Please help me to solve this question pleaseee
Answer:
Step-by-step explanation:
1) ML // JK , MK is transversal,
∠LMK = ∠MKJ {Alternate interior angles are congruent}
∠LMK = 30°
In ΔMKO,
30 + 115 + ∠ JLM = 180 {Angle sum property of triangle}
145 +∠ JLM = 180
∠ JLM = 180 - 145
∠ JLM = 35°
2) AB // CD , AC is transversal
∠DCA = ∠BAC {Alternate interior angles are congruent}
∠DCA = 23
∠BCD = ∠DCA + ∠BCA
= 23 + 37
= 60
3) EF // HG ; FH is transversal
∠FHG = ∠HFE {Alternate interior angles are congruent}
∠FHG = 77
4) ZY // WX ; WY is transversal
∠ZYW = ∠XWY {Alternate interior angles are congruent}
= 65
ZY // WX ; WY is transversal
∠ZWY = ∠WYX {Alternate interior angles are congruent}
= 36
In ΔWZY
36 + 65 + ∠z = 180
101 +∠Z = 180
∠Z = 180 - 101
∠Z = 79
What is “8 - 4(-x + 5)” equivalent too?
Answer:
4x -12
Step-by-step explanation:
8 - 4(-x + 5)
Distribute
8 -4(-x) -4(5)
8 +4x -20
4x -12
answer 4( - 3 + x)
factor expression 4(2 - ( - x + 5)4(2 + x - 5)answer
[tex]4( - 3 + x)[/tex]
simplify the expression[tex]8 - 4( - x + 5)[/tex]
answer
[tex] - 12 + 4x[/tex]
Classify the following triangle. Check all that apply.
104
O A. Right
O B. Equilateral
O c. Scalene
O D. Isosceles
E. Acute
O F. Obtuse
SUBMIT
Answer:
isosceles
obtuse
Step-by-step explanation:
We know that one angle is 104 and angles greater than 90 and less than 180 are obtuse
We know that 2 sides are equal indicated by the lines on the sides. That means the triangle is isosceles
Find the special product:
(r + 5)^2
Answer:
i am not sure about this answer but i got r^2+10r+25
40 points Please help!!!
What is the volume of this regular prism?
48.55 cubic inches
55.8 cubic inches
9.7 cubic inches
24.28 cubic inches
Answer:
V = 24.28 in ^3
Step-by-step explanation:
The area of the base is
A =5/2 × s × a where s is the side length and a is the apothem
A = 5/2 ( 2.13) * .87
A = 4.63275
The volume is
V = Bh where B is the area of the base and h is the height
V = 4.63275 ( 5.24)
V =24.27561 in^3
Rounding to the hundredth
V = 24.28 in ^3
I need to verify this function is symmetric with respect to the y-axis. How would I go about doing that?
h(x)=x^4-5x^2+3
Answer:
Yes, the function is symmetric about y-axis.
Step-by-step explanation:
To check whether the function is symmetric with respect to y-axis, replace each x as -x and simplify.
If h(x) = h(-x) then it is symmetric about y-axis.
Let's find h(-x) now.
h(-x)= [tex](-x)^4} -5(-x)^{2} +3[/tex]
Let's simplify it
h(-x)=[tex]x^{4}-5x^{2} +3[/tex]
Here, h(x) = h(-x). The function is symmetric about y-axis.
A research historian is interested in finding sunken treasure in the Atlantic Ocean. She knows that her equipment is only good enough to recover items that are at a depth of 5 000 m or less. The speed of sound through the water is 1 530 m/s. While working, the sonar equipment detects a reflection that is of interest. The echo from the item takes 6.2 s to return to the sonar detector. Will she be able to retrieve this item?
