2-y2 if x=-3 y=4 and z=-5
Please help. ASAP. Work out, giving your answer in its simplest form:
3 1/2 divided by 2 3/5
Answer:
26/35
Step-by-step explanation:
1. First to divide the 3 1/2 by 2 3/5 you have to turn them both into improper fractions
First take 3 1/2. You have to multiply the whole number (3) by the denominator (2) and you would get 6. Then you would add then you add the product (6) to the numerator (1) and get 7.
You keep the denominator the same so the improper fraction is 7/2
Do the same thing to 2 3/5 and the improper fraction is 13/5
2. Now we can divide 13/5 by 7/2 using "keep, change, flip"
Keep: 13/5
Change: division to multiplcation
Flip: 7/2 to make 2/7
Your new equation is 13/5 × 2/7. Multiplcation is easy so you just have to multiply staight across: 13 × 2 and 5 × 7 giving you 26/35
If you divide 35 by 26 you will get 1.34 and a bunch of other numbers but I usually stop at two decimal places
hope this helps :)
What is the equation of the line in slope-intercept form?
Write your answer using integers, proper fractions, and improper fractions in simplest form.
Answer:
[tex]y=-\frac{1}{4}x\\[/tex]
Step-by-step explanation:
The slope is calculated by "up ÷ across".
= -1 ÷ 4
= [tex]-\frac{1}{4}[/tex]
The y-intercept is just 0 (because the line meets at the y axis at 0).
So, using [tex]y=mx+b[/tex] (where m = slope and b = y-intercept),
[tex]y=-\frac{1}{4}x+0[/tex]
but the '+0' is unnecessary so we just say [tex]y=-\frac{1}{4}x[/tex]
2. A house costs $30,000. A buyer is given a 1/10 discount. How much money does the buyer save?
Answer:
3000
Step-by-step explanation:
Z=3 evaluar -[z-(-z)+z]Por favor alguien que me ayude
FInd the value of T - triangle measerments
JK=JH
[tex]\\ \sf\longmapsto 10t=7t+15[/tex]
[tex]\\ \sf\longmapsto 10t-7t=15[/tex]
[tex]\\ \sf\longmapsto 3t=15[/tex]
[tex]\\ \sf\longmapsto t=15/3=5[/tex]
Today everything at a store is on sale the store offers a 20
% discount the regualr price of a t shirt is 18 what is the discount price
Answer:
$14.40 is the discount price.
Step-by-step explanation:
0.2 x 18 = 3.6
18 - 3.6 = 14.4
in triangle abc it is given that AB =9 cm Bc=6cm and Ca = 7.5 cm also
triangle def is given that ef =8 cm and triangle def similar to triangle abc then perimeter of triangle def is
Answer:
Make me as brain liest plz
The perimeter of triangle DEF is; 30 cm
Similar TrianglesWe are given dimensions of Triangle ABC as;
AB = 9 cmBC = 6 cmCA = 7.5 cmThus;
Perimeter of Triangle ABC = 9 + 6 + 7.5 = 22.5 cm
We are told that Triangle DEF is similar to Triangle ABC.
This means that the ratio of corresponding sides must be equal to the ratio of their perimeter.
Side EF corresponds to side BC. Thus;
Perimeter of Triangle DEF/22.5 = 8/6
Cross multiply to get;
Perimeter of Triangle DEF = (22.5 × 8)/6
Perimeter of Triangle DEF = 30 cm
Read more on similar triangles at; https://brainly.com/question/14285697
help me please !!!!
Answer:
graph X only
Step-by-step explanation:
because with the rate of change it makes a straight line
Determine the rate of change between the points (-1,-1) and (1,-1).
Answer:
[tex]\displaystyle m = 0[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightAlgebra I
Coordinate Planes
Coordinates (x, y)Slope Formula: [tex]\displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]Step-by-step explanation:
*Note:
Rate of change is slope.
Step 1: Define
Identify.
Point (-1, -1)
Point (1, -1)
Step 2: Find slope m
Simply plug in the 2 coordinates into the slope formula to find slope m.
Substitute in points [Slope Formula]: [tex]\displaystyle m = \frac{-1 + 1}{1 + 1}[/tex][Order of Operations] Simplify: [tex]\displaystyle m = \frac{0}{2}[/tex]Simplify: [tex]\displaystyle m = 0[/tex]Write a linear inequality for each graph (back page)
Answer:
I can't read that...........