Answer:
Yes, she will be able to retrieve the item
Step-by-step explanation:
The information with regards to the research historian interest in finding a sunken treasure are;
The depth from which the equipment can recover items = 5,000 m
The speed of sound through water, v = 1,530 m/s
The time it takes the echo from the item to return to the sonar detector, t = 6.2 s
Let d, represent the depth at which the item is located
Given that an echo travels from the sonar detector to the item and back to the sonar detector, the distance traveled by the sound wave which is received as an echo by the sonar detector = 2 × d
Velocity, v = Distance/time
∴ Distance = Velocity × Time
The distance traveled by the echo = 2 × d = v × t
2 × d = v × t
∴ 2 × d = 1,530 m/s × 6.2 s
d = (1,530 m/s × 6.2 s)/2 = 4,743 m
The depth at which the item is located, d = 4,743 m is less than the maximum depth the equipment can recover items, therefore, she will be able to retrieve the item.
Find the sum of a geometric series of which a1=7, n=4 and r=3
Answer:
280
Step-by-step explanation:
Use the formula: (a((r^n)-1))/(r-1)
= (7((3^4)-1))/(3-1)
The sum of the given geometric series is 280.
We have given that,
a1=7, n=4 and r=3
We have to determine the sum of a geometric series
What is the formula sum of the geometric series?[tex]S_n=(a((r^n)-1))/(r-1)[/tex]
[tex]= (7((3^4)-1))/(3-1)[/tex]
[tex]=280[/tex]
Therefore the sum of the given geometric series is 280.
To learn more about the geometric series visit:
https://brainly.com/question/25630111
#SPJ2
Solve each system by substitution
y=4
-3x+5y=2
Answer:
x = 6; y = 4
Step-by-step explanation:
y=4
-3x+5y=2
-3x + 5(4) = 2
-3x + 20 = 2
-3x = -18
x = 6
Answer: x = 6; y = 4
Answer:
(6,4)
Step-by-step explanation:
y=4
-3x+5y=2
Substitute y=4 into the second equation
-3x+5*4=2
-3x +20 = 2
Subtract 20 from each side
-3x +20-20 = 2-20
-3x = -18
Divide by -3
-3x/-3 = -18/-3
x=6
(6,4)
Find the line’s slope and a point on the line
Y-4=-3/4(x+5)
Answer:
The slope is -3/4 and a point on the line is (-5,4)
Step-by-step explanation:
This equation is in point slope form
y -y1 = m(x-x1)
where m is the slope and (x1,y1) is a point on the line
Y-4=-3/4(x+5)
Y-4=-3/4(x - -5)
The slope is -3/4 and a point on the line is (-5,4)
Plz help out real quick
Answer:
b=55°..Step-by-step explanation:
b+6°+41°+b+23°=180°{sum of angle of triangle}2b+70°=180°2b=180°-70°b=110/2b=55°hope it helps.stay safe healthy and happy......The density of water is 1 gram per cubic centimeter. A more dense object will sink, and a less dense object will float. Will a marble with a radius of 1.4 cm and a mass of 9 grams sink or float in water? The marble will (float/sink) because the density of the marble is about (0.71, 0.78, 1.28, 1.40) grams per cubic centimeter.
Answer:
sink at 1.28 g/cm^3
v = 4/3 [tex]\pi r^{3}[/tex]
v = 4/3 [tex]\pi 1.4^{3}[/tex]
v =11.49 /9 =1.28
Step-by-step explanation:
In the diagram below, lines AB and CD are...
Answer:
Perpendicular
Step-by-step explanation:
Perpendicular lines intersect and create 4 90 degree angles
Line AB and CD intersect and create 4 90 degree angles therefore line AB and CD are perpendicular
If XZ = 46 and WR = 21, find WX.
Answer:
[tex]WX=\sqrt{970}[/tex]
Step-by-step explanation:
The diagonals of a kite intersect at a 90-degree angle. In this figure, right triangle [tex]\triangle WRX[/tex] is formed by half of each of the diagonals.
In any right triangle, the Pythagorean Theorem states that [tex]a^2+b^2=c^2[/tex], where [tex]a[/tex] and [tex]b[/tex] are two legs of the triangle and [tex]c[/tex] is the hypotenuse.
Segment WR is one leg of the triangle and is given as 21. XR forms the other leg of the triangle, and is exactly half of diagonal XZ. Therefore, [tex]XR=\frac{1}{2}\cdot 46=23[/tex].
The segment we're being asking to find, WX, marks the hypotenuse of the triangle.
Therefore, substitute our known information into the Pythagorean Theorem:
[tex]21^2+23^2=WX^2,\\WX^2=970,\\WX=\boxed{\sqrt{970}}[/tex]
Answer:
WX= 31.14
Step-by-step explanation:
Use the Pythagorean theorem- [tex]a^{2} +b^{2} =c^{2}[/tex]
XR=23 by taking half of 46
[tex]21^{2} +23^{2} =c^{2} \\441+529=c^{2} \\970=c^{2}[/tex]
sqrt both sides to get your answer of 31.14
Can someone help me with this math homework please!
1. a= 19
2.2 ( second option)
3.C
4D
P(x) = 1 – 2x2 – 3x3 + 4x has what order?
Answer:
3
Step-by-step explanation:
assuming you forgot you ^ mark after x x^3 would be the highest x order here making it the order for the equation.
i’m having trouble with this question. if anyone can answer it would mean a lot
Answer:
Step-by-step explanation:
x = - 48/-8 = 6
c = c^2/c^1 = c^(2-1) = c^1
d = d^4 / d^1 = d^(4 - 1) = d ^3
x = 6
e = 1
f = 3
Two corresponding sides of similar triangles have the lengths 6 cm and 16 cm. What is the ratio, expressed as a decimal?
Answer: 16:81
Step-by-step explanation:
A car travelling at v kilometers per hour will need a stopping distance, d, in meters without skidding that can be modelled by the function d=0.0067v2+0.15v. Determine the speed at which a car can be travelling to be able to stop within 37m.
I’m need of serious help!
Answer:
v = 14 km/h
Step-by-step explanation:
d = 0.0067[tex]v^{2}[/tex] + 0.15v
differentiate the function with respect to v to have;
d = 0.0134v - 0.15
given that the distance without skidding = 37 m (0.037 km) , then;
0.037 = 0.0134v - 0.15
0.0134v = 0.037 + 0.15
= 0.187
v = [tex]\frac{0.187}{0.0134}[/tex]
= 13.9552
v = 14 km/h
The speed of the car travelling would be 14 km/h to be able to stop within 37m.
Find the measure of the indicated angle.
Answer:
86°
Step-by-step explanation:
180-(2*47)
= 180-94
= 86
Answered by GAUTHMATH
Please read below. Thank you.
Answer:
desmos .com
Step-by-step explanation:
Answer: See the graph below
Step-by-step explanation:
Concept:
Formula for circle: (x - k )² + (y - h)² = r²
Center = (k, h)
Radius = r
**Disclaimer** variables used can be different
------------------------------------------------------------------------
Solve:
Given: (x - 2)² + (y + 3)² = 16
Center = (2, -3)
Radius = √16 = 4
Hope this helps!! :)
Please let me know if you have any questions
Help me please please help me please
Answer:
the first one...
the cost of renting the ally for 14 hours
Step-by-step explanation:
Answer:
the first one
the number of dollars it costs to rent the bowling lane for14 hours
Find the equation of the line passing through the point (-3.6, 2.1) and parallel
to the line 4.9x + 5.4y = 3
Answer:
y = -4.9/5.4x - 1.17
Step-by-step explanation:
First let's convert the equation to standard form of y = mx + b.
4.9x + 5.4y = 3
Subtract 4.9x from both sides.
5.4y = -4.9x + 3
Divide each term by 5.4.
y = -4.9/5.4x + 0.56
If two lines are parallel to each other, they have the same slope slopes.
The first line is y = -4.9/5.4x + 0.56. Its slope is -4.9/5.4. A line parallel/perpendicular to this one will also have a slope of -4.9/5.4.
Plug this value (-4.9/5.4) into your standard point-slope equation of y = mx + b.
y = -4.9/5.4x + b
To find b, we want to plug in a value that we know is on this line: in this case, it is (-3.6, 2.1). Plug in the x and y values into the x and y of the standard equation.
2.1 = -4.9/5.4(-3.6) + b
To find b, multiply the slope and the input of x (-3.6)
2.1 = 3.27 + b
Now, subtract 3.27 from both sides to isolate b.