Identify the vertex of the parabola represented by the equation y=−2x2+8x−1.
(−4, −65)
(4, −1)
(2, 7)
(−2, −25)
Answer:
it is correct but -65 is not correct
vanillaor chocolate?? xD lol >:>
Answer:
Chocolate for sure XD
Step-by-step explanation:
Hope this helps!! lol
How many solutions can be found for the system of linear equations represented on the graph?
A) no solution
B) one solution
C) two solutions
D) infinitely many solutions
Answer:
A) No solution
Step-by-step explanation:
Given the systems of linear equations, y = 2x + 1 and y = 2x - 1:
Both equations in the system have the same slope, m = 2, thus forming parallel lines. Since their lines are parallel from each other, then it means that their lines will never intersect.
Therefore, the given systems of linear equation is an inconsistent system that has no solution.
The greatest possible number whose digits are all even numbers from 1 to 9
Answer:
8642Step-by-step explanation:
Our even numbers from 1-9 are:
2,4,6,8The largest possible number using the even numbers once is 8642.
Hoped this helped
PLEASE HELP GIVING BRAINLIEST! :)
Answer:
10
Step-by-step explanation:
3a+b - 4
Let a =3 and b = 5
3(3) +5 -4
Multiply
9+5-4
Add and subtract
14-4
10
Answer:
10
Step-by-step explanation:
a = 3b = 5= 3a + b - 4
= 3(3) + 5 - 4
= (3 . 3) + 5 - 4
= 9 + 5 - 4
= 9 + 1
= 10
Plsss help It due tmr plsss
Answer: 50
Step-by-step explanation:
exterior angles are supplement of interior angle therefore the 110 thing must be 70, also youre given 60 so 70+60=130
50 is missing from 180
How many 2 digit numbers have unit digit 6 but are not perfect squares
9514 1404 393
Answer:
7
Step-by-step explanation:
Of the 9 2-digit numbers ending in 6, only 2 are perfect squares: 16 and 36. The other 7 are not perfect squares.
Can someone help plz
Help me this question is so hard i fried up my brain yesterday working on it for so long!!!!
Hello there! (:
The answer is 9.
3^4=3*3*3*3 (81)
3^2=9
81:9=9
So the answer is 9.
Hope it helps! If you have any question or query, feel free to ask! (:
~An excited gal
[tex]SparklingFlower[/tex]
(27/8)^1/3×[243/32)^1/5÷(2/3)^2]
Simplify this question sir pleasehelpme
Step-by-step explanation:
[tex] = {( \frac{27}{8} )}^{ \frac{1}{3} } \times ( \frac{243}{32} )^{ \frac{1}{5} } \div {( \frac{2}{3} )}^{2} [/tex]
[tex] = { ({ (\frac{3}{2} )}^{3}) }^{ \frac{1}{3} } \times {( {( \frac{3}{2}) }^{5} )}^{ \frac{1}{5} } \div {( \frac{2}{3} )}^{2} [/tex]
[tex] = {( \frac{3}{2} )}^{3 \times \frac{1}{3} } \times {( \frac{3}{2} )}^{5 \times \frac{1}{5} } \times {( \frac{3}{2} )}^{2} [/tex]
[tex] = \frac{3}{2} \times \frac{3}{2} \times {( \frac{3}{2} )}^{2} [/tex]
[tex] = {( \frac{3}{2} )}^{1 + 1 + 2} [/tex]
[tex] = {( \frac{3}{2} )}^{4} \: or \: \frac{81}{16} [/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{27}{8} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{243}{32} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
We can write as :
27 = 3 × 3 × 3 = 3³
8 = 2 × 2 × 2 = 2³
243 = 3 × 3 × 3 × 3 × 3 = 3⁵
32 = 2 × 2 × 2 ×2 × 2 = 2⁵
[tex]\sf{\longmapsto{\bigg( \dfrac{3 \times 3 \times 3}{2 \times 2 \times 2} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 2} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{{(3)}^{3}}{{(2)}^{3}} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{({3}^{5})}{{(2)}^{5}} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
Now, we can write as :
(3³/2³) = (3/2)³
(3⁵/2⁵) = (3/2)⁵
[tex]\sf{\longmapsto{\left\{\bigg(\frac{3}{2} \bigg)^{3} \right\}^{\frac{1}{3}} \times \Bigg[\left\{\bigg(\frac{3}{2} \bigg)^{5} \right\}^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
Now using law of exponent :