-1.17 = b
Plug this into your standard equation.
y = -4.9/5.4x - 1.17
This equation is parallel/perpendicular to your given equation (y = -4.9/5.4x + 0.56) and contains point (-3.6, 2.1)
Hope this helps!
Find the value of x.
A. 99
B. 9
C. 90
D. 11
ILL GIVE BRAINLIEST
Answer:
B) 9
Step-by-step explanation:
Because there's a square between the 2 angles, that means these angles are complementary (angles that add up to 90°). So:
5x - 9 + 6x = 90
11x - 9 = 90
11x = 90 + 9
11x = 99
x = 9
Answer:
B.9
Step-by-step explanation:
The way to solve this is by noticing that these angles are complementary(they add up to 90 degrees). So you add the equations together and equal them to 90. 5x-9+6x=90.Then you solve to find that x=9.
A bus has less than 42 seats. If 36 seats are already occupied, write an
inequality representing the possible number of passengers that can be
added to the bus.
A.) x - 36 < 42
B.) x + 36 < 42
C.) x - 36 > 42
D.) x + 36 > 57
Answer:
B
Step-by-step explanation:
A x - 36 <42 is wrong because its saying how many can be added
B x +36 < 42 this one is most likely correct because its displays x as how many can be added
C x - 36 > 42 this is wrong because the bus has less than 42 seats
D x + 36 >57 like i said cant be over 42
The inequality representing the possible number of passengers that can be added to the bus is Option(B) x + 36 < 42.
What is inequality ?An inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. Inequality is used most often to compare two numbers on the number line by their size. There is always a definite equation to represent it.
How to form the given inequality equation ?Let x be the number of passengers that can be added to the bus.
It is given that the bus has less than 42 seats and 36 seats are already occupied.
The sum of the remaining seats which are to be filled by the passenger and the 36 seats which are filled, must be less than the total seats that is 42.
Therefore the inequality equation becomes,
x + 36 < 42.
Thus, the inequality representing the possible number of passengers that can be added to the bus is Option(B) x + 36 < 42.
To learn more about inequality equation, refer -
https://brainly.com/question/17448505
#SPJ2
If anyone knows pls answer
Answer:
1
Step-by-step explanation:
QUICK 20pts!!!! 1. In a certain country, the probability that a baby that is born is a boy is 0.52 and the probably that a baby that is born is a girl is 0.48. A family has two children. If X is the number of girls born to a family, find the probability that the family has 0, 1, or 2 girls. (a) Draw a tree diagram showing the possibilities for each outcome. (b) Create the binomial distribution table for . Show all your work.
(a) i aint drawing a tree but basically, if left means a boy is born and right means a girl is born, the far left result (both boys) will happen with probability [tex](0.52)^2[/tex], the two middle results (one boy and one girl) will both happen with probablility [tex]0.48 \cdot 0.52[/tex], and the far right result (both girls) will happen with probability [tex](0.48)^2[/tex].
(b) binomial distribution table for what...?
which of the following equations have complex roots?
9514 1404 393
Answer:
B. 3x² +2 = 0
Step-by-step explanation:
The equation of A has a couple of real roots. We're pretty sure there are complex numbers that will satisfy this equation, but we don't know how to find them. (We suspect a typo, and that the equation is supposed to be 2x² +1 = 7x, which has only real roots.)
__
The equation of B can be rewritten as ...
x² = -2/3
This will have complex roots.
__
The discriminants of both equations C and D are positive, so those have only real roots.
2x² -5x -1 ⇒ d = (-5)² -4(2)(-1) = 33
3x² -6x -1 ⇒ d = (-6)² -4(3)(-1) = 48
Find the area of the image below
Answer:
0 because there is no image....
Which pair shows equivalent expressions?
O 2x+10=-2(x-5)
O-2(x+5)=2x-10
0 -2x-10=-2(x+5)
O -2(x-5)=-2x-10
Answer:
O-2(x+5)=2x-10
Explanation
O-2(x+5)=2x-10
SOLUTION
-2x(x)= -2x
-2x+5 = -10