[tex]{\sf{({a}^{m})^{n} = {a}^{mn}}}[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{3 \times \frac{1}{3}} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{5 \times \frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex] \sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{\frac{3}{3}} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{\frac{5}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times\Bigg[\bigg(\frac{3}{2} \bigg)^{1} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3}{2} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3}{2} \times \dfrac{3}{2} \bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3 \times 3}{2 \times 2}\bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2} \bigg)^{1} \times \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\[/tex]
[tex] \sf{\longmapsto{\bigg( \frac{3}{2} \bigg)\times \Bigg[\bigg(\frac{3}{2} \bigg)\times \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{3}{2} \times \dfrac{9}{4} \: \: \Bigg]}}\\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{3 \times 9}{2 \times 4} \: \: \Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg(\dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{27}{8} \: \: \Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\dfrac{3}{2} \times \dfrac{27}{8}}} \\[/tex]
[tex]\sf{\longmapsto{\dfrac{3 \times 27}{2 \times 8}}} \\[/tex]
[tex] \sf{\longmapsto{\dfrac{81}{16}}\: ≈ \:5.0625\:\red{Ans.}} \\[/tex]
Andrew shovels snow for 4 %2 hours and makes
$27. How much did he make per hour?
And how much does he earn in 8 hours?
Write the equation of the line with x-intercept 3 and passing through the point (5.4)
Answer: y=(1/5)m+3
Step-by-step explanation:
Start with the standard form of an equation of a straight line: y=mx+b, whre m is the slope and b the y-intercept (the value of y when x=0).
y=mx+b
We know b (3), so:
y=mx + 3
To find the slope, m, we can use the one given point, (5,4):
y=mx + 3 for (5,4) would be:
4 = m*5+3
1 = 5m
m = (1/5)
y=(1/5)m+3
does anyones know these ?
No I don't know your thing
A two digit number is four times the sum and three times the product of its digit. Find the number.
a number of students are standing in a circle. they are evenly spaced and the fith student is directly opposite the eleventh student. how many students are there all together
Answer:
There would be 12
Step-by-step explanation:
When determining domain it is important to work from
Answer:
use graphs
Step-by-step explanation:
Another way to identify the domain and range of functions is by using graphs. Because the domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the x-axis. The range is the set of possible output values, which are shown on the y-axis.
Which of the following describes the transformation from Figure 1 to Figure 2? On a coordinate plane, figure A B C D E has points (negative 3, 5), (negative 2, 5), (negative 1, 4), (negative 2, 3), (negative 5, 3). Figure A prime B prime C prime D prime E prime has points (2, 2), (3, 2), (4, 1), (3, 0), (0, 0). CLEAR CHECK translation 2 units to the right and 3 units down translation 3 units to the left and 2 units up translation 5 units to the right and 3 units down translation 5 units to the left and 3 units up
Answer:
a
Step-by-step explanation:
The transformation from Figure 1 to Figure 2 is:
The transformation of 5 units to the right and 3 units down.
Option C is the correct answer.
What is translation?It is the movement of the shape in the left, right, up, and down directions.
The translated shape will have the same shape and shape.
There is a positive value when translated to the right and up.
There is a negative value when translated to the left and down.
We have,
A B C D E has points (-3, 5), (-2, 5), (-1, 4), (-2, 3), and (-5, 3).
A' B' C' D' E' has points (2, 2), (3, 2), (4, 1), (3, 0), and (0, 0).
Now,
A = (-3 + 5, 5 - 3) to A' = (2, 2)
B = (-2 + 5, 5 - 3) to B' = (3, 2)
C = (-1 + 5, 4 - 3) to C' = (4, 1)
D = (-2 + 5, 3 - 3) to A' = (3, 0)
E = (-5 + 5, 3 - 3) to E' = (0, 0)
We see that,
There is a translation of 5 units to the right and 3 units to the down.
Thus,
The transformation of 5 units to the right and 3 units down.
Learn more about translation here:
https://brainly.com/question/12463306
#SPJ1
-x+3y=0
x+3y=12
System of linear equation by elimination
Answer:
x=6
y=2
Step-by-step explanation:
-x+3y=0 (1)
x+3y=12 (2)
(1)+(2)<=> 6y=